
Journal of Intelligen Information Systems, 6, 33-58 (1999)
© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Query Processingin Annotated Logic
Programming: Theory and Implementation*
SONIA M. LEACH
Department of Computer Science, Brown University, Providence, RI 02912

JAMES J. LU
Department of Computer Science, BucknelI University, Lewisburg, PA 17837

sml@cs.brown.edu

jameshi@bucknell.edu

Abstract. Annotated logic is a formalism that has been applied to a variety of situations in knowledge
representation, expert database systems, quantitative reasoning, and hybrid databases [6], [13], [19], [20], [21],
[22], [23], [24], [30], [33], [35], [36]. Annotated Logic Programming (ALP) is a subset of annotated logics that
can be used directly for programming annotated logic applications [22], [23]. A top-down query processing
procedure containing elements of constraint solving, called ca-resolution, is developed for ALPs. It simplifies
a number of previously proposed procedures, and also improves on their efficiency. The key to its development
is in observing that satisfaction, as introduced originally for ALPs, may be naturally generalized. A computer
implementation of ca-resolution for ALPs is described which offers important theoretical and practical insights.
Strategies for improving its efficiency are discussed.

Keywords: expert database systems, heterogeneous systems, reasoning under uncertainty

1, Introduction

Annotated Logic is a formalism that can be used as the foundation for a variety of sit-
uations in knowledge represent'ation, expert systems, quantitative reasoning, and hybrid
databases [6], [13], [19], [20], [21], [22], [23], [24], [30], [33], [35], [36]. As a knowledge
representation formalism, annotated logi c can be applied to reasoning under uncertain,
incomplete, and contradictory knowledge. In hybrid knowledge bases, annotated logic
provides a logical framework for integrating heterogeneous systems. In addition, in [23],
Kifer and Subrahmanian demonstrated how annotated logic programming can capture cer-
tain fragments of temporal reasoning, as well as bilattice logic programming introduced
by Fitting [10].

The distinguishing feature of annotated logic is the incorporation of names for truth
values directly into the language of the logic. Such signing of formulas has been con-
sidered elsewhere including by [32], [14J for analyzing multiple-valued logics, by [5]
for evidential reasoning, and by [38] for fuzzy reasoning. In annotated logic, the set of
underlying truth values is assumed to form a complete lattice.

As the utility of annotated logic becomes more apparent, the next important set of
research questions to address includes the development of proof procedures for automated
reasoning in annotated logic, and the examination of issues related to implementing such

* This material is based upon work supported by the NSF under Grant CCR9225037. A preliminary version
of this paper appears in the proceedings of the International Conference on Logic Programming, 1994.

34 LEACH AND LU

procedures. A subset of annotated logic that has been considered most frequently is
annotated logic programming, which focuses on annotated horn clauses (cf. [19], [6],
[22], [23]). Due to the procedural interpretation naturally associated with horn clauses,
annotated logic programming can be used to directly implement many annotated logic
applications.

The current paper investigates a query processing method, called ca-resolution, for
annotated logic programming, and presents a prototype interpreter based on the method.
Ca-resolution improves upon both the efficiency and the readability of several existing
procedures. The procedure considered in [22], [23] requires the application of two infer-
ence rules for processing queries. The additional inference rule has presented difficulties
in the development of an efficient top-down query processing procedure. Ca-resolution
alleviates the necessity of the additional rule. The key to its development is in observing
that the semantics of annotated logic programs can be naturally generalized.

Ca-resolution contains elements of constraint programming [26]. The inclusion of
constraint solving mechanisms into logic programming is a topic of considerable interest
in recent years [8], [18], [37]. 1 The semantics of annotated logic programs extended with
constraints have been studied in [23]. Here, we discuss how the mechanism developed
in [23] corresponds to loeal propagation [26], and can be used to solve queries in our
system.

There is an interesting difference between our uses of constraints and the typical Con-
straint Logic Programming (CLP) scheme [15]. In CLR horn clauses are augmented by
constraints. At each step of a computation, the interpreter must ensure the solvability
of the constraint. Unsolvable constraints cause backtracking. On the other hand, in our
system, the solvability of constraints defines the satisfiability of a query. Constraints are
associated with atoms in the query; they do not exist independently of the atoms. An
unsolvable constraint does not cause backtracking, but instead, prompts further searches
until a solvable constraint is found. Therefore constraints are continually modified until
a solvable constraint is constructed. In CLR an existing constraint does not change.
Additional constraints, however, may be added.

We describe what we believe is a first implementation of an annotated logic pro-
gramming system. Compared to ordinary logic programming, the search space for a
proof of a given query in annotated logic programming is more complex. Certain issues
absent in classical horn clause programming surface in annotated logics programming.
We illustrate these complexities and examine possible strategies for reducing the search
space. Of special interest are those strategies that systematically utilize special properties
embedded in the underlying lattice of truth values. It has long been argued that such
semantically based strategies are necessary in improving the effectiveness of inference
techniques [40], [7]. One promising restriction strategy along this line is briefly discussed
Section 5.3.2.

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 35

2. Annotated Logic Programs

2.1. The Lattice A and Annotations

Underlying any system of annotated logic is a lattice A of objects. We denote the
associated ordering by -4. Generally, A is assumed to be a complete upper semilattice.
More interesting however is the case when A is assumed to be a complete lattice. This
is the assumption taken in the current paper. In practice, the distinction between the two
is slight as we may often "complete" the upper semilattice by adding a bottom element.

The least upper bound and the greatest lower bound operators are denoted O and n,
respectively, while the top and the bottom elements are denoted T and ±, respectively.
Objects in A are used for "signing" formulas in annotated logics. As mentioned in
[23], elements in A may be thought of as confidence factors, as degrees of belief, or
as truth values. The requirement that A forms a lattice stems from the desire to use A
for modeling certain epistemic concepts such as inconsistency [6], [21], and evidence
[24]. More recently, Subrahmanian [36] extended the scope of A to represent names
of distributed databases, where databases that are "higher" in the lattice are regarded as
supervisory databases - otherwise known as mediators [39] - of "lower" databases.

The lattice A may be viewed as a constraint domain. To that end, we assume the
existence of a first order language E whose function and predicate symbols are interpreted
over A, As in [23], we consider only total, computable continuous functions over A.
In particular, included in the function symbols are the operators u, N, and included in
the predicate symbols is the ordering relation ~. A term built in the usual way from the
non-logical symbols of the language E is called an annotation. To maintain consistency
with the terminology used in [23], we refer to a constant symbol in the language E as a
c-annotation, a variable in E as a v-annotation, and a term involving a function symbol
as a t-annotation. To ease the presentation, we do not distinguish between objects of
A and terms of the language ~ whose denotations are in A. A constraint is a formula
constructed in the usual way from atomic formulas and logical connectives.

Of particular interest is the class of normal constraints, which are constraints of the
form

where each ~ is a c- or v-annotation, each ~- is an annotation, and if t% is a variable, then
it does not occur in ml, -.., ri. For example, the constraint V ~ f (W) , W ~ 9(V) is not
a normal constraint since any ordering of the inequalities violates the required condition.
The simplest lattice, used in the original study on logic programming for reasoning with
inconsistent information [6], is the lattice FOUR shown in Figure 1.

Not every application of annotated logic involves the use of a lattice whose elements
represent truth values. For example, Krishnaprasad and Kifer used lattices where the
objects correspond to evidence [24]. Objects used in these lattices include b i r d , Nixon,
and p e n n s y l v a n i a n . In [13], a lattice of adjectives are used to denote user preference
in answers to Queries.

36 LEACH AND LU

q-

t f

1

Figure 1. The Complete Lattice FOUR.

A still more complex lattice is the lattice L,/N'C on which hybrid knowledge bases are
formalized [31], [36]. The lattice/./ARC is used for reasoning about time and uncertainty.
Formally, let R + denote the set of non-negative real numbers, then b/N'C is the function
space R + ~ [0, 1] ordered by

f l _--< f2 iff f l (x) <_ f 2 (x) f o r a l lx E R +.

The top element of the lattice, denoted fT, is the function that assigns every element
in R + to 1, while the bottom element f± maps each real number to 0. Observe that
elements in UN'C are functions. More interestingly however, is that they correspond
to fuzzy subsets of R + [4]. Intuitively, given a function f in/AN'C, the domain R +
represents time points, while the range [0, 1] represents uncertainty.

