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Abstract. Annotated logic is a formalism that has been applied to a variety of situations in knowledge 
representation, expert database systems, quantitative reasoning, and hybrid databases [6], [13], [19], [20], [21], 
[22], [23], [24], [30], [33], [35], [36]. Annotated Logic Programming (ALP) is a subset of annotated logics that 
can be used directly for programming annotated logic applications [22], [23]. A top-down query processing 
procedure containing elements of constraint solving, called ca-resolution, is developed for ALPs. It simplifies 
a number of previously proposed procedures, and also improves on their efficiency. The key to its development 
is in observing that satisfaction, as introduced originally for ALPs, may be naturally generalized. A computer 
implementation of ca-resolution for ALPs is described which offers important theoretical and practical insights. 
Strategies for improving its efficiency are discussed. 
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1, Introduction 

Annotated Logic is a formalism that can be used as the foundation for a variety of  sit- 
uations in knowledge represent'ation, expert systems, quantitative reasoning, and hybrid 
databases [6], [13], [19], [20], [21], [22], [23], [24], [30], [33], [35], [36]. As a knowledge 
representation formalism, annotated logi c can be applied to reasoning under uncertain, 
incomplete, and contradictory knowledge. In hybrid knowledge bases, annotated logic 
provides a logical framework for integrating heterogeneous systems. In addition, in [23], 
Kifer and Subrahmanian demonstrated how annotated logic programming can capture cer- 
tain fragments of temporal reasoning, as well as bilattice logic programming introduced 
by Fitting [ 10]. 

The distinguishing feature of  annotated logic is the incorporation of names for truth 
values directly into the language of the logic. Such signing of formulas has been con- 
sidered elsewhere including by [32], [14J for analyzing multiple-valued logics, by [5] 
for evidential reasoning, and by [38] for fuzzy reasoning. In annotated logic, the set of 
underlying truth values is assumed to form a complete lattice. 

As the utility of annotated logic becomes more apparent, the next important set of 
research questions to address includes the development of  proof procedures for automated 
reasoning in annotated logic, and the examination of issues related to implementing such 

* This material is based upon work supported by the NSF under Grant CCR9225037. A preliminary version 
of this paper appears in the proceedings of the International Conference on Logic Programming, 1994. 
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procedures. A subset of annotated logic that has been considered most frequently is 
annotated logic programming, which focuses on annotated horn clauses (cf. [19], [6], 
[22], [23]). Due to the procedural interpretation naturally associated with horn clauses, 
annotated logic programming can be used to directly implement many annotated logic 
applications. 

The current paper investigates a query processing method, called ca-resolution, for 
annotated logic programming, and presents a prototype interpreter based on the method. 
Ca-resolution improves upon both the efficiency and the readability of several existing 
procedures. The procedure considered in [22], [23] requires the application of two infer- 
ence rules for processing queries. The additional inference rule has presented difficulties 
in the development of an efficient top-down query processing procedure. Ca-resolution 
alleviates the necessity of the additional rule. The key to its development is in observing 
that the semantics of annotated logic programs can be naturally generalized. 

Ca-resolution contains elements of constraint programming [26]. The inclusion of 
constraint solving mechanisms into logic programming is a topic of considerable interest 
in recent years [8], [18], [37]. 1 The semantics of annotated logic programs extended with 
constraints have been studied in [23]. Here, we discuss how the mechanism developed 
in [23] corresponds to loeal propagation [26], and can be used to solve queries in our 
system. 

There is an interesting difference between our uses of constraints and the typical Con- 
straint Logic Programming (CLP) scheme [15]. In CLR horn clauses are augmented by 
constraints. At each step of a computation, the interpreter must ensure the solvability 
of the constraint. Unsolvable constraints cause backtracking. On the other hand, in our 
system, the solvability of constraints defines the satisfiability of a query. Constraints are 
associated with atoms in the query; they do not exist independently of the atoms. An 
unsolvable constraint does not cause backtracking, but instead, prompts further searches 
until a solvable constraint is found. Therefore constraints are continually modified until 
a solvable constraint is constructed. In CLR an existing constraint does not change. 
Additional constraints, however, may be added. 

We describe what we believe is a first implementation of an annotated logic pro- 
gramming system. Compared to ordinary logic programming, the search space for a 
proof of a given query in annotated logic programming is more complex. Certain issues 
absent in classical horn clause programming surface in annotated logics programming. 
We illustrate these complexities and examine possible strategies for reducing the search 
space. Of special interest are those strategies that systematically utilize special properties 
embedded in the underlying lattice of truth values. It has long been argued that such 
semantically based strategies are necessary in improving the effectiveness of inference 
techniques [40], [7]. One promising restriction strategy along this line is briefly discussed 
Section 5.3.2. 
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2. Annotated Logic Programs 

2.1. The Lattice A and Annotations 

Underlying any system of annotated logic is a lattice A of objects. We denote the 
associated ordering by -4. Generally, A is assumed to be a complete upper semilattice. 
More interesting however is the case when A is assumed to be a complete lattice. This 
is the assumption taken in the current paper. In practice, the distinction between the two 
is slight as we may often "complete" the upper semilattice by adding a bottom element. 

The least upper bound and the greatest lower bound operators are denoted O and n, 
respectively, while the top and the bottom elements are denoted T and ±,  respectively. 
Objects in A are used for "signing" formulas in annotated logics. As mentioned in 
[23], elements in A may be thought of as confidence factors, as degrees of belief, or 
as truth values. The requirement that A forms a lattice stems from the desire to use A 
for modeling certain epistemic concepts such as inconsistency [6], [21], and evidence 
[24]. More recently, Subrahmanian [36] extended the scope of A to represent names 
of distributed databases, where databases that are "higher" in the lattice are regarded as 
supervisory databases - otherwise known as mediators [39] - of "lower" databases. 

