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Abstract. Expressions for the equilibrium surface Bowen ratio (/3s) and equilibrium evaporation are 
derived for a growing convective boundary layer (CBL) in terms of the Bowen ratio at the top of the 
mixed layer (/3i) and the entrainment parameter An. If  AR is put equal to zero, the solution for/3, 
becomes-that previously obtained for the zero entrainment or 'closed box' model. The Priestley-Taylor 
parameter a is also calculated and plotted in terms of An and /31. Realistic combinations of the 
atmospheric parameters give values of c~ in the range 1.1 to 1.4. 

1. Introduction 

As an air mass moves over a region of uniform wetness, with a constant surface 
resistance to evaporation, the specific humidity deficit at the surface tends towards 
an equilibrium value (McNaughton and Jarvis, 1983; McNaughton, 1976). The 
Bowen ratio at the surface,/3s, then tends towards 

1 
~ ,  = - ( I )  

E 

where e = sA/cp, s is the slope of the saturated humidity curve, A is the latent heat 
of vaporisation of water and Cp is the specific heat capacity of air at constant 
pressure. Combining Equation (1) with the surface energy balance 

Hs + AE, = Rn - G (2) 

where Hs is the sensible heat flux, Es is the water vapour flux, R,, is the net 
radiation and G is the soil heat flux, leads to the following expression for the 
evaporation 

E 
- - -  ( R .  - 0 ) .  ( 3 )  

( i  + 

McNaughton (1976) describes this as the quasi-equilibrium evaporation ('quasi' 
since the slope of the saturation humidity curve is not a constant), but it is 
often simply described as the equilibrium evaporation. The discrepancy between 
Equation (3) and the Priestley-Taylor (1972) equation 

AE = ce (Rn - G) (4) 
(1 + e) 
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where a is a constant, has been the cause of much debate. Priestley and Taylor 
(1972) found a to vary between 1.08 and 1.34 and decided that the best estimate 
of o~ was 1.26, this being the overall mean of values obtained over land. lake and 
ocean. In a recent review of values of a obtained from several experiments. Pereira 
and Villa Nova (1992) report values ranging from 1.05 - 1.66. Equation (4) has 
mostly been tested on a daily basis: on an hourly scale, significant variations in 
are found to occur. In some cases, reviewed by Pereira and Villa Nova (1992), 
had a U-shaped variation with a minimum around noon. whilst in others, the 
value of a increased continuously throughout the day. Although there are many 
examples in the literature which seem to validate the use of Equation (4) with 

--~ 1.26 to estimate evaporation under potential conditions, at least on a daily 
basis, Monteith (1981) urges caution. He makes the point that there may well be 
many datasets which do not fit the relationship, but which, being regarded as 
negative results, have remained unpublished. Shuttleworth and Calder (1979) 
object strongly to the fact that the Priestley-Taylor equation takes no account 
of either the aerodynamic and physiological behaviour of the surface or of the 
precipitation input. They present long-term measurements of evaporation from 
coniferous forest which show a ranging from 0.62 to 9.69. 

Despite these objections to the general and indiscriminate application of the 
Priestley-Taylor equation, it is a matter of interest that under potential conditions. 
a has often been found to be substantially higher than the value of unity predicted 
by theory. Monteith (1981) suggests that this discrepancy might be partially ex- 
plained by the fact that the derivation of Equation (3) regards the mixed layer as 
a closed box to heat and vapour exchange, whereas in reality there may be 
entrainment of dry air through the top of the box. De Bruin (1983) and McNaugh- 
ton and Spriggs (1986) subsequently developed simple numerical models of the 
growing atmospheric boundary layer which included various parameterisations 
of the entrainment process. These models were applied to the Cabauw dataset 
(Driedonks, 1981) and values of a ranging from 1 for moderately dry conditions. 
to 1.3 for a well watered surface were obtained. De Bruin (1983) showed that. on 
an hourly basis, a had some variation, having its largest values in the early morning 
and late afternoon, but was fairly constant during the hours around midday. In 
addition, the modelled evaporation had significant sensitivities to both the satur- 
ation deficit and to the stability of the air above the mixed layer. McNaughton 
and Spriggs (1986) concluded that it was not clear how the Priestley-Taylor equa- 
tion took these effects into account and that this should be a matter for further 
study. 