2.2. Annotated Logic Program Syntax

Based on A, we may define an annotated logic. We assume a first-order language L.
Atoms are built from constants, variables, and function and predicate symbols in the
usual way (cf. [27]). Suppose A is an atom, and a is an annotation. Then A " a is an
annotated atom. Suppose c~ is a c-annotation. Then A : a is said to be c-annotated.

Similarly, A : a may be said to be v-annotated or t-annotated. If A : a is an annotated
atom and B1 :]~1, . . . , B k : Pk are c- or v-annotated atoms, then

A : ~ +-- B I : # l , . . . , B k : #k

is an annotated clause. A : c~ is called the head of the clause, and B1 : #1, .-., Bk : #k is
called the body of the clause. All variables (object or annotation) appearing in the clause
are implicitly universally quantified at the beginning of the clause. A set of annotated
clauses is called an annotated logic program (ALP). Suppose A : c~ is an annotated atom
where c~ is a variable free t-annotation. We may replace # by the lattice element denoted
by o~.

Example: The lattice FOUR can be used by ALPs for expressing inconsistent informa-
tion. As an example taken from [21], the following ALP program asserts intuitively
tweety is a bird and is not a bird, and that john receives a grade of 'A' .

f l i e s (t w e e t y) : t +--
f l i e s (t w e e t y) : f ~--

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 37

grade(john, r~4") : t +--
As Kifer and Lozinsldi argued, such a set of knowledge may represent beliefs held by
a reasoning agent R. Knowledge gathered based on different evidence may therefore
introduce conflicting beliefs, such as f l ies(tweety) : t (i.e. R believes tweety flies)
and flies(tweety) : f (i.e. R believes tweety does not fly). As will be seen when
we introduce the semantics of annotated logic programming, unlike classical knowledge,
such an inconsistency does not affect R's ability to reason rationally. []

Example: The following is an example of a hybrid knowledge base rule using the lattice
UN'C. We adopt the Prolog convention of denoting variables by upper-case letters,
and constants in the database by lower-case letters. Intuitively, the rule expresses the
statement: "If the robot is at location (X, Y) with certainty V at time t, and it is certain
that the robot is moving north at a constant speed of 0.2, then the robot will be at location
(X, Y + 1) with certainty V at time (t + 1)" may be expressed as

robot_at(X, Y + 1) : (V, {T + 1}) +- robot_at(X, Y) : (V, {T)) &:

move(X, north, 0.2) : (1, R+) .

Here, each of (V, {T}) and (V, {T + 1}) represent functions in b/Arc - formally calle(~
g-representations. The operator +1 used inside the annotation (V, {T + 1}) is an unary
annotation function f that maps g-representations to g-representations, i.e. f (p , S) =
(#, S/) where S t = {5 + l l a E S}. More will be discussed on g-representation in
Section 6. []

2.3. Annotated Logic Programs Semantics

As usual in the treatment of the semantics of logic programs, attention is restricted to
only Herbrand interpretations. Thus the domain of our interpretations consists of the set
of variable free terms built out of the constants and the function symbols of the language
L.
Definition (satisfaction). An interpretation I is a mapping from the set of variable free
atoms (i.e. ground atoms) to A. It is said to satisfy

1. the ground c-annotated atom A : # iff/z ___ [(A).

2. the ground c-annotated conjunction F1, ..., F,~ if it satisfies each of F1 through F~.

3. the ground c-annotated clause A ~-- t31, ...,/3~ if whenever it satisfies/31,--.,/3~, it
also satisfies A.

4.

.

the c-annotated clause A ,-- Bt , . . . , /3~ if it satisfies each ground instance, obtained
by replacing each object variable by a ground term. Different occurrences of the
variable must be replaced with the same term.

the annotated clause A ~ / 3 1 , ..., B~ if it satisfies each c-annotated instance, obtained
by replacing each annotation variable by an element in A. Different occurrences of
the variable must be replaced with the same object.

38 LEACH AND LU

The symbol ~ is used to denote both satisfaction and logical consequence.

Example: [23] Let A be the lattice FOUR. Take P to be the ALP below.
P1 p : V e - - q (X) : V
P2 q(a) : t
P3 q(b) : f +-

Among the ground c-annotated instances of P1 are:
p : t + - q (a) : t
p : f ~-- q(b) : f

According to the definition for satisfaction, any interpretation that satisfies the program
must assign to p an element in FOUR that is greater than or equal to t and f. Clearly,
the only such element is T itself. Hence P ~ p : T. []

The previous example illustrates how annotated logics may be used as a paraconsis-
tent logic - logic that tolerates inconsistent information without entailing all possible
conclusions. In particular, referring back to the tweety example in Section 2.2, it is
straightforward to see that the inconsistent belief held by the reasoner R regarding the
flying ability of tweety does not allow R to draw arbitrary conclusions concerning the
grade received by john.

Variables that occur in the head but not in the body of clauses are called free variables.
Conversely, variables occurring only in the body but not in the head of a clause are
called local variables. Note that as in the case of object variables, annotation variables in
clauses are implicitly universally quantified. An immediate consequence of the semantics
of annotated logic programs is that there is no loss of generality in assuming that no
annotated clause contains a free annotated variable. Consider for example the ALP
p : V +-- over FOUR. The program is equivalent to the four c-annotated clauses p : q- +--,
p : t ~--, p : f ~--, and p : .1. +--, obtained by instantiating the variable V with all possible
values in FOUR. As the first clause subsumes the last three, the original ALP is equivalent
to the single c-annotated unit clause p : T +-. It is easy to verify, with the assumption that
annotated functions are continuous, and thus monotonic, that any free annotated variable
may be replaced by the top element of the lattice A without changing the semantics of
the program. This observation is noted in [23].

On the other hand, given the ALP

p: q-~---q: V ,r : V

over the lattice FOUR, we may replace V by the four lattice elements in FOUR to yield
the equivalent c-annotated ALP below.

p : T + - q : - l - , r : T
p: T + - q : t , r : t
p: T + - q : f , r : f
p: T ~ -q : ± , r : 2

The last clause says anj, interpretation that assigns to q and r at least the truth value .1_
must assign to p the value T. As any interpretation assigns to each ground atom at least
• 1,, the condition q : Z, r : ,1, is trivially satisfied. Thus, we may drop the antecedent
of the clause. The result is a clause that subsumes the first three c-annotated clauses.

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 39

Therefore the original ALP is equivalent to p • ~- ,--. This analysis generalizes to
arbitrary ALPs, and we may assume without loss of generality that ALPs do not contain
local variables.

PROPOSITION 1 Suppose P is an ALE Let P1 be the ALP obtained from P by first
eliminating from each clause each annotated atom that contains a local annotated variable,
and then replacing each free variable by T. Then P and P1 have the same models.

3. Query Processing in ALPs

The most popular technique for answering queries in logic programs is based on SLD-
resolution [27]. The main advantage in using an SLD-style proof procedure is, as noted
in [23], the choice of clauses that need to be considered at each deduction step is
restricted to the current goal and the program clauses. Thus far, finding an SLD-style
proof procedure has proven elusive for ALPs [22], [23]. The difficulty lies in the need
to compute reductants (defined below). First we give some necessary definitions.

An expression of the form +--- E H A1 : ~1,..., An : #~ where E is a constraint, is
called a constrained query. In [23], the constraint part of a constrained query need not
be restricted to lattice constraints. However, here we focus only on lattice constraints
since they must be handled for any system that includes an ALP component. The symbol
It denotes conjunction, and is used to delineate the constraint part of the query from the
atomic part. The notion of satisfaction for constrained queries is immediate. Following
are two inference rules for answering query in ALPs, introduced in [23].
Definition (annotated resolution). Suppose C = A : p +-- B I , . . . , 13, is a clause and
Q = ~ =~ l1 A1 : c~1, . . . , Am : C~m is a constrained query with no variables in common
with C. Moreover, suppose that for some 1 < i < m, A~ is unifiable with A via mgu 0.
Then the annotated resolvent of Q and C with respect to A~ is the query

,--- c~i -<p,E 1] (Aa : Oel: . . . ,Ai-1 : o ~ i - I , B 1 , - - . , B n ,
Ai+a : a~+l , . . . ,A,~ : o~,~)0.

Definition (reduction). Assume two annotated clauses
A1 :#1 , - -B1 :/51,.. . , /3n :/3~

where A1 and A2 are unifiable via mgu 0. The reductant of the two clauses is the clause
(A1 : u{#z,/~2} ,--- B1 : ~1, ..., Bn : ~n, C1 : 71, ..-, C ~ : ~m)0.