The lattice A may be viewed as a constraint domain. To that end, we assume the 
existence of a first order language E whose function and predicate symbols are interpreted 
over A, As in [23], we consider only total, computable continuous functions over A. 
In particular, included in the function symbols are the operators u, N, and included in 
the predicate symbols is the ordering relation ~. A term built in the usual way from the 
non-logical symbols of the language E is called an annotation. To maintain consistency 
with the terminology used in [23], we refer to a constant symbol in the language E as a 
c-annotation, a variable in E as a v-annotation, and a term involving a function symbol 
as a t-annotation. To ease the presentation, we do not distinguish between objects of 
A and terms of the language ~ whose denotations are in A. A constraint is a formula 
constructed in the usual way from atomic formulas and logical connectives. 

Of particular interest is the class of normal constraints, which are constraints of the 
form 

where each ~ is a c- or v-annotation, each ~- is an annotation, and if t% is a variable, then 
it does not occur in ml, -.., ri. For example, the constraint V ~ f ( W ) ,  W ~ 9(V) is not 
a normal constraint since any ordering of the inequalities violates the required condition. 
The simplest lattice, used in the original study on logic programming for reasoning with 
inconsistent information [6], is the lattice FOUR shown in Figure 1. 

Not every application of annotated logic involves the use of a lattice whose elements 
represent truth values. For example, Krishnaprasad and Kifer used lattices where the 
objects correspond to evidence [24]. Objects used in these lattices include b i r d ,  Nixon, 
and p e n n s y l v a n i a n .  In [13], a lattice of adjectives are used to denote user preference 
in answers to Queries. 
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Figure 1. The Complete Lattice FOUR. 

A still more complex lattice is the lattice L,/N'C on which hybrid knowledge bases are 
formalized [31], [36]. The lattice/./ARC is used for reasoning about time and uncertainty. 
Formally, let R + denote the set of non-negative real numbers, then b/N'C is the function 
space R + ~ [0, 1] ordered by 

f l  _--< f2 iff f l ( x )  <_ f 2 ( x ) f o r  a l lx  E R +. 

The top element of  the lattice, denoted fT,  is the function that assigns every element 
in R + to 1, while the bottom element f±  maps each real number to 0. Observe that 
elements in UN'C are functions. More interestingly however, is that they correspond 
to fuzzy subsets of  R + [4]. Intuitively, given a function f in/AN'C, the domain R + 
represents time points, while the range [0, 1] represents uncertainty. 

2.2. Annotated  Logic Program Syntax 

Based on A, we may define an annotated logic. We assume a first-order language L. 
Atoms are built from constants, variables, and function and predicate symbols in the 
usual way (cf. [27]). Suppose A is an atom, and a is an annotation. Then A " a is an 
annotated atom. Suppose c~ is a c-annotation. Then A : a is said to be c-annotated. 

Similarly, A : a may be said to be v-annotated or t-annotated. If  A : a is an annotated 
atom and B1 : ]~1, . . . , B k  : Pk are c- or v-annotated atoms, then 

A : ~ +-- B I  : # l , . . . , B k  : #k 

is an annotated clause. A : c~ is called the head of the clause, and B1 : #1, .-., Bk : #k is 
called the body of the clause. All variables (object or annotation) appearing in the clause 
are implicitly universally quantified at the beginning of the clause. A set of  annotated 
clauses is called an annotated logic program (ALP). Suppose A : c~ is an annotated atom 
where c~ is a variable free t-annotation. We may replace # by the lattice element denoted 
by o~. 

Example: The lattice FOUR can be used by ALPs for expressing inconsistent informa- 
tion. As an example taken from [21], the following ALP program asserts intuitively 
tweety is a bird and is not a bird, and that john receives a grade of  'A' .  

f l i e s ( t w e e t y )  : t +-- 
f l i e s ( t w e e t y )  : f ~-- 
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grade(john, r~4") : t +-- 
As Kifer and Lozinsldi argued, such a set of knowledge may represent beliefs held by 
a reasoning agent R. Knowledge gathered based on different evidence may therefore 
introduce conflicting beliefs, such as f l ies(tweety) : t (i.e. R believes tweety flies) 
and flies(tweety) : f (i.e. R believes tweety does not fly). As will be seen when 
we introduce the semantics of annotated logic programming, unlike classical knowledge, 
such an inconsistency does not affect R's ability to reason rationally. [] 

Example: The following is an example of a hybrid knowledge base rule using the lattice 
UN'C. We adopt the Prolog convention of denoting variables by upper-case letters, 
and constants in the database by lower-case letters. Intuitively, the rule expresses the 
statement: "If the robot is at location (X, Y) with certainty V at time t, and it is certain 
that the robot is moving north at a constant speed of 0.2, then the robot will be at location 
(X, Y + 1) with certainty V at time (t + 1)" may be expressed as 

robot_at(X, Y + 1) : (V, {T + 1}) +- robot_at(X, Y ) :  (V, {T))  &: 

move(X, north, 0.2) : (1, R+) .  

Here, each of (V, {T}) and (V, {T + 1}) represent functions in b/Arc - formally calle(~ 
g-representations. The operator +1 used inside the annotation (V, {T + 1}) is an unary 
annotation function f that maps g-representations to g-representations, i.e. f (p ,  S) = 
(#, S/) where S t = {5 + l l a  E S}. More will be discussed on g-representation in 
Section 6. [] 

2.3. Annotated Logic Programs Semantics 

As usual in the treatment of the semantics of logic programs, attention is restricted to 
only Herbrand interpretations. Thus the domain of our interpretations consists of the set 
of variable free terms built out of the constants and the function symbols of the language 
L. 
Definition (satisfaction). An interpretation I is a mapping from the set of variable free 
atoms (i.e. ground atoms) to A. It is said to satisfy 

1. the ground c-annotated atom A : # iff/z ___ [(A). 

2. the ground c-annotated conjunction F1, ..., F,~ if it satisfies each of F1 through F~. 

3. the ground c-annotated clause A ~-- t31, ...,/3~ if whenever it satisfies/31,--.,/3~, it 
also satisfies A. 

4. 

. 

the c-annotated clause A ,-- Bt , . . . , /3~ if it satisfies each ground instance, obtained 
by replacing each object variable by a ground term. Different occurrences of the 
variable must be replaced with the same term. 

the annotated clause A ~ / 3 1 ,  ..., B~ if it satisfies each c-annotated instance, obtained 
by replacing each annotation variable by an element in A. Different occurrences of 
the variable must be replaced with the same object. 
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The symbol ~ is used to denote both satisfaction and logical consequence. 