In the present paper, the physical basis of the Priestley-Taylor equation is 
investigated using the slightly different approach of considering the equilibrium 
evaporation at the surface for the case when the boundary layer is no longer a 
closed box to heat and water vapour transport. Formulae are derived for the 
equilibrium surface Bowen ratio and the equilibrium evaporation. These quantities 
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Fig. 1. Vector representation of mixed-layer growth. 

are expressed in terms of the Bowen ratio at the inversion level and the rate of 
entrainment of air into the mixed layer from above. 

2. Vector representation of the mixed layer 

In a recent paper, Betts (1992) describes how simple potential temperature versus 
specific humidity (0, q) diagrams can be useful for studying mixed-layer develop- 
ment. An example of such a (0, q) diagram is shown in Figure 1. The initial state 
of the mixed layer (Cp O, hq) is M and at some time later it is M'. Betts (1992) 
shows how the change from M to M' can be represented on the diagram by means 
of vectors Fs and Fi, where F~ represents the fluxes of heat and water vapour at 
the surface and F~ represents the fluxes at the inversion. The gradients of these 
vectors on the diagram give the Bowen ratio at the surface and at the inversion, 
respectively. 

In mixed-layer models, the flux of sensible heat at the inversion level is par- 
ameterised by means of a relationship between the virtual heat ftux at the surface 
H,,~ and the virtual heat flux at the inversion level Hi,~, 

Hz,v = - ARHs,w (5) 

where, as throughout this work, upward directed fluxes of sensible or latent heat 
are defined as positive. AR is known as the entrainment parameter. Betts (1992) 
shows how the vectors labelled A0i,v and A0s,v in Figure 1, found by projecting a 
perpendicular onto the dry virtual adiabat through M, are also related by the 
entrainment parameter, 
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AOv.i -- A R A O v , s .  (6) 

The dry virtual adiabat, labelled /3v in Figure 1, has a gradient given by 
-0.608cp T / A  --~ - 0.07, where T is the temperature. 

Oiven Equation (6), values of the Bowen ratio at the inversion, the entrainment 
parameter and the mixedqayer humidity and temperature, it is possible to deter- 
mine the Bowen ratio at the surface from a diagram such as Figure 1. Betts (1992) 
uses similar diagrams to derive the surface Bowen ratio for two special cases: 
firstly the case when the specific humidity of the mixed layer does not change with 
time, and secondly when the equivalent potential temperature remains constant  

In this present work, the case considered is the case where the potential satur- 
ation humidity deficit of the mixed layer remains constant. The potential saturation 
deficit (e.g., McNaughton and Jarvis, 1983), given by q * ( O )  - q (where q ~ ( O )  is 
the saturation specific humidity at a potential temperature 0) is the saturation 
deficit that a parcel of air would attain if brought adiabatically down to the surface. 
It is constant throughout the mixed layer. Throughout this work. the potential 
temperature is referenced to the air pressure at the surface rather than the more 
normal 100 kPa, and therefore the potential saturation deficit and the actual 
saturation deficit are equal at the surface. It is possible to use Figure 1 to study 
this third case by adding the relationship between saturated specific humidity and 
temperature to the diagram. Figure 2 shows the diagram with this addition. To 
maintain a constant potential saturation deficit, consecutive states of the mixed 
layer must be parallel to this curve, i.e., M and M' must both lie on the same 
constant potential saturation deficit curve. Two of these curves are also plotted 
on Figure 2 for reference. 
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Fig. 3. The sensible heat and water vapour fluxes into and out of the box representing the convective 

mixed layer. 

Firstly, consider the simple case of the mixed layer as a closed box. In this case 
the only fluxes of heat and water vapour into the box occur at the surface, and 
the change in state of the mixed layer from M to M' must be achieved by a single 
vector on Figure 2. The required vector joins the points M and M'. The surface 
Bowen ratio is given by the gradient of vector MM', which is simply 1/e. This is 
the result obtained by McNaughton and Jarvis (1983). Now consider the more 
complex, but also more realistic, case when the mixed layer is no longer a closed 
box, but when there is a flux of warmer drier air into the mixed layer from above. 
In this case, the change in state of the mixed layer from M to M' must be the 
resultant of two vectors, one, Fs, representing the surface fluxes and the other,  
F~, representing the fluxes at the inversion. It is immediately clear from Figure 2 
that the Bowen ratio at the surface, i.e., the gradient of k~, must be smaller in 
this case than it was for the case of the closed box. An expression for this surface 
Bowen ratio in terms of AR and /3i can be derived either geometrically from a 
diagram such as Figure 2 or, as here, in a similar way to that used by McNaughton 
and Jarvis (1983) for the closed box case. 