In terms of resolution theorem proving, an SLD-proof procedure does not exist for
ALPs due to the incompatibility of the two rules of inference, annotated resolution and
reduction, with the linear restriction strategy [28]. Kifer and Subrahmanian circumvent
this difficulty by specifying that a deduction consists of only applications of annotated
resolution. However, each inference may involve a resolution with an annotated clause
obtained by implicit applications of the reduction procedure.

Example: Consider the program from the example in Section 2.3. We have shown that
the program entails p : T. Hence the query +-- p : T should have a refutation. Observe

40 LEACH AND LU

that if we do not use the reduction inference rule, the only possible annotated resolvent
that can be obtained from the query is +- T ~ V I1 q(X) : V. Resolving the new query
with P2 yields the query that contains the unsolvable constraint T _--< 11, V ~ t. Similarly,
resolving with Pa produces an unsolvable constraint. Hence no proof can be found.

Using the reduction inference on the other hand, we first compute the reductant p :
El{V1, V2} +-- q(X1) : 111, q(X2) : 1/2 from two variants of P1. This resolves with the
original query, resulting in the following constrained query.

4-- T ~ I I{gl ,g2} H q (X l) : Vl ,q(X2): V2

Resolving the new query with P2 and P3 in succession yields the constrained query
T ~ U{V1,V2},V1 -<_ t, V2 ~ f. As the constraint in the query is solvable, we have

a refutation. []

Unfortunately, the implicit use of reduction causes difficulties since a proof, which con-
sists of only annotated resolution steps, may contain many deductions with clauses that
are not in the original program. This makes the proof difficult to read. Moreover, appli-
cation of the reduction inference is expensive since it must be allowed to occur any time
during a deduction, thus greatly expanding the search space. The situation is analogous
to the use of the restart rule in disjunctive logic programming [34].

The key in overcoming the difficulties of annotated resolution and reduction is in ob-
serving that the semantics of annotated logics are naturally generalized to set membership.
This is captured by the use of constrained annotations, introduced next.

3.1. Constrained Annotated Atoms and CA-Resolution

A constrained annotation is a pair (/z, S} where/~ is an annotation and S is a finite set
of annotations. A constrained annotated atom is an expression A : C where A is an
atom and C is a constrained annotation.
Definition (satisfaction of constrained atom). An interpretation I satisfies a ground
constrained annotated atom A : (#, S) iff I (A) E (T #) u (T uS)C
Given a lattice element 7, T7 denotes the upset of 7 (cf. [9]). In other words,]'7 = {6 E
AI7 -<_ 6}. Set complementation of a set A is denoted A °. Intuitively, a constrained
annotated atom says that the truth value of A is either greater than or equal to #, or is
not greater than or equal to the least upper bound of S.

Example: Suppose I is the interpretation that assigns to p the value t in FOUR. Then
I satisfies the constrained annotated atom p : (t, {}), but it does not satisfy p : {Y, {t})
since (TT) U (T tJ {t}) c = {T, f, _1_}, which does not contain t. []

The following is immediate from the definition since # -< US iff T # u (T t~S) c = A,
for any # E A and S c_C_ A.

PROPOSITION 2 Let I be an interpretation and let A : (#, S) be a ground constrained
atom such that # ~ US. Then I satisfies A : (/z, S).

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 41

The definition of satisfaction of constrained atoms is the key generalization in the
semantics of ALPs that enables us to introduce our proof procedure below. Note that the
original definition of satisfaction of annotated atoms naturally fits into this more general
definition. Since A is a lattice, U{} = A_. If we have a ground constrained annotated
atom A : (#, {}), then a satisfying interpretation I must assign, according to definition,
an element in (T #) u (T ±)c to A. As]" ± = A, it follows that (T ±)c = {}. Hence
(]" #) U (Y ±)c : Y # and I (A) ET #, the same condition as # ~_ I(A).

Based on this observation, we see that constrained annotated atoms generalize ordinary
annotated atoms since A : # may be regarded equivalently as the special constrained
annotated atom A : (#, {}). A query +- A1 : P l , . . . , AN : p~ can therefore be rewritten

+--- A I : (#, {}), . . . , A n : (#,~, {})

without changing its meaning. In general, we call a query consisting of only constrained
annotated atoms a ca-query (constrained annotation query).

Let C be a conjunction of constrained annotated atoms A1 : {#1, $1), ..., An : (#~, Sn).
The constraint associated with C, denoted = c , is the lattice constraint

#1 <- US1, ...,#n ~_ rASh.

The following relates the solvability of EQ and the unsatisfiability of ~-- Q.

PROPOSITION 3 A ca-query +-- Q is unsatisfiable iff EQ is solvable with respect to A.

Proof: +- Q is unsatisfiable iff for each interpretation I, ~ QO is unsatisfiable for
some ground substitution 0 iff I satisfies QO. Note 0 is a substitution that substitutes
for each object variable, as well as for each annotation variable. Let 01 represent the
substitution 0 restricted to all and only the annotation variables.

Suppose +- QO is of the form +- A1 : (#1, $ 1) , - - . , As : (#~, S~). By the previous
paragraph, for every interpretation I , I satisfies Ai : (#i, St) for each i = 1, ..., n. By
definition, I(Ai) ET pi U (T USi) ~. As this holds for every f , it must follow that
~" Pi U (T uSt) c : A for otherwise, we may find an I such that I (Ai) ¢T p~ u (Y tASi) ~
(take I to be one where I(A~) E (A - (T #t u (T uS0~))) . Hence Pi ~ USi for each
i = 1, . . . ,n, which is exactly the lattice constraint represented by EQ0t. It follows that
EQ is solvable with respect to A and 01 is a solution.

For the reverse direction, 01 is a solution to the constraint EQ. Let A : (#, S) denote
a typical, but arbitrary constrained annotated atom in Q. We have p01 _~ (~AS)01. By
Proposition 2, I satisfies (A : (p, S))O for every interpretation l , and hence ~ Q is
unsatisfiable. •

Definition (ca-resolution). Let A : # +- B1 : i l l , . . . , - B n : fin be an annotated clause
(with ordinary annotations) that does not share any object or annotation variables with
the ca-query +- A1 : 7)1, . . . , A n : 73~, and suppose At and A are unifiable via mgu 0,
for some i C {1, ..., m}. Assuming that Dt is the constrained annotation (--/, T) , then the
ca-query

+- (A1 : 791, . . . ,Ai-1 : l) i - l , A t : (%TO{#}),BI: (~1, {}), --.,

Bn : (fin, {}), Ai+l : 19i+1,..., Am : 7)~)0

42 LEACH AND LU

is a ca-resolvent of the given clause and ca-query.

Note that in creating the ca-resolvent, we first translate each annotated atom from the
body of the annotated clause into an equivalent constrained annotated atom.

A deduction of a ca-query from a given ALP and an initial ca-query using ca-resolution
is defined in the usual way. We call such a deduction a ca-deduction. A ca-deduction of
a ca-query from an ALP is a ca-proof if the last clause in the deduction is unsatisfiable.

Example: Recall the program in the example in Section 2.3. The initial query +- p : 5-
may be represented equivalently as +-- p : (T, {}}. A ca-proof of the query is shown
below. The constraint associated with each ca-query is displayed below the query.

Qo : ~ p : (T, {})
Constraint: T y ±

Q1 (T,{Vl}),q(Xl): (Vl, {})
Constraint: T y 1/1, V1 -< ±

Q2 :+- p : (T,{V1}},q(a): (VI,{t}}
Constraint: T -< 1/1, V1 _~ t

Qa :+ - p : (T, {V1, V2}), q(X2): (V2, {}}, q(a) : (V1, {t}} (ca-resolvent of Q~ and P1)
Constraint: T _ t_I{V1, V2}, 111 _-< t, V2 -< L

Q4 :+- p : (T, {V1, V2}), q(b): (V2, {f}}, q(a) : {1/'1, {t}} (ca-resolvent of Q3 and P2)
Constraint: T -< U{V1, V2}, V1 ~ t, V2 _ f

(Initial Query)

(ca-resolvent of Q0 and P1)

(ca-resolvent of Q1 and P2)

We may verify that of the constraints associated with each of the queries in the above
deduction, only the last one is solvable with respect to FOUR. Indeed, this is exactly the
same constraint derived using reduction and annotated resolution shown in the earlier
example (Section 3). Therefore in one sense, the use of ca-resolution amounts to an
incremental computation of reduction. []

A point of interest worth mentioning is how constraints are used differently in ca-
resolution as compared to conventional CLP systems. Similar to classical logic program-
ming, a ca-proof in ALP is obtained when an unsatisfiable query is derived. In a ca-
deduction, the determination of whether a query ~ A1 : (#1, S1), ..., A~(#n, S,~} is un-
satisfiable depends on the solvability of the associated constraint #1 ---< LIS1, ..., ¢~ ~ tASn
(cf. Proposition 3). The unsolvability of this constraint does not cause backtracking, as
can be seen in the example above. The first ca-resolvent of the proof is a satisfiable
ca-query since there is no solution to the lattice constraint T _~ W{V1}, V1 _~ ±. In CLR
only solvable constraints are allowed to appear in each query of a deduction. A related
difference in our approach is that constraints are modified during a deduction. The above
unsolvable constraint associated with the first ca-resolvent in the example is modified to
T -< tA{V1}, I/1 -'j t in the second ca-resolvent. The goal of a ca-deduction therefore
can be viewed as searching for a satisfiable constraint. In CLP, an existing constraint
remains throughout a deduction.