Example: [23] Let A be the lattice FOUR. Take P to be the ALP below. 
P1 p : V e - - q ( X ) : V  
P2 q(a) : t 
P3 q(b) : f +- 

Among the ground c-annotated instances of P1 are: 
p : t + - q ( a ) : t  
p : f  ~-- q(b) : f  

According to the definition for satisfaction, any interpretation that satisfies the program 
must assign to p an element in FOUR that is greater than or equal to t and f. Clearly, 
the only such element is T itself. Hence P ~ p : T. [] 

The previous example illustrates how annotated logics may be used as a paraconsis- 
tent logic - logic that tolerates inconsistent information without entailing all possible 
conclusions. In particular, referring back to the tweety example in Section 2.2, it is 
straightforward to see that the inconsistent belief held by the reasoner R regarding the 
flying ability of tweety does not allow R to draw arbitrary conclusions concerning the 
grade received by john. 

Variables that occur in the head but not in the body of clauses are called free variables. 
Conversely, variables occurring only in the body but not in the head of a clause are 
called local variables. Note that as in the case of object variables, annotation variables in 
clauses are implicitly universally quantified. An immediate consequence of the semantics 
of annotated logic programs is that there is no loss of generality in assuming that no 
annotated clause contains a free annotated variable. Consider for example the ALP 
p : V +-- over FOUR. The program is equivalent to the four c-annotated clauses p : q- +--, 
p : t ~--, p : f ~--, and p : .1. +--, obtained by instantiating the variable V with all possible 
values in FOUR. As the first clause subsumes the last three, the original ALP is equivalent 
to the single c-annotated unit clause p : T +-. It is easy to verify, with the assumption that 
annotated functions are continuous, and thus monotonic, that any free annotated variable 
may be replaced by the top element of the lattice A without changing the semantics of 
the program. This observation is noted in [23]. 

On the other hand, given the ALP 

p: q-~---q: V ,r :  V 

over the lattice FOUR, we may replace V by the four lattice elements in FOUR to yield 
the equivalent c-annotated ALP below. 

p :  T + - q  : - l - , r  : T  
p: T + - q : t , r : t  
p: T + - q : f , r  : f  
p:  T ~ -q :  ± , r  : 2 

The last clause says anj, interpretation that assigns to q and r at least the truth value .1_ 
must assign to p the value T. As any interpretation assigns to each ground atom at least 
• 1,, the condition q : Z, r : ,1, is trivially satisfied. Thus, we may drop the antecedent 
of the clause. The result is a clause that subsumes the first three c-annotated clauses. 
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Therefore the original ALP is equivalent to p • ~- ,--. This analysis generalizes to 
arbitrary ALPs, and we may assume without loss of generality that ALPs do not contain 
local variables. 

PROPOSITION 1 Suppose P is an ALE Let P1 be the ALP obtained from P by first 
eliminating from each clause each annotated atom that contains a local annotated variable, 
and then replacing each free variable by T. Then P and P1 have the same models. 

3. Query Processing in ALPs 

The most popular technique for answering queries in logic programs is based on SLD- 
resolution [27]. The main advantage in using an SLD-style proof procedure is, as noted 
in [23], the choice of clauses that need to be considered at each deduction step is 
restricted to the current goal and the program clauses. Thus far, finding an SLD-style 
proof procedure has proven elusive for ALPs [22], [23]. The difficulty lies in the need 
to compute reductants (defined below). First we give some necessary definitions. 

An expression of the form +--- E H A1 : ~1,..., An : #~ where E is a constraint, is 
called a constrained query. In [23], the constraint part of a constrained query need not 
be restricted to lattice constraints. However, here we focus only on lattice constraints 
since they must be handled for any system that includes an ALP component. The symbol 
It denotes conjunction, and is used to delineate the constraint part of the query from the 
atomic part. The notion of satisfaction for constrained queries is immediate. Following 
are two inference rules for answering query in ALPs, introduced in [23]. 
Definition (annotated resolution). Suppose C = A : p +-- B I , . . . ,  13, is a clause and 
Q = ~  =~ l1 A1 : c~1, . . . ,  Am : C~m is a constrained query with no variables in common 
with C. Moreover, suppose that for some 1 < i < m, A~ is unifiable with A via mgu 0. 
Then the annotated resolvent of Q and C with respect to A~ is the query 

,--- c~i -<p,E 1] (Aa : Oel: . . . ,Ai-1 : o ~ i - I , B 1 , - - . , B n ,  
Ai+a : a~+l , . . .  ,A,~ : o~,~)0. 

Definition (reduction). Assume two annotated clauses 
A1 :#1  , - -B1 :/51,.. . , /3n :/3~ 

where A1 and A2 are unifiable via mgu 0. The reductant of the two clauses is the clause 
(A1 : u{#z,/~2} ,--- B1 : ~1, ..., Bn : ~n, C1 : 71, ..-, C ~  : ~m)0. 

In terms of resolution theorem proving, an SLD-proof procedure does not exist for 
ALPs due to the incompatibility of the two rules of inference, annotated resolution and 
reduction, with the linear restriction strategy [28]. Kifer and Subrahmanian circumvent 
this difficulty by specifying that a deduction consists of only applications of annotated 
resolution. However, each inference may involve a resolution with an annotated clause 
obtained by implicit applications of the reduction procedure. 

Example: Consider the program from the example in Section 2.3. We have shown that 
the program entails p : T. Hence the query +-- p : T should have a refutation. Observe 
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that if we do not use the reduction inference rule, the only possible annotated resolvent 
that can be obtained from the query is +- T ~ V I1 q(X)  : V. Resolving the new query 
with P2 yields the query that contains the unsolvable constraint T _--< 11, V ~ t. Similarly, 
resolving with Pa produces an unsolvable constraint. Hence no proof can be found. 

Using the reduction inference on the other hand, we first compute the reductant p : 
El{V1, V2} +-- q(X1) : 111, q(X2) : 1/2 from two variants of P1. This resolves with the 
original query, resulting in the following constrained query. 