Consider the CBL as a box as shown in Figure 3. For simplicity, and following 
the derivation of McNaughton and Jarvis (1983), the surface layer is neglected 
and the potential temperature and specific humidity are assumed to be well mixed 
right down to the surface. The sensible heat and water vapour fluxes into and out 
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of the box are indicated. Note that in the text upward directed fluxes are defined 
as positive. Assuming conservation of energy at the floor of the box, we have, as 
for the closed box case, Equation 2. However, in this present case the heat and 
water vapour budgets of the box are given by 

and 

O0 
H ,  - H ,  = p c p h -  (7) 

Ot 

g/r~ 
E ,  - E i  = ph  --1 (8) 

Ot 

where p is the density of air and h is the height of the mixed layer. Describing 
evaporation at the surface by the Penman-Monteith 'big leaf' model: 

E ,  = p [ q * ( O )  - q] (9) 
rc 

where rc is the constant surface resistance to evaporation. Differentiating Equation 
9 with respect to time gives 

d t  rc 

so the evaporation will reach an equilibrium rate when 

(10) 

i.e., referring to Figure 2, when the state of the mixed layer is moving along a 
constant saturation deficit curve. Consider two cases. Firstly, the strictly correct 
case when the virtual heat flux at the inversion level is proportional to the virtual 
heat flux at the surface (Equation 5). The virtual heat flux at the surface is related 
to the heat flux at the surface by 

H,,v = Hs -/3v AE, ; (12) 

similarly at the inversion level 

Hi,v  = H i  - ~ v h E i  �9 ~(1 a~/ 

Combining Equations 5, 12 and 13 gives 

H~ = - A R ( H ,  - 3 v a E , )  + ~ v A E i .  (14) 

The latent heat flux at the inversion level is given by 

Of Of 
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Hi 
A E  i = - - .  (15) 

/3i 

Combining Equations 14 and 15 gives 

Ei = --AR (H~ - fi .  hE , )  (16) 
A(t3i - / 3 ~ )  

and substituting for Ei in Equation 14 leads to 

Hi = - AR(H~ - fi~hE~) - f l~AR(H,  - / 3 . h E s )  (17) 

The inversion-level fluxes are now expressed in terms of the surface fluxes and 
the Bowen ratio at the inversion level. 

Equations 7 and 8 can now be written as 

Hs + A R ( H ,  - fi , ,AE,) + f l , ,AR(H, - f ivAE,)  = pcph aO (18) 

and 

E, + AR(H~ -/3vAE~) = ph O_q. (19) 
a(/3i - / 3 ~ )  at 

Now consider the equilibrium case given by Equation 11. Using Equations 18 and 
19, Equation 11 can be written as 

F _e 
[H, + AR (Hs - 13v hE,) 4 

A L a(13~ - ~ )  
(20) 

Rearranging Equation 20 gives 

+ ~AR + (t3i - t3v) / s  H ,  = 1 (~i - ~v)  + ~AR~v + (t3i - ~v)J  h e , .  

(21) 

The Bowen ratio at the surface, fis, is given by H s l A E , ,  so let 

1 
/ 3  i - - - -  

E 
(22) 

then 

/3, - 

1 
- + A R f i ~  
E 

1 + A R ~  
(23) 
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Substituting/3s into the surface energy balance, Equation 2, leads to the following 
expression for the equilibrium evaporation. 