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 43

3.2. Completeness Issues

The soundness and the completeness of ca-resolution is proved in this section. Complete-
ness holds only for programs that possess thefixpoint reachability property, discussed in
[23]. This restriction is not a drawback of ca-resolution. Rather, it is a general conse-
quence of the semantics of ALPs. Intuitively, the fixpoint reachability property ensures
that the least model of a given ALP is recursively enumerable. Clearly, failing this
minimal condition, no query processing procedure can be expected to handle arbitrary
queries with reasonable efficiency.

In this paper, we are not concerned with the conditions under which an ALP possesses
a computable model. Such conditions have been investigated in detail in other work
[22], [23], [31]. Instead, we show that ca-resolution is sufficiently general to handle
any ALP that annotated resolution and reduction can handle. More formally, we say an
inference rule R is relatively complete if given any ALP P and query +-- Q, whenever
there is a proof of ÷- Q from P using annotated resolution and reduction, then there
is proof of +-- Q from P using R. Clearly, a consequence of relative completeness is
that ca-resolution is complete for any class of ALP for which annotated resolution and
reduction is complete.

LEMMA 1 Suppose I satisfies both the ground clause A : # ~-- B1 : #l , - . . ,Br~ : /in
and the ground query +-- Q1 : (71,$1), . . . ,Q,~ : (7,~, S,~) where A = Qi (i.e. they are
identical atoms). Then I satisfies the ca-resolvent

+-- Q1 : {71, S1), ..., Q{: ("/i, Si I..j {p}), B1 : (~1, {}), .-., Bn : (Pn, {}),

: s i n)

Proof: If I does not satisfy B1 : #1, , . . , B n " [An, then the result follows. Similarly
if I does not satisfy any Qj : ('7j,Sj) where i :~ j , then the result follows. Otherwise
I ~ A : # and I ~: Q~ : ('TqSi). By the first condition, ¢ ~ I(A). Therefore
I(A) ET #. By the second condition, I(Qi) ~" 7i u ('~ u ~) C. Equivalently, I(Qi) E
A - (t 3'i U (T uS/)c) . Thus we have I(Qi) E (T "7i) c n (~" USi).

It follows that', as Qi = A, I(Qi) ~ (T "7i) c N (T tJSi)n T #. Since (T uSi)N]" # =T
u(Si u {#}), we may conclude that I(Qi) ~ (T 7i) ~A T ~(S i u {#}). By the reverse of
the argument in the previous paragraph, I(Qi) ~T 3'~ u (T u(Si u { # })) c Hence I does
not satisfy Q~: (',/~, S,i U {#}). •

Based on this lemma, we may conclude that ca-resolution preserves soundness. It follows
that any ca-deduction derives only sound conclusions from an ALP and a starting query.
In particular, if we obtain a ca-proof, it must be that the given program and query are
not satisfiable.

COROLLARY 1 (soundness) Suppose P is an ALP and there is a ca-proof of ~-- Q from
P. Then P U {~--- Q} is unsatisfiable.

For the proof of relative completeness, we show a translation from each deduction using
annotated resolution and reduction to a ca-deduction.

44 LEACH AND LU

LEMMA 2 Given a query +-- Q and an ALP P. Suppose there is a deduction of the
query ~ E, where ~ is a constraint, using annotated resolution and reduction from
P U { ~ Q}. Let +- Q* be the equivalent ca-query obtained from ~ Q by replacing
each atom A : # in Q by A : (#, {}). Then there is a ca-deduction of a query +- L from

Q* where L is a conjunction of constrained atoms and EL = %

Proof: The proof is by induction on the length n of the deduction.
(Base Case) n = 1. The original query +- Q has the form +-- A : # and there is a
reductant

B : ¢3 +---

such that A and B are unifiable with mgu 0. The annotated resolvent is +-- # -< /3.
The clause B : /3 +- is derived by applying the reduction inference rule to m program
clauses. Suppose the program clauses involved are the following:

C1 -~ B1 : ~I <~

Cm - B ~ : /3~
We have /3 = U{13i, ...,/3m}. Thus a ca-deduction from +--- Q* may be obtained as
follows.

Q0 +-- A : (#, {}} Initial Query
Q1 + - - A1 : (#, {t31}} ca-resolution of Q0 and C1

Q,~ ~-- Am : (#, {/31,...,/3m}} ca-resolution of Q ~ - I and Cm

The constraint associated with the single atom is # _~ U{131, ...,/3m}, which is equivalent
to > _~/3 as/3 = t-J{/31, ...,/3m}.
(Inductive Case) The original query ~-- Q has the form

Ai : / z l , . . . , A m : #j

and there is a reductant

B :/3 ~ Bi : /3i , . . . , Bk : Zk

such that A~ and B are unifiable via mgu 0. The annotated resolvent has the form

+--- #i - / 3 LI (Ai : # i , ..-, A i - i : # i - i , B i :13i, ..., Bk :/3k,

A~+i : #~+I, . . . ,Aj : #j)O.

Let +--- E be an annotated resolvent obtained by a deduction using annotated resolution
and reduction of the query

+- (Ai : ; / i , ..., Ai -1 : # i - l , B 1 :/31, . . . ,Bk : 13k,Ai+l : # i+i , . . . ,A j :#j)O.

By the induction hypothesis, there is a ca-deduction D of a ca-query ~ L from the
above query, appropriately translated into its equivalent ca-query, such that EL = E.

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 45

The reductant B : /3 ~ B1 : /~1, . . .) B k : /~k is obtained from m program clauses
using the reduction inference rule. We will denote these clauses C1, ..., Cm. By similar
argument as the base case, there is a ca-deduction from ~-- Q* of

(A~: (#~, {}),...,A~_~ : (#~_~, {}},

A~: (#i, { ~ , ...,3,~}),B1 : (~ , {}), . . . ,Bk : (~k, {}),

d i + l : (#i+1, {}),-.., d j : (#j, {}))0.

Here ~1,-..,/3,~ are the annotations of the respective heads from C1,..., Cm. The con-
straint associated with the atom Ai : (#i, {~1, .-., 3m}) is p~ _ U{t31, ...,]?~}. Again
this is the same as the constraint #i _ 3. From the above ca-resolvent, perform the same
ca-deduction steps as D, we obtain the ca-query *-~ L, A~ : (pi, {ill, .-., tim}), and the
associated constraint is E, #~ ~/3. •

In both the base case and the inductive case of the above proof, if the constraint -'= in
the statement of the above lemma is solvable, then the given deduction is a refutation. It
follows that the corresponding ca-deduction is a ca-proof of the original query. We have
the following corollary.

C O R O L L A R Y 2 (completeness) Suppose there is a proof using annotated resolution and
reduction from P U {~--- Q} and ~-- Q* is the equivalent ca-query obtained from ~-- Q by
replacing each atom A: # in Q by A : (#, {}). Then there is a ca-proof of P U { ~ Q*}.

Corollary 1 and Corollary 2 together proves Theorem 1.

THEOREM 1 CA-resolution is sound. Moreover, it is relatively complete.

Using ca-resolution, it is not necessary to compute reductants. This enhances the
readability of proofs as they contain only program clauses, and increases efficiency by
eliminating the expensive reduction inference rule. Ca-resolution thus represents the first
complete top-down procedure for handling ALPs in its full generality.