4-- T ~ I I{gl ,g2} H q ( X l ) :  Vl ,q(X2):  V2 

Resolving the new query with P2 and P3 in succession yields the constrained query 
T ~ U{V1,V2},V1 -<_ t, V2 ~ f. As the constraint in the query is solvable, we have 

a refutation. [] 

Unfortunately, the implicit use of reduction causes difficulties since a proof, which con- 
sists of only annotated resolution steps, may contain many deductions with clauses that 
are not in the original program. This makes the proof difficult to read. Moreover, appli- 
cation of the reduction inference is expensive since it must be allowed to occur any time 
during a deduction, thus greatly expanding the search space. The situation is analogous 
to the use of the restart rule in disjunctive logic programming [34]. 

The key in overcoming the difficulties of annotated resolution and reduction is in ob- 
serving that the semantics of annotated logics are naturally generalized to set membership. 
This is captured by the use of constrained annotations, introduced next. 

3.1. Constrained Annotated Atoms and CA-Resolution 

A constrained annotation is a pair (/z, S} where/~ is an annotation and S is a finite set 
of annotations. A constrained annotated atom is an expression A : C where A is an 
atom and C is a constrained annotation. 
Definition (satisfaction of constrained atom). An interpretation I satisfies a ground 
constrained annotated atom A : (#, S) iff I (A)  E (T #) u (T uS)C 
Given a lattice element 7, T7 denotes the upset of 7 (cf. [9]). In other words, ]'7 = {6 E 
AI7 -<_ 6}. Set complementation of a set A is denoted A °. Intuitively, a constrained 
annotated atom says that the truth value of A is either greater than or equal to #, or is 
not greater than or equal to the least upper bound of S. 

Example: Suppose I is the interpretation that assigns to p the value t in FOUR. Then 
I satisfies the constrained annotated atom p : (t, {}), but it does not satisfy p : {Y, {t}) 
since (TT) U (T tJ {t}) c = {T, f, _1_}, which does not contain t. [] 

The following is immediate from the definition since # -< US iff T # u (T t~S) c = A, 
for any # E A and S c_C_ A. 

PROPOSITION 2 Let I be an interpretation and let A : (#, S) be a ground constrained 
atom such that # ~ US. Then I satisfies A : (/z, S). 
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The definition of satisfaction of constrained atoms is the key generalization in the 
semantics of ALPs that enables us to introduce our proof  procedure below. Note that the 
original definition of satisfaction of annotated atoms naturally fits into this more general 
definition. Since A is a lattice, U{} = A_. If  we have a ground constrained annotated 
atom A : (#, {}), then a satisfying interpretation I must assign, according to definition, 
an element in (T #) u (T ±)c  to A. As ]" ± = A, it follows that (T ±)c  = {}. Hence 
(]" #) U (Y ±)c  : Y  # and I (A)  ET #, the same condition as # ~_ I(A).  

Based on this observation, we see that constrained annotated atoms generalize ordinary 
annotated atoms since A : # may be regarded equivalently as the special constrained 
annotated atom A : (#, {}). A query +- A1 : P l , . . . ,  AN : p~ can therefore be rewritten 

+--- A I :  (#, {}), . . . ,  A n :  (#,~, {}) 

without changing its meaning. In general, we call a query consisting of only constrained 
annotated atoms a ca-query (constrained annotation query). 

Let C be a conjunction of constrained annotated atoms A1 : {#1, $1), ..., An : (#~, Sn). 
The constraint associated with C, denoted = c ,  is the lattice constraint 

#1 <- US1, ...,#n ~_ rASh. 

The following relates the solvability of  EQ and the unsatisfiability of ~-- Q. 

PROPOSITION 3 A ca-query +-- Q is unsatisfiable iff EQ is solvable with respect to A. 

Proof:  +- Q is unsatisfiable iff for each interpretation I, ~ QO is unsatisfiable for 
some ground substitution 0 iff I satisfies QO. Note 0 is a substitution that substitutes 
for each object variable, as well as for each annotation variable. Let 01 represent the 
substitution 0 restricted to all and only the annotation variables. 

Suppose +- QO is of  the form +- A1 : (#1, $ 1 ) , - - . ,  As : (#~, S~). By the previous 
paragraph, for every interpretation I ,  I satisfies Ai : (#i, St) for each i = 1, ..., n. By 
definition, I(Ai)  ET pi U (T USi) ~. As this holds for every f ,  it must follow that 
~" Pi U (T uSt)  c : A for otherwise, we may find an I such that I (Ai)  ¢T p~ u (Y tASi) ~ 
(take I to be one where I(A~) E (A - (T #t u (T uS0~)) ) .  Hence Pi ~ USi for each 
i = 1, . . . ,n,  which is exactly the lattice constraint represented by EQ0t.  It follows that 
EQ is solvable with respect to A and 01 is a solution. 

For the reverse direction, 01 is a solution to the constraint EQ. Let A : (#, S) denote 
a typical, but arbitrary constrained annotated atom in Q. We have p01 _~ (~AS)01. By 
Proposition 2, I satisfies (A : (p, S))O for every interpretation l ,  and hence ~ Q is 
unsatisfiable. • 

Definition (ca-resolution).  Let A : # +- B1 : i l l , . . . , - B n  : fin be an annotated clause 
(with ordinary annotations) that does not share any object or annotation variables with 
the ca-query +- A1 : 7)1, . . . , A n  : 73~, and suppose At and A are unifiable via mgu 0, 
for some i C {1, ..., m}.  Assuming that Dt is the constrained annotation (--/, T) ,  then the 
ca-query 

+- (A1 : 791, . . . ,Ai-1 : l ) i - l , A t  : (%TO{#}),BI: (~1, {}), --., 

Bn : (fin, {}), Ai+l : 19i+1,..., Am : 7)~)0 
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is a ca-resolvent of the given clause and ca-query. 

Note that in creating the ca-resolvent, we first translate each annotated atom from the 
body of the annotated clause into an equivalent constrained annotated atom. 

A deduction of a ca-query from a given ALP and an initial ca-query using ca-resolution 
is defined in the usual way. We call such a deduction a ca-deduction. A ca-deduction of 
a ca-query from an ALP is a ca-proof if the last clause in the deduction is unsatisfiable. 