(1 + A R ~ ) ( R n  - G )  
AEs = (24) 

1 + 1 + AR~(1 + /3,,) 
E 

Now consider the second case. Here it is assumed that the heat flux at the inversion 
level is proportional to the heat flux at the surface, rather than the relationship 
between the virtual heat fluxes discussed above. In this case, the fluxes at the 
inversion level are given by 

Hi = - cHs (25) 

-cH,  
AE, - (26) 

/3i 

The effect of the simplification on Figure 2 is to rotate the dry virtual adiabats 
until they run perpendicular to the Cp 0 axis and therefore have a gradient of zero. 
It is possible to determine the simplified expression for /3, by letting /3v = 0 in 
Equations 22 to 24 and replacing A n  by c, rather than repeating the derivation 
with Equation 25, 26 in place of Equation 17, 16, respectively. Equation 22 
becomes 

1 
~ ' =  1 - -  (27) 

e/3i 

and the surface Bowen ratio is given by 

1 
/3" - e(1 + c-"~) (28) 

Similarly Equation 24 becomes 

1 + c~' (Rn - G)  
AE' = (29) 

1 + ! + c r  
E 

where the prime denotes that these values are calculated using the simplified 
entrainment relationships. Note that for the cases A n  = 0 and c = 0 (i.e., the zero 
entrainment cases), Equations 23 and 28 simplify to Equation 1, and Equations 
24 and 29 simplify to Equation 3; the relationships previously derived for the 
closed box case. 
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3. Results and Discussion 

Values of/3, were determined from Equation 23 for a range of values of AR and 
fii at three different temperatures; 10, 20 and 30~ The resulting values are 
plotted in Figure 4. Figure 4 shows that Equation 23 predicts a range of values 
for/3s from 0 to 0.8. However, this range can be limited by considering only the 
most commonly occurring combinations of the atmospheric variables/3i and AR. 

Most of the published values of the entrainment parameter AR lie in the range 
0.1 to 0.3 with AR = 0.2 being the generally accepted value. However, Betts (1992) 
reported values of AR close to 0.4 in a study of mixed-layer budgets for the FIFE 
experiment in Kansas USA, and Cull (1992) found that mixed-layer growth in the 
Sahel was better described by a mixed-layer model if a value AR = 0.5 was used 
rather than 0.2. The value of/3i varies with season and according to local con- 
ditions. Betts reports a typical summer value for FIFE of -0.3, and an autumn 
value of -0.5. Lower values may occur when a boundary layer grows into very 
dry air, as is occasionally the case in the Sahel for example, and higher values 
occur when the mixed layer grows into the relatively unstable residual mixed layer 
from the previous day (Betts, 1992). Typical ranges of the two parameters are 
therefore -0.5 to -0.3 for/3i and 0.2 to 0.4 for AR. The areas corresponding to 
these ranges of the atmospheric parameters are shaded in Figure 4. The typical 
ranges of the two atmospheric parameters give rise to values of/3s of 0.1 to 0.47. 

The Priestley-Taylor parameter was also calculated for a range of values of AR 
and fii and for the three different temperatures. The values obtained are plotted 
in Figure 5. 

The predicted value of o~ ranges from 1 to 1.8. Again the typically occurring 
ranges of the atmospheric parameters are plotted on the graphs. The range of 
corresponding to this range of values is 1.08 to 1.46. Thus most of the range of 
observations of a (1.05 - 1.66) reported by Pereira and Villa Nova (1992) could 
be explained by various combinations of fii, AR and T, although it is likely 
that, in reality, many of these measurements were not made under equilibrium 
conditions. 

Values of/3s and oz calculated from Equations 23 and 24 for some typical values 
of T, AR and /3, are given in Table I. Values of /3'~ and a '  calculated from 
the simplified Equations 28 and 29 are also shown. The simplified entrainment 
relationships give rise to lower values of o~. The values obtained from the two 
methods are plotted in Figure 6 for comparison. 

4. Concluding Remarks 

This work shows that Equation (3) underestimates equilibrium evaporation be- 
cause it is derived for the special case when there is no entrainment of dry air 
into the mixed layer from above. In the more general case, when entrainment is 
taken into account, equilibrium evaporation may be up to 1.8 times higher than 
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Fig. 4. 
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that given by Equation (3). This difference is shown to be controlled by a complex 
function of An, ~i and e and, consequently, even in ideal, advection-free (hypo- 
thetical?) conditions when evaporation might be expected to approach the equilib- 
rium rate, the variability in these atmospheric parameters will lead to a range of 
values of a being observed. 
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