In classical logic programming, an important theoretical result regarding SLD-resolution
is the independence of the computation rule [27]. A computation rule specifies the lit-
eral in a query to resolve on at each step of a deduction. The result tells us that any
computation rule will suffice. This enables for example, Prolog to safely choose the
leftmost literal to resolve on at each step/ Unfortunately, in the case of ca-resolution,
selecting systematically the leftmost or the rightmost literal causes incompleteness, even
if we select clauses fairly.

Example." Suppose we adopt the selection rule of choosing the leftmost literal in a query.
Consider the ALP over the lattice [0, 1], where the ordering ~ is the relation < on reals,

q: (v + w) ~ p: v , r : w

p ' 0 . 2 +-
r : 0.2 ~--

and the ca-query *-- q : (0.4, {}). The first ca-resolvent is ~-- q : (0.4, {(V + W)}) ,p :
(V, {}),r " (W, {}). The associated constraint 0.4 ~ (V + W) ,V ~_ O, W ~ 0 is not

46 LEACH AND LU

solvable with respect to [0, 1]. It is easy to see that one may continue to resolve the
leftmost literal with the first clause, but never obtain a solvable constraint.

Suppose on the other hand, we select the rightmost literal to resolve on. From the
initial ca-resolvent we obtain the ca-resolvent +-- q : {0.4, {(V + W)}) ,p : (V, {}},r :
(W, {0.2}}. Again the associated constraint 0.4 _~ (V + W), V -<_ 0, W ~ 0.2 is not
solvable. Resolving on the rightmost literal in the next deduction step yields the same
ca-query.

One can see that no fixed position selection of literals in this case can produce a proof
of the original query, even though clearly q : {0.4, {}) is a logical consequence of the
program. Thus the independence of the computation rule does not hold for ca-resolution.
One must select literals "fairly", in the sense that each literal will be tried eventually.
This will be considered in Section 5.2 when the ALP interpreter is discussed.

[]

3.3. Unsatisfiability of CA-queries and Normal Constraints

A key to implementing ca-resolution lies in determining solvability of constraints asso-
ciated with queries. Kifer and Subrahmanian have devised an algorithm for determining
satisfiability of the class of normal constraints [23]. 3 It turns out that normal constraints
are exactly the class of lattice constraints we need to consider.

According to the definition of annotated Clauses, annotations that occur in the body of
a clause must be either c- or v-annotations. A ca-resolution of a query with a clause
adds a constraint onto the literal resolved on in the query, and may introduce additional
literals. The following is straightforward.

PROPOSITION 4 Suppose ,--- Q is a ca-query where EQ is a normal constraint and P
is an ALR Let ~ R be any ca-resolvent of Q with a clause in P. Then ER is a normal
constraint.

Proof: Suppose ~- Q has the form

The constraint EQ = #i --4 US'i, ...,~zn _-< US'n is by assumption a normal constraint.
Without loss of generality, assume the ca-resolvent ~-- R is obtained by ca-resolving on
the constrained atom Ai : (#i ,S1) and has the form

+-- A1 : (/~I ,Sl U { /~}} ,BI : (~ l , { } } , . . - , B m : (/~m,{}},

A2 : (P2, $2}, .-., A~: (Pn, S~).

Note/3 is the annotation from the head of the clause with which *-- Q ca-resolved with,
and the atoms B1 : (/31, {}},..., Bm: {~m, {}} form the body of the same clause. ~Ihe
constraint ER is

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 47

The first condition of normal constraint is satisfied since each of ill ,-. . , tim is an anno-
tation variable or constant. The second condition of normal constraint is also satisfied
as no ill, ...,/3m,#1 occurs in any of the annotation terms to its left (they are all ±s).
Moreover, no #2, . . . ,#~ occurs in S1 U {fl} as the ca-query and the clause in P are
standardized apart prior to performing ca-resolution. []

We call a ca-query ~-- Q a normal ca-query if EQ is a normal constraint. Since the
solvability of a normal constraint is decidable [23], we may adopt Kifer and Subrah-
manian's algorithm to test for unsatisfiability of ca-queries. In order to make the paper
self-contained, we include below their algorithm, which we have incorporated into our
interpreter, and will analyze further in the next section.

1. Algorithm 1

2. Input: A normal constraint E = t~l __< ~'1,-.., t% _---< ~-n.

3. Output: Boolean

4. If C is an empty constraint, return True

5. Find io _> 1 such that io is the maximal integer where

6. ~Cio is the same expression as nl and substitute

7, T for all variables that occur in "rl, ..., ~-io.

8. I f nl is a constant then

9. if t~l S ~-1 ,eci o __< -rio is false in A, return False

10. Set C to t~io+l ~ Tio+l, ..., i~n ~ Tn,
11. rearrange the indices of the constraints so that they start

12. with 1 and goto step 4.

13. else/* ~cl is a variable */

14. Let v = Cq{~-l, ...,Tio}.

lS. Set C to t~io+l(V/l~l) ~ 7io+l(V/l~l) ,...,l~n(v/t~l) ~ Tn(TJ/t~l)
16. and rearrange the indices as in 11, and goto step 4.

4. An Example

Consider the lattice SIX shown in Figure 2. SIX is a belief lattice [20], [21] that may be
used for reasoning with inconsistency. It offers a finer granularity of truth values than
FOUR. Intuitively, the lattice values It and If in SIX denote likely true, and likely false,
respectively.

Joslyn recently inherited some stocks, among them are IBM and Digital stocks. These
are represented by the following annotated facts.

holds_stock(joslyn, ibm) : t
holds_stock(joslyn, digital) : t ~-

She consults a knowledgeable friend for tips on how to manage stocks, and is informed,
among other things, that if a company is planning on putting out a new product, then
the value of the stock of the company will likely increase. On the other hand, if a

48 LEACH AND LU

7-

t f
I I

It If

±

Figure 2. The Complete Lattice SIX

company is on the verge of laying off workers, it is probably the case that the company
is in financial trouble, which in turn will likely drop the value of its stock. Thus Joslyn
ventures into the stock market world equipped with the following knowledge.

1. stock_up(X): gl(V) +-- has_new_product(X): V
2. stock_up(X) : g2(V) ~- f inancial_trouble(X): V
3. f inancialAroubl¢(X) : V +- layoff_planned(X) : Y

Here gl is the annotation function over SIX that maps t to lt , and ± to I . We also
assume that g2(t) = lf, and g2(±) = ±. Note that gl and g2, as well as g3 and g4
below, are annotated functions that model the intuitive relationships between the truth
values of our predicates. Suppose Joslyn also has the following general knowledge about
the effect of stocks going up or down.

4. makes_money(X, Y) : g3(V, W) +- stock_up(Y): V, holds_stock(X, Y) : W
5. high_risk(X) : g4(V) +--- stock_up(X) : V

The function g3 is assumed to satisfy g3(lt, t) = lt, g3(lf, t) = If, and g3(±, 5_) = J_.
In addition, 94(T) = t and g4(~) = ± for o~ ~: T.

Shortly thereafter, while reading the paper, Joslyn learns that IBM is coming out with
a new personal computer. Meanwhile, Digital reportedly has plans to layoff workers, but
at the same time it is also announcing a new supercomputer.

6. has_new_product(ibm) : t +---
7. layoff_planned(digital) : t ~-
8. has_new_product(digital) : t +---
According to Joslyn's knowledge, since Digital is now considered a high risk stock

while IBM is likely to be profitable, she quickly calls to sell her Digital stocks and to
purchase more IBM stocks. In Figure 3, we illustrate a ca-proof for the ca-query

~- makes_money(joslyn, V) : 0 t , {}>.

It returns ibm as the answer. The normal constraint associated with each query is shown
below the query in the deduction. Since g3(lt, t) = lt, the constraint associated with the
last query is solvable with the solution

U = t , W = t , V = It

The ca-refutation of the ca-query ~-- high_risk(X) : <t, {}> is given in Figure 4. Note
as g4(~) ¢ 2_ only in the case that c~ = 7-, it is necessary that the deduction uses both
rules 1 and 2 to generate a value of 7- for the annotation variable Z. The solution to the
final constraint is

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 49

Go: +-- makes_money(joslyn, Y): (lt, {})
Constraint: It ~ ~_

Gl: +-- makes_money(joslyn, Y): (It, {ga(V, W)}}, stock_up(Y): (17, {}},
holds_stock(joslyn, Y) : (W, {})

Constraint: It ~ 93(V, W), V ~_ L, W ~_ ~_

G2: +-- makes_money (joslyn, Y): (It, {93 (17, W) }), stock_up(Y): (It, {91 (U) }},
has_new_product(Y): <U, {}), holds_stock(joslyn, Y): (W, {}}

Constraint: It -< gs(V, W), V ~ gl(U), W ~_ L, U -< I

G3: ~ makes_money(joslyn, ibm): {lt, {g3(V, W)}), stock_up(ibm): (It, {gl(U)}),
has_new_product(ibm): {U, {t}}, holds_stock(joslyn, ibm) : (W, {})

Constraint: It ~ gs(V, W), V ~ gl(U), W ~ L, U -4 t

G4: ' - - m a k e s _ m o n e y (j o s l y n , i b m) : (i t , {g3 (V~W)}} , s tock_up(ibm) : (l t , { g l (U) } } ,
has_new_product(ibm) • (U, {t}}, holds_stock(joslyn, ibm) : (W, {t})

Constraint: It _ 93(117, W), V ~ gl(U), W J t, U _ t

Figure 3. CA-refutation of +-- makes_money(joslyn, Y) : (It, (}).