Example: Recall the program in the example in Section 2.3. The initial query +- p : 5- 
may be represented equivalently as +-- p : (T, {}}. A ca-proof of the query is shown 
below. The constraint associated with each ca-query is displayed below the query. 

Qo : ~  p :  (T, {}) 
Constraint: T y ± 

Q1 (T,{Vl}),q(Xl): (Vl, {}) 
Constraint: T y 1/1, V1 -< ± 

Q2 :+- p :  (T,{V1}},q(a):  (VI,{t}} 
Constraint: T -< 1/1, V1 _~ t 

Qa :+ - p :  (T, {V1, V2}), q(X2):  (V2, {}}, q(a) :  (V1, {t}} (ca-resolvent of Q~ and P1) 
Constraint: T _ t_I{V1, V2}, 111 _-< t,  V2 -< L 

Q4 :+- p :  (T, {V1, V2}), q(b): (V2, {f}}, q(a) : {1/'1, {t}} (ca-resolvent of Q3 and P2) 
Constraint: T -< U{V1, V2}, V1 ~ t,  V2 _ f 

(Initial Query) 

(ca-resolvent of Q0 and P1) 

(ca-resolvent of Q1 and P2) 

We may verify that of the constraints associated with each of the queries in the above 
deduction, only the last one is solvable with respect to FOUR. Indeed, this is exactly the 
same constraint derived using reduction and annotated resolution shown in the earlier 
example (Section 3). Therefore in one sense, the use of ca-resolution amounts to an 
incremental computation of reduction. [] 

A point of interest worth mentioning is how constraints are used differently in ca- 
resolution as compared to conventional CLP systems. Similar to classical logic program- 
ming, a ca-proof in ALP is obtained when an unsatisfiable query is derived. In a ca- 
deduction, the determination of whether a query ~ A1 : (#1, S1), ..., A~(#n, S,~} is un- 
satisfiable depends on the solvability of the associated constraint #1 ---< LIS1, ..., ¢~ ~ tASn 
(cf. Proposition 3). The unsolvability of this constraint does not cause backtracking, as 
can be seen in the example above. The first ca-resolvent of the proof is a satisfiable 
ca-query since there is no solution to the lattice constraint T _~ W{V1}, V1 _~ ±. In CLR 
only solvable constraints are allowed to appear in each query of a deduction. A related 
difference in our approach is that constraints are modified during a deduction. The above 
unsolvable constraint associated with the first ca-resolvent in the example is modified to 
T -< tA{V1}, I/1 -'j t in the second ca-resolvent. The goal of a ca-deduction therefore 
can be viewed as searching for a satisfiable constraint. In CLP, an existing constraint 
remains throughout a deduction. 
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3.2. Completeness Issues 

The soundness and the completeness of  ca-resolution is proved in this section. Complete- 
ness holds only for programs that possess thefixpoint reachability property, discussed in 
[23]. This restriction is not a drawback of ca-resolution. Rather, it is a general conse- 
quence of the semantics of  ALPs. Intuitively, the fixpoint reachability property ensures 
that the least model of  a given ALP is recursively enumerable. Clearly, failing this 
minimal condition, no query processing procedure can be expected to handle arbitrary 
queries with reasonable efficiency. 

In this paper, we are not concerned with the conditions under which an ALP possesses 
a computable model. Such conditions have been investigated in detail in other work 
[22], [23], [31]. Instead, we show that ca-resolution is sufficiently general to handle 
any ALP that annotated resolution and reduction can handle. More formally, we say an 
inference rule R is relatively complete if given any ALP P and query +-- Q, whenever 
there is a proof of  ÷- Q from P using annotated resolution and reduction, then there 
is proof  of  +-- Q from P using R. Clearly, a consequence of relative completeness is 
that ca-resolution is complete for any class of ALP for which annotated resolution and 
reduction is complete. 

LEMMA 1 Suppose I satisfies both the ground clause A : # ~-- B1 : #l , - . . ,Br~ : /in 
and the ground query +-- Q1 : (71,$1),  . . . ,Q,~ : (7,~, S,~) where A = Qi (i.e. they are 
identical atoms). Then I satisfies the ca-resolvent 

+-- Q1 : {71, S1), ..., Q{: ("/i, Si I..j {p}), B1 : (~1, {}), .-., Bn : (Pn, {}), 

: s i n )  

Proof: If I does not satisfy B1 : #1, , . . ,  B n  " [An, then the result follows. Similarly 
if I does not satisfy any Qj : ('7j,Sj) where i :~ j ,  then the result follows. Otherwise 
I ~ A : # and I ~: Q~ : ( 'TqSi).  By the first condition, ¢ ~ I(A). Therefore 
I(A) ET #. By the second condition, I(Qi) ~"  7i u ('~ u ~ )  C. Equivalently, I(Qi) E 
A - ( t  3'i U (T uS/)c) .  Thus we have I(Qi) E (T "7i) c n (~" USi). 

It follows that', as Qi = A, I(Qi) ~ (T "7i) c N (T tJSi)n T #. Since (T uSi )N ]" # =T 
u(Si u {#}), we may conclude that I(Qi) ~ (T 7i) ~A T ~(S i  u {#}). By the reverse of 
the argument in the previous paragraph, I(Qi) ~T 3'~ u (T u(Si u { # } ) ) c  Hence I does 
not satisfy Q~: (',/~, S,i U {#}). • 

Based on this lemma, we may conclude that ca-resolution preserves soundness. It follows 
that any ca-deduction derives only sound conclusions from an ALP and a starting query. 
In particular, if we obtain a ca-proof, it must be that the given program and query are 
not satisfiable. 

COROLLARY 1 (soundness) Suppose P is an ALP and there is a ca-proof of ~-- Q from 
P.  Then P U {~--- Q} is unsatisfiable. 

For the proof of relative completeness, we show a translation from each deduction using 
annotated resolution and reduction to a ca-deduction. 
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LEMMA 2 Given a query +-- Q and an ALP P.  Suppose there is a deduction of the 
query ~ E, where ~ is a constraint, using annotated resolution and reduction from 
P U { ~  Q}. Let +- Q* be the equivalent ca-query obtained from ~ Q by replacing 
each atom A : # in Q by A : (#, {}). Then there is a ca-deduction of a query +- L from 

Q* where L is a conjunction of constrained atoms and EL = % 

Proof:  The proof is by induction on the length n of the deduction. 
(Base Case) n = 1. The original query +- Q has the form +-- A : # and there is a 
reductant 

B : ¢3 +--- 

such that A and B are unifiable with mgu 0. The annotated resolvent is +-- # -< /3. 
The clause B : /3 +- is derived by applying the reduction inference rule to m program 
clauses. Suppose the program clauses involved are the following: 

C1 -~ B1 : ~I <~ 

Cm - B ~  : /3~ 
We have /3 = U{13i, ...,/3m}. Thus a ca-deduction from +--- Q* may be obtained as 
follows. 

Q0 +-- A : (#, {}} Initial Query 
Q1 + - -  A1 : (#, {t31}} ca-resolution of Q0 and C1 

Q,~ ~-- Am : (#, {/31,...,/3m}} ca-resolution of Q ~ - I  and Cm 

The constraint associated with the single atom is # _~ U{131, ...,/3m}, which is equivalent 
to > _~/3 as/3 = t-J{/31, ...,/3m}. 
(Inductive Case) The original query ~-- Q has the form 

Ai : / z l , . . . , A m  : #j  

and there is a reductant 

B :/3 ~ Bi : /3i , . . . ,  Bk : Zk 

such that A~ and B are unifiable via mgu 0. The annotated resolvent has the form 

+--- #i - / 3  LI (Ai : # i ,  ..-, A i - i  : # i - i ,  B i  :13i, ..., Bk :/3k, 

A~+i : #~+I, . . . ,Aj  : #j)O. 

Let +--- E be an annotated resolvent obtained by a deduction using annotated resolution 
and reduction of the query 

+- (Ai : ; / i ,  ..., Ai -1  : # i - l , B 1  :/31, . . . ,Bk : 13k,Ai+l : # i+i , . . . ,A j  :#j)O. 

By the induction hypothesis, there is a ca-deduction D of a ca-query ~ L from the 
above query, appropriately translated into its equivalent ca-query, such that EL = E. 
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The reductant B : /3 ~ B1 : /~1, . . . ) B k  : /~k is obtained from m program clauses 
using the reduction inference rule. We will denote these clauses C1, ..., Cm. By similar 
argument as the base case, there is a ca-deduction from ~-- Q* of 

(A~: (#~, {}),...,A~_~ : (#~_~, {}}, 

A~: (#i, { ~ ,  ...,3,~}),B1 : ( ~ ,  {}), . . . ,Bk : (~k, {}), 

d i + l :  (#i+1, {}),-.., d j :  (#j, {}))0. 

Here ~1,-..,/3,~ are the annotations of the respective heads from C1,..., Cm. The con- 
straint associated with the atom Ai : (#i, {~1, .-., 3m}) is p~ _ U{t31, ..., ]?~}. Again 
this is the same as the constraint #i _ 3. From the above ca-resolvent, perform the same 
ca-deduction steps as D, we obtain the ca-query *-~ L, A~ : (pi, {ill, .-., tim}), and the 
associated constraint is E, #~ ~/3. • 

In both the base case and the inductive case of the above proof, if the constraint -'= in 
the statement of the above lemma is solvable, then the given deduction is a refutation. It 
follows that the corresponding ca-deduction is a ca-proof of the original query. We have 
the following corollary. 

C O R O L L A R Y  2 (completeness) Suppose there is a proof using annotated resolution and 
reduction from P U  {~--- Q} and ~-- Q* is the equivalent ca-query obtained from ~-- Q by 
replacing each atom A:  # in Q by A :  (#, {}). Then there is a ca-proof of P U  { ~  Q*}. 

Corollary 1 and Corollary 2 together proves Theorem 1. 

THEOREM 1 CA-resolution is sound. Moreover, it is relatively complete. 

Using ca-resolution, it is not necessary to compute reductants. This enhances the 
readability of proofs as they contain only program clauses, and increases efficiency by 
eliminating the expensive reduction inference rule. Ca-resolution thus represents the first 
complete top-down procedure for handling ALPs in its full generality. 

In classical logic programming, an important theoretical result regarding SLD-resolution 
is the independence of the computation rule [27]. A computation rule specifies the lit- 
eral in a query to resolve on at each step of a deduction. The result tells us that any 
computation rule will suffice. This enables for example, Prolog to safely choose the 
leftmost literal to resolve on at each step/  Unfortunately, in the case of ca-resolution, 
selecting systematically the leftmost or the rightmost literal causes incompleteness, even 
if we select clauses fairly. 

Example." Suppose we adopt the selection rule of choosing the leftmost literal in a query. 
Consider the ALP over the lattice [0, 1], where the ordering ~ is the relation < on reals, 

q: ( v  + w )  ~ p: v , r :  w 

p ' 0 . 2  +- 
r : 0.2 ~-- 

and the ca-query *-- q :  (0.4, {}). The first ca-resolvent is ~-- q :  (0.4, {(V + W)}) ,p  : 
(V, {}),r  " (W, {}). The associated constraint 0.4 ~ (V + W) ,V  ~_ O, W ~ 0 is not 



46 LEACH AND LU 

solvable with respect to [0, 1]. It is easy to see that one may continue to resolve the 
leftmost literal with the first clause, but never obtain a solvable constraint. 

Suppose on the other hand, we select the rightmost literal to resolve on. From the 
initial ca-resolvent we obtain the ca-resolvent +-- q : {0.4, {(V + W)}) ,p  : (V, {}},r : 
(W, {0.2}}. Again the associated constraint 0.4 _~ (V + W),  V -<_ 0, W ~ 0.2 is not 
solvable. Resolving on the rightmost literal in the next deduction step yields the same 
ca-query. 

One can see that no fixed position selection of literals in this case can produce a proof 
of the original query, even though clearly q : {0.4, {}) is a logical consequence of the 
program. Thus the independence of the computation rule does not hold for ca-resolution. 
One must select literals "fairly", in the sense that each literal will be tried eventually. 
This will be considered in Section 5.2 when the ALP interpreter is discussed. 