W = t , U = t , V = t , Z = T.

This example presents a rather simplistic world view. A more realistic representation
of the scenario may be obtained by using the lattice UAfC in place of SIX where both
time and uncertainty are captured. For example, typically layoff plans are uncertain, and
are usually time bound. Hence fact 7 may be more appropriately expressed as:

7a. layoff_planned(digital): (0.9, {tl}) +-
75. layoff_planned(digital) : (0.8, {to, t2}) e--

Informally, 7 a asserts that at time point tl, there is a 0.9 certainty that digital will layoff
employees. On the other hand, 75 asserts a certainty of 0.8 for layoff at time points to
and t2.

5. An ALP Interpreter

We have implemented in C an interpreter for ALPs based on ca-resolution. In this section,
we focus on the important components in our interpreter. Following the approach of [17],
our interpreter for ALP consists of a Prolog-like inference engine and a constraint solver.
A third component distinct to our system is a function to select the next literal to resolve
on. In Prolog, the usual method is to apply resolution to the leftmost literal of the query
in each step of a deduction. The theoretical issue of the independence of computation

50 LEACH AND LU

Go: ~ high_risk(X): It, {})
Constraint: t _~

al: high_risk(X): (t, {g4(Z)}), stock_up(X): (Z, {})
Constraint: t __ g4(Z), Z -4 ±

C2: ~-- high_risk(X): {t, {94(Z)}}, stock_up(X): {Z, {91(V)}},
has_new_produc~(X) : {V, {})

Constraint: t ~ g4(Z), Z _-4 gl(V), V ~

Ga: ~ high_risk(digital): {t, {g4(Z)}}, stock_up(digital): {Z, {gl(V)}},
has_new-product(digital): {V, {t}}

Constraint: t ~ g4(Z), Z -~ gl(V), V ~ t

G4: ~ high_risk(digital): (t, {g4(Z)}), stock_up(digital): (Z, {gl(V),g2(U)}},
financial_trouble(digital): (U, {}), has_new_product(digital): {If, {t}}

Constraint: t __ g4(Z), Z ~ tJ{gl(V), g2(U)}, V ~ t, U ~ _l_

Gs: *- high_risk(digital) : (t, {g4(Z)}}, stock_up(digital): (Z, {gl(Y),g2(U)}),
financial_trouble(digital): {U, {W}}, layoff_planned(digital): (W, {}},
has_new_product(digital): (Ix, {t}}

Constraint: t ~ g4(Z),Z ~ tJ{gl(V),g2(U)},V -~ t , V ~ W , W ~ ±

G6: ~-- high_risk(digital) : (t, {g4(Z)}}, stock_up(digital): (t, {gl(V),g2(U)}),
financial_trouble(digital): (U, {W}), layoff_planned(digital): (W, {t}},
has_new_product(digital): {V, {t})

Constraint: t _~ 94(Z),Z ~ U{gl(V),g2(U)},V J t ,U ~ W , W ~_ t

Figure 4. CA-refutation of ~-- high_risk(X) : (t, {}).

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 51

Figure 5. A Constraint Graph

rule was considered in Section 3.2. In Section 5.2, we discuss strategies for selecting
literals within a query.

The inference engine performs ca-resolution. Thus its task includes performing uni-
fication on object variables, and constructing and modifying constraints associated with
each ca-query in a deduction. The constraint solver is used to determine unsatisfiability
of a ca-query. Efficient lattice algorithms exist for computing greatest lower bounds
and least upper bounds (e.g. [3]) of finite lattices and they will be incorporated into
our interpreter. Currently, the algorithm used by the constraint solver is adapted from
Algorithm 1.

5,1. The Constraint Solver

The constraint Ep associated with each ca-query ~-- Q can be represented graphically.
For example, the normal constraint U ___ T, V _~ t, V _4 f, t _ IA{U, V} associated with
the ca-query

+---Pl : (t ,{U,V}>,p2: {V, {f}),p3 : (V, {t}),p4 : (U, {T})

has the graphical representation shown in Figure 5. Circular nodes represent operators.
Constants are operators that require no arguments. Square nodes represent variables.
We call the nodes occurring on the far left origins of the graph, and the single node
occurring on the far right the destination of the graph. This representation allows us to
view constraints associated with ca-queries as constraint graphs (cf. [26]), which may
be solved by local propagation. A constraint graph is satisfiable when the variables take
on values that make the specified relation true. The relation implicitly specified by the
graph above is that the value associated with the arc that terminates at the destination
is greater than or equal to the value of the destination. In the given example, the graph
in Figure 5 is satisfied since the value that is associated with the right most arc, which
emanates from the node u, is T.

Representing normal constraints as constraint graphs in the above manner, one can
see that Algorithm l corresponds to local propagation. In steps 14 - 16, the algorithm
computes the values of the origins, and propagates the results along the arcs to the right
to fill in the values for the variables. When the least upper bound left of the destination

52 LEACH AND LU

is eventually computed, the result is checked against the value of the destination in step
9. The order in which values are computed is thus left to right, delineated by operator
nodes. In particular, to compute the value for each of the nodes containing U and ~, all
nodes whose arcs terminate at the operator node must first be evaluated, and the resulting
values propagated.

The node labeled with R is obtained from the two inequalities V -<_ t and V ~ f,
since any lattice element ? that satisfies both inequalities must satisfy "y _-_-< rT{t, f}. This
is also the basis behind steps 14 - 16 of Algorithm 1, which can be stated in the next
proposition.

PROPOSITION 5 Given a normal constraint E = ~i 5 ~-i, ..., t~,~ -< %~. Suppose for
some 1 <_ i < j <_ n, ~ and ~j are the same variable. Then the constraint

E1 ~- q-1,'",Ei-1 ~- Ti--l,l~i+l -~ Ti+I,".,F~j--1 -~ Tj--1,
Ej ~ R{Ti,Tj}, t~j+ 1 ~_ Tj+l , . . . , /%n ~--- Tn

is solvable iff E is solvable.

Typically a constraint associated with a ca-query consists of several disjoint constraint
graphs. For example, the constraint associated with the query

~- p: (t, {V } } , q : (V , { T } } , r : (t , { f })

contains two disjoint constraint graphs. The first is formed by the constraints associated
with the p and q atoms, namely t _~ V, V _-j 5-. The second is formed from the r atom
with the single inequality t -<_ f. We refer to each set of atoms that forms an independent
constraint graph as a network. Equivalently, a network of a ca-query ~-- Q is an element
in the partition 7r of the atoms in Q where for each pair N1, N2 E % no annotation
variable occurs in both Ni and N2. Thus the two networks in the above ca-query are
N1 = {p : (t , {V}) ,q : (V,{T})}, and N2 = {r : (t ,{f})}. A result that parallels
the independence of computation rule in classical logic programming is that for ALPs,
networks can be solved independently.

PROPOSITION 6 Suppose +- Q is a query that contains networks Ni , . . . ,Nk . Then
Q has a ca-proof iff each of ~ Ni , ~ N2, ..., +-- Nk has a ca-proof, and the resulting

substitutions of the object variables are compatible.

Preef: As Ni , . . . , Nk do not share any annotation variables, a substitution (7 for the
annotation variables is a solution to EQ iff it is a solution to each of EN1, -.., E:v~. Thus
the if part of the statment is immediate. The only if part follows from the additional
assumption that the substitutions for the object variables are compatible. •

5.2. Literal Selection Strategies

The example in Section 3.2 demonstrated the importance of eventually trying each literal
in a network. In this. subsection, we analyze possible strategies for selecting literals.
Interestingly, each literal selection strategy relates to how the constraint graph is modified.
Recall the earlier discussion on the difference between how constraints are used in our

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 53

© Pl---@_.©

Figure 6. A Modified Constraint Graph

system as compared to their use in conventional CLP systems. In a ca-deduction, a
constraint is continually modified until a solvable constraint is constructed. As constraints
can be represented by constraint graphs, it is therefore not surprising that the order in
which literals are selected for performing ca-resolution determines how the associated
constraint graph changes. We illustrate this point with an example.