[] 

3.3. Unsatisfiability of CA-queries and Normal Constraints 

A key to implementing ca-resolution lies in determining solvability of constraints asso- 
ciated with queries. Kifer and Subrahmanian have devised an algorithm for determining 
satisfiability of the class of normal constraints [23]. 3 It turns out that normal constraints 
are exactly the class of lattice constraints we need to consider. 

According to the definition of annotated Clauses, annotations that occur in the body of 
a clause must be either c- or v-annotations. A ca-resolution of a query with a clause 
adds a constraint onto the literal resolved on in the query, and may introduce additional 
literals. The following is straightforward. 

PROPOSITION 4 Suppose ,--- Q is a ca-query where EQ is a normal constraint and P 
is an ALR Let ~ R be any ca-resolvent of Q with a clause in P. Then ER is a normal 
constraint. 

Proof: Suppose ~- Q has the form 

The constraint EQ = #i --4 US'i, ...,~zn _-< US'n is by assumption a normal constraint. 
Without loss of generality, assume the ca-resolvent ~-- R is obtained by ca-resolving on 
the constrained atom Ai : (#i ,S1) and has the form 

+-- A1 : ( /~I ,Sl  U { /~}} ,BI :  ( ~ l , { } } , . . - , B m  : (/~m,{}}, 

A2 : (P2, $2}, .-., A~:  (Pn, S~). 

Note/3 is the annotation from the head of the clause with which *-- Q ca-resolved with, 
and the atoms B1 : (/31, {}},..., Bm:  {~m, {}} form the body of the same clause. ~Ihe 
constraint ER is 
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The first condition of  normal constraint is satisfied since each of  ill ,-. . ,  tim is an anno- 
tation variable or constant. The second condition of normal constraint is also satisfied 
as no ill, ...,/3m,#1 occurs in any of the annotation terms to its left (they are all ±s).  
Moreover, no #2, . . . ,#~ occurs in S1 U {fl} as the ca-query and the clause in P are 
standardized apart prior to performing ca-resolution. [] 

We call a ca-query ~-- Q a normal ca-query if EQ is a normal constraint. Since the 
solvability of  a normal constraint is decidable [23], we may adopt Kifer and Subrah- 
manian's algorithm to test for unsatisfiability of  ca-queries. In order to make the paper 
self-contained, we include below their algorithm, which we have incorporated into our 
interpreter, and will analyze further in the next section. 

1. Algorithm 1 

2. Input: A normal constraint E = t~l __< ~'1,-.., t% _---< ~-n. 

3. Output: Boolean 

4. If  C is an empty constraint, return True 

5. Find io _> 1 such that io is the maximal integer where 

6. ~Cio is the same expression as nl and substitute 

7, T for all variables that occur in "rl, ..., ~-io. 

8. I f  nl is a constant then 

9. if t~l S ~-1 .... ,eci o __< -rio is false in A, return False 

10. Set C to t~io+l ~ Tio+l, ..., i~n ~ Tn, 
11. rearrange the indices of the constraints so that they start 

12. with 1 and goto step 4. 

13. else/* ~cl is a variable */ 

14. Let v = Cq{~-l, ...,Tio}. 

lS.  Set  C to t~io+l(V/l~l) ~ 7io+l(V/l~l) ,...,l~n(v/t~l) ~ Tn(TJ/t~l) 
16. and rearrange the indices as in 11, and goto step 4. 

4. An Example 

Consider the lattice SIX shown in Figure 2. SIX is a belief lattice [20], [21] that may be 
used for reasoning with inconsistency. It offers a finer granularity of truth values than 
FOUR. Intuitively, the lattice values It  and If in SIX denote likely true, and likely false, 
respectively. 

Joslyn recently inherited some stocks, among them are IBM and Digital stocks. These 
are represented by the following annotated facts. 

holds_stock(joslyn, ibm) : t 
holds_stock(joslyn, digital) : t  ~- 

She consults a knowledgeable friend for tips on how to manage stocks, and is informed, 
among other things, that if a company is planning on putting out a new product, then 
the value of  the stock of the company will likely increase. On the other hand, if a 
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Figure 2. The Complete Lattice SIX 

company is on the verge of laying off workers, it is probably the case that the company 
is in financial trouble, which in turn will likely drop the value of its stock. Thus Joslyn 
ventures into the stock market world equipped with the following knowledge. 

1. stock_up(X): gl(V) +-- has_new_product(X): V 
2. stock_up(X) : g2(V) ~- f inancial_trouble(X):  V 
3. f inancialAroubl¢(X) : V +- layoff_planned(X) : Y 

Here gl is the annotation function over SIX that maps t to lt ,  and ± to I .  We also 
assume that g2(t) = lf, and g2(±) = ±.  Note that gl and g2, as well as g3 and g4 
below, are annotated functions that model the intuitive relationships between the truth 
values of our predicates. Suppose Joslyn also has the following general knowledge about 
the effect of  stocks going up or down. 

4. makes_money(X, Y ) :  g3(V, W)  +- stock_up(Y): V, holds_stock(X, Y)  : W 
5. high_risk(X) : g4(V) +--- stock_up(X) : V 

The function g3 is assumed to satisfy g3(lt, t)  = lt, g3(lf, t )  = If, and g3(±,  5_) = J_. 
In addition, 94(T) = t and g4(~) = ± for o~ ~: T. 

Shortly thereafter, while reading the paper, Joslyn learns that IBM is coming out with 
a new personal computer. Meanwhile, Digital reportedly has plans to layoff workers, but 
at the same time it is also announcing a new supercomputer. 

6. has_new_product(ibm) : t  +--- 
7. layoff_planned(digital) : t ~- 
8. has_new_product(digital) : t  +--- 
According to Joslyn's knowledge, since Digital is now considered a high risk stock 

while IBM is likely to be profitable, she quickly calls to sell her Digital stocks and to 
purchase more IBM stocks. In Figure 3, we illustrate a ca-proof for the ca-query 

~- makes_money(joslyn,  V ) :  0 t ,  {}>. 