Example: Let us reconsider the constraint graph corresponding to the query

+---Pl :.(t,{U,V}),p2: (V, {f}},p3 : (V,{t}),p4 : (U, {T})

shown in Figure 5. If we select the atom P4 : (U, {m}) to perform ca-resolution, and if
our program contains the clause P4 : W +- P5 : W, then the ca-resolvent is

+--Pl: (t, {U, V}),p2 : (V, {f}},p3 : (V, {t}),p4 : (U, {T, W}),p5 : (I/V, {}).

The constraint graph that represents the associated constraint is shown in Figure 6. One
sees that the origin of the graph has been modified, and the overall depth of the graph
is increased since the longest path now is of length five. Suppose on the other hand, the
atom Pl : (t;, {U, V}) is chosen first for applying ca-resolution. This does not change
the depth of the graph, but instead modifies the graph by adding new arcs that terminate
at the node u left of the destination. []

For our interpreter, we have classified constrained atoms into four categories, which
has enabled the development of literal selection strategies. With respect to the constraint
graph, one of the literal selection strategies corresponds to modifying the graph in a
"depth-first" manner, where the length of some path in the graph is increased, as illustrated
in the previous example. Orthogonally, literals may be selected so as to modify the
constraint graph "breadth-first". Each of these strategies for selecting literals is a guidance
strategy, in the same spirit as guidance strategies are used in theorem proving [40]. Such
a strategy imposes an ordering on the search space, but does not eliminate any part of
it. It is generally accepted in theorem proving that the usefulness of guidance strategies
typically can only be supported experimentally. We are currently experimenting with
several literal selection strategies to determine their effectiveness.

54 LEACH AND LU

5.3. Restriction Strategies

We consider briefly restriction strategies for pruning the search space, some of which
have been incorporated into the interpreter. The most interesting aspect about these
strategies is that they are semantically based, where properties related to the underlying
lattice A are used to systematically eliminate irrelevant search paths.

5.3.1. Linear A restriction

In the case where A is a totally ordered set, it is straightforward to verify that P ~ Q iff
there is a proof by annotated resolution of +-- Q from P without using reduction. Using
ca-resolution, we may state this equivalently in the following way.

PROPOSITION 7 P ~ Q, where Q has the form p : # iff there is a ca-proof R of
p : (#, {}} from P, and R does not contain a ca-query in which there is a constrained

annotated atom q : (/3, S} such that ISI > 1.

Indeed, this result can be generalized based on the notion of n-wide lattices introduced
in [23]. A lattice A is n-wide if for every finite subset E of A, there is a finite subset
Eo C E containing at most n elements such that UE = wE0. Clearly, a totally ordered
set is 1-wide. For an n-wide lattice, we may generalize the above result to ISI > n.

5.3.2. Conditional CA-resolution

Another interesting strategy, when given a constraint graph, is to use the value of the
destination to determine "backwards" what the value of the origins might be. This idea
is also found in constraint programming [26].

Example: Suppose the lattice A is FOUR and that we arrive at the query +-- p :
(q - ,{ t ,V}) ,q : IV, {}) during a deduction. Realizing that to solve the constraint
T ~ U{t, V} associated with the p atom, V must be either f or T, we may then substitute
the lower of the two for V throughout the query and remove the p atom, thus obtaining
the ca-query +-- q : (f, {}). This indicates that if we are able to show q has a truth
value greater than or equal to f from the program, then the original query is proved.

[]

This approach, where we begin with the destination of the graph, and compute backward
towards the origins, may allow greater flexibility for incremental computation within
a network. In the above example, the query ~ q : (f, {}) represents a condition for
solvability of the original query. Once the condition has been established, we no longer
need to keep the atom p in the query. This in turn reduces the search space as the
number of literals from which we may select for ca-resolution decreases. A similar idea
was considered in [29] for theorem proving with c-annotated only clauses.

The difficulty with this approach however, is that backward solving may involve a con-
siderable amount of non-determinism. Returning to the example above, if the underlying

QUERY PROCESSING IN ANNOTATED LOGIC PROGRAMMING 55

lattice is large, there may be a number of values that can be substituted for V, but only
a few such values can lead to a refutation. In other words, there may be truth values
#1, ...#n other than f such that the query +-- q : (#i, {}), 1 < i < n, also represents a
correct condition for solvability of the original query, but for the given program, only
one or two of these values for q can be shown to hold.

It appears unlikely that a general solution to this problem can be found. More promising
is that there may exist special classes of lattices possessing properties that can assist in
determining which of the possible truth values represent the "better" choices - ones
that are more likely to lead to a refutation. In [25], an optimal such class of lattices
has been identified in which a single "correct" choice of truth value is guaranteed to
exist. The class is non-trivial as it encompasses many of the lattices that have been
used in annotated logic programming applications. Our current work involves giving
a precise characterization of the class, along with analyzing the efficiency that can be
gained by ca-resolution when augmented with procedures that take advantage of this
special property.

6. Summary and Discussion

Kifer and Subrahmanian developed the first query processing procedure for annotated
logic programming [22], [23]. However, their proof procedure requires complex ma-
chinery, namely both annotated resolution and reduction, for answering queries. The
bottleneck rests with the restrictive semantics currently defined for satisfaction of anno-
tated atoms. In this paper, we presented a top-down resolution procedure with constraint
solving for processing queries in ALPs based on the observation that the semantics
of annotated atoms may be naturally generalized to set membership. The new pro-
cedure captures the effect of e~irlier approaches through a considerably smaller search
space. Constraints within our procedure are handled differently from conventional CLP
systems, and certain completeness issues absent in classical horn clause programming
surface with the new procedure. We have attempted to identify the key implementa-
tion issues of our procedure along v~ith possible optimization techniques that include
semantically-based restriction strategies. All the theoretical development in this paper
has been driven by practical implementation concerns. The study presented in this pa-
per has already contributed to the work on amalgamating databases at the University of
Maryland [2], [1], [36].

Several other developments with similar aim as our research are by Friihwirth [11],
and by Adah and Subrahmanian [2]. The work of Friihwirth is interesting in that query
processing of annotated logics is handled completely within the framework of CLR A
cursory examination indicates a close relationship between his work and ca-resolution
with respect to the structure of the search space. Details are currently under investiga-
tion. The procedure of Adah and Subrahmanian is an adaptation of s-resolution [30],
augmented with OLDT-resolution to improve termination behavior and efficiency. It uses
the device of sets of annotations, which plays a prominent role in ca-resolution.

56 LEACH AND LU

6.1. On the Language of Annotations

An interesting aspect regarding the work on hybrid knowledge bases [31] is that an
SLD-like query processing procedure can be defined without the need to resort to either
the reduction inference rule, or the use of constrained annotations. The simplicity and
elegance of such a query processing procedure is very appealing both theoretically and
practically. However, in general, such a procedure does not exist for annotated logic
programs.

The conditions under which annotated logic programs have a straight forward SLD-
like query processing procedure is not entirely clear at this point, and is a topic of
current investigation. One possibility, arising out of a closer examination of the theory
of hybrid knowledge bases, is that the existence of such a procedure may be due to
certain restrictions placed on the language of annotations. A key difference between the
theory of hybrid knowledge bases and the theory of annotated logic programming in
general is that the annotations used in hybrid knowledge bases are not elements taken
directly from the underlying lattice. Rather, a different set of syntactic objects, called
g-representations, are introduced as annotations. Formally, suppose f is a function in
HAft such that for all inputs S C_ R + to which f assigns a non-zero output, f gives the
same output, say cr, to each z E St. Then the pair (a, St) is called the g-representation of
f . A function f is said to be g-representable if there is a a E [0, 1] and St C_ R + such
that:f = (a, St). Not every function in A is g-representable; any function whose set of
outputs contains more than two elements cannot be so represented. Consequently, the
set of elements in/-gN'C that may be used as annotations constitute a rather small subset
of all the elements in HN'C. It has been shown in [31] that such a restriction causes a
slight loss of expressiveness. However, we postulate that such a specialization may very
well be what is necessary to formulate a simple SLD-like query processing procedure for
annotated logic programming without using either reduction, or constrained annotation.

6.2. On the Efficiency of CA-resolution

The claim is made in this paper of the superior efficiency of ca-resolution as compared to
annotated resolution and reductionl The astute readers will have observed that the lengths
of ca-deductions may be considerably longer than corresponding deductions obtained
from annotation resolution and reduction, in which the only steps displayed use the
annotated resolution inference rule. This observation may give the appearance that we
are simply modifying the structure of the search space, but without any real reduction in
the size.

But surely a fair comparison must take into account the number of reduction steps
performed, even if these steps do not explicitly appear. There is, moreover, a simple
argument that supports the efficiency claim. Theoretically, an infinite number of reduc-
rants may be computed from a finite number of clauses. Thus, the possible number of
clauses on which annotated resolution may be applied is infinite at each deduction step.
This, in comparison with the finite number of choices - the program clauses - that is
available for the application of ca-resolution, indicates a much larger search space. In

QUERY PROCESSING IN ANNOTATED LOGIC P R O G R A M M I N G 57

practice, the disparity between the sizes of the search spaces is unlikely to be so drastic.
Analytically, the examples that we have examined, though small, support the improved
behavior of ca-resolution. Presently, no experimental comparisons are available as we
do not have an implementation of annotated resolution and reduction.

Acknowledgments

The useful comments of the referees are gratefully acknowledged. Discussions with
Thom Frfihwirth have improved our understanding of the role of annotations. Barbara
Messing pointed out a mistake in an earlier draft.

Notes

1. The articles [12], [16] provide excellent accounts of the field.

2. Of course, Prolog is still incomplete due to its use of depth-first search.

3. Recall that normal constraints were defined in Section 2.1.

References

1. Adah, S,, Subrahmanian, V.S., "Amalgamating Knowledge Bases II: Distributed Mediators", Journal of
Intelligent and Cooperative Information Systems, December, 1994.

2. Adah, S., Subrahmanian, V.S., "Amalgamating Knowledge Bases IIl: Algorithms, Data Structures, and
Query Processing", CS-TR-3124, University of Maryland.

3. Ai't Kaci, H., Boyer, R., Lincoln, R., Nasr, R., "Efficient Implementation of Lattice Operations", ACM
Transactions on Programming Language and Systems, 11, 1, 1989, 115- 146.

4. Bezdek, J. C., "Fuzzy models - what are they, and why?", IEEE Transactions on Fuzzy Systems, 1, 1,
1993, 1-6.

5. Baldwin, J.E, "Evidential Support Logic Programming", Fuzzy Sets and Systems, 24, 1987, 1-26.
6. Blair, H.A., Subrahmanian, V.S., "Paraconsistent Logic Programming", Theoretical Computer Science,

68, 1989, 135-154.
7. Bundy, A., "A Science of Reasoning: Extended Abstract", Proceedings of the Conference on Automamd

Deduction, 1990, 633-640.
8. Cohen, J., "Constraint Logic Programming Languages", Communications of the ACM, 33, 7, 1990, 52-68.
9. Davey B.A., Priestley, H.A., Introduction to Lattices and Order, Cambridge University Press, 1990.

10. Fitting, M., "Bilattices and the Semantics of Logic Programming", Journal of Logic Programming, 11,
1991, 91-116.

i l. T. Friihwirth, Annotated Constraint Logic Programming Applied to Temporal Reasoning, Proceedings of
the Symposium on Programming Language Implementation and Logic Programming, 1994, 230-243.

12. Friihwirth, T., Herold, A., Kiichenhoff, V., Le Provost, T., Lira, E, Wallace, M., "Constraint Logic
Programming- An Informal Introduction", Logic Programming in Action, 1992, 3-35.

13. Gaasterland, T., Lobo, J., "Qualified Answers that Reflect User Needs and Preferences", Proceedings of
the 20th International Conference on Very Large Databases, 1994, 309-320.

14. H/ihnle, R., "Uniform Notation of Tableau Rules for Multiple-valued Logics", Proceedings of the Inter-
national Symposium on Multiple- Valued Logic, 1991, 26-29.

15. Jaffar, J., Lassez. J-L,, "Constraint Logic Programming", Proceedings o[the 14th ACM Symposium on
Principles of Programming Languages, 1987. 111-119.

16. Jaffar, J., Maher, M, "Constraint Logic Programming: A Survey", Z of Logic Programming. 19/20, 1994,
503-581.

5 8 LEACH AND LU

17. Jaffar, J., Michaylov, S., "Methodology and Implementation of a CLP System", tutorial notes given in
the Fourth IEEE Symposium on Logic Programming, 1987.

18. Jaffar, J., Michaylov, S., Stuckey, P., Yap, R., "The CLP(R) Language and System", ACM Transactions
on Programming Languages and Systems, 14, 3, 1992, 339-395.

19. Kifer, M., Li, A., "On the Semantics of Rule-based Expert Systems with Uncertainty", Proceedings of
the 2nd International Conference O n Database Theory, 1988, 102-117.

20. Kifer, M., Lozinskii, E., "RI: A Logic for Reasoning with Inconsistency", IEEE Symposium on Logic in
Computer Science, 1989, 253-262.

21. Kifer, M., Lozinskii, E., "A Logic for Reasoning with Inconsistency", Journal of Automated Reasoning,
9, 1992, 179-215.

22. Kifer, M., Subrahmanian, V.S., "On the Expressive Power of Annotated Logics", Proceedings of the
North American Conference on Logic Programming, 1989, 1069-1089.

23. Kifer, M., Subrahmanian, V.S., "Theory of Generalized Annotated Logic Programming and its Applica-
tions", Journal of Logic Programming, 12, 1992, 335-367.

24. Krishnaprasad, T., Kifer, M., "A Theory of nonmonotonic inheritance based on annotated logic", Artificial
Intelligence, 60, 1, 1993, 23-50.

25. Leach, S, "D-resolution: A Semantically Based Query Processing Procedure for Annotated Logic Pro-
gramming", Honors Thesis in Computer Science, Bucknell University, May 1994. Computer Science
TR94-2.

26. Leler, W., Constraint Programming Languages: Their Specification and Generation, Addison-Wesley,
1988.

27. Lloyd, J.W., Foundations of Logic Programming, 2nd ed., Springer, 1988.
28. Loveland, D.W., "A Unifying View of some Linear Herbrand Procedures", Journal of the ACM, 19,

1972, 366-384.
29. Lu, J.J., Henschen, L.J., "The Completeness of gp-resolution for Annotated Logics", Information Pro-

cessing Letters, 44, 1992, 135-140.
30. Lu, J.J, Murray, N.V., Rosenthal, E., "Signed Formulas and Annotated Logics", Proceedings of the 23rd

International Symposium on Multiple-Valued Logics, 1993, 48-53.
31. Lu, J.J., Nerode, A., Subrahmanian, V.S., "Hybrid Knowledge Bases", IEEE Transactions on Knowledge

and Data Engineering, to appear. TR93-14, Cornell University, revised March 1994.
32. Murray, N.V., Rosenthal, E., "Signed Formulas: A Liftable Meta-Logic for Multiple-Valued Logics",

Proceedings of International Symposium on Methodologies for Intelligent Systems, 1993, 275-284,
33. Ng, R., Subrahmanian, V.S., "A Semantical Framework for Supporting Subjective and Conditional Prob-

abilities in Deductive Databases", Journal of Automated Reasoning, 10, 1993, 191-235.
34. Reed, D.W., Loveland, D.W., "Near-Horn Prolog and the Ancestry Family of Procedures", presented

at the symposium Logic in Databases, Knowledge Representation and Reasoning at the University of
Maryland Institute for Advanced Computer Studies, Nov. 1992.

35. Subrahmanian, V.S., "Paraconsistent Disjunctive Databases", Theoretical Computer Science, 93, 1992,
115-141.

36. Subrahmanian, V.S., "Amalgamating Knowledge Bases", ACM Transactions on Database Systems, 19,
2, 1994, 291-331.

37. Van Hentenryck, P., Constraint Satisfaction in Logic Programming, MIT Press, 1989.
38. Weigert, T.J., Tsai, J-P., Liu, X., "Fuzzy Operator Logic and Fuzzy Resolution", Journal of Automated

Reasoning, 10, 1993, 59-78.
39. Wiederhold, G., "Mediators in the Architecture of Future Information Systems", IEEE Computer, March

1992, 38 - 49.
40. Wos, L.,Automated Reasoning: 33 Research Problems, Prentice Hall, 1988.