It returns ibm as the answer. The normal constraint associated with each query is shown 
below the query in the deduction. Since g3(lt, t)  = lt,  the constraint associated with the 
last query is solvable with the solution 

U = t , W  = t , V  = It  

The ca-refutation of the ca-query ~-- high_risk(X) : <t, {}> is given in Figure 4. Note 
as g4(~) ¢ 2_ only in the case that c~ = 7-, it is necessary that the deduction uses both 
rules 1 and 2 to generate a value of 7- for the annotation variable Z. The solution to the 
final constraint is 
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Go: +-- makes_money(joslyn, Y):  (lt, {}) 
Constraint: It ~ ~_ 

Gl: +-- makes_money(joslyn, Y):  (It, {ga(V, W)}}, stock_up(Y): (17, {}}, 
holds_stock(joslyn, Y) : (W, {}) 

Constraint: It ~ 93(V, W), V ~_ L, W ~_ ~_ 

G2: +-- makes_money (joslyn, Y):  (It, {93 (17, W) }), stock_up(Y): (It, {91 (U) }}, 
has_new_product(Y): <U, {}), holds_stock(joslyn, Y):  (W, {}} 

Constraint: It -< gs(V, W), V ~ gl(U), W ~_ L, U -< I 

G3: ~ makes_money(joslyn, ibm): {lt, {g3(V, W)}), stock_up(ibm): (It, {gl(U)}), 
has_new_product(ibm): {U, {t}}, holds_stock(joslyn, ibm ) : (W, {}) 

Constraint: It ~ gs(V, W), V ~ gl(U), W ~ L, U -4 t 

G4: ' - - m a k e s _ m o n e y ( j o s l y n ,  i b m ) :  ( i t ,  {g3 (V~W)}} , s tock_up( ibm) :  ( l t , { g l ( U ) } } ,  
has_new_product(ibm) • (U, {t}}, holds_stock(joslyn, ibm) : (W, {t}) 

Constraint: It _ 93(117, W), V ~ gl(U), W J t,  U _ t 

Figure 3. CA-refutation of +-- makes_money(joslyn, Y) : (It, (}). 

W = t , U = t , V = t , Z =  T. 

This example presents a rather simplistic world view. A more realistic representation 
of the scenario may be obtained by using the lattice UAfC in place of SIX where both 
time and uncertainty are captured. For example, typically layoff plans are uncertain, and 
are usually time bound. Hence fact 7 may be more appropriately expressed as: 

7a. layoff_planned(digital): (0.9, {tl}) +- 
75. layoff_planned(digital) : (0.8, {to, t2}) e-- 

Informally, 7 a asserts that at time point tl,  there is a 0.9 certainty that digital will layoff 
employees. On the other hand, 75 asserts a certainty of 0.8 for layoff at time points to 
and t2. 

5. An ALP Interpreter 

We have implemented in C an interpreter for ALPs based on ca-resolution. In this section, 
we focus on the important components in our interpreter. Following the approach of [17], 
our interpreter for ALP consists of a Prolog-like inference engine and a constraint solver. 
A third component distinct to our system is a function to select the next literal to resolve 
on. In Prolog, the usual method is to apply resolution to the leftmost literal of the query 
in each step of a deduction. The theoretical issue of the independence of computation 
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Go: ~ high_risk(X): It, {}) 
Constraint: t _~ 

al: high_risk(X): (t, {g4(Z)}), stock_up(X): (Z, {}) 
Constraint: t __ g4(Z), Z -4 ± 

C2: ~-- high_risk(X): {t, {94(Z)}}, stock_up(X): {Z, {91(V)}}, 
has_new_produc~(X) : {V, {}) 

Constraint: t ~ g4(Z), Z _-4 gl(V), V ~ 

Ga: ~ high_risk(digital): {t, {g4(Z)}}, stock_up(digital): {Z, {gl(V)}}, 
has_new-product(digital): {V, {t}} 

Constraint: t ~ g4(Z), Z -~ gl(V), V ~ t 

G4: ~ high_risk(digital): (t, {g4(Z)}), stock_up(digital): (Z, {gl(V),g2(U)}}, 
financial_trouble(digital): (U, {}), has_new_product(digital): {If, {t}} 

Constraint: t __ g4(Z), Z ~ tJ{gl(V), g2(U)}, V ~ t,  U ~ _l_ 

Gs: *- high_risk(digital) : (t, {g4(Z)}}, stock_up(digital): (Z, {gl(Y),g2(U)}), 
financial_trouble(digital): {U, {W}}, layoff_planned(digital): (W, {}}, 
has_new_product(digital): (Ix, {t}} 

Constraint: t ~ g4(Z),Z ~ tJ{gl(V),g2(U)},V -~ t , V  ~ W , W  ~ ± 

G6: ~-- high_risk(digital) : (t, {g4(Z)}}, stock_up(digital): (t, {gl(V),g2(U)}), 
financial_trouble(digital): (U, {W}), layoff_planned(digital): (W, {t}}, 
has_new_product(digital): {V, {t}) 

Constraint: t _~ 94(Z),Z ~ U{gl(V),g2(U)},V J t ,U ~ W , W  ~_ t 

Figure 4. CA-refutation of ~-- high_risk(X) : (t, {}). 
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Figure 5. A Constraint Graph 

rule was considered in Section 3.2. In Section 5.2, we discuss strategies for selecting 
literals within a query. 

The inference engine performs ca-resolution. Thus its task includes performing uni- 
fication on object variables, and constructing and modifying constraints associated with 
each ca-query in a deduction. The constraint solver is used to determine unsatisfiability 
of a ca-query. Efficient lattice algorithms exist for computing greatest lower bounds 
and least upper bounds (e.g. [3]) of finite lattices and they will be incorporated into 
our interpreter. Currently, the algorithm used by the constraint solver is adapted from 
Algorithm 1. 

5,1. The Constraint Solver 

The constraint Ep associated with each ca-query ~-- Q can be represented graphically. 
For example, the normal constraint U ___ T, V _~ t, V _4 f, t _ IA{U, V} associated with 
the ca-query 

+---Pl : (t ,{U,V}>,p2: {V, {f}),p3 : (V, {t}),p4 : (U, {T}) 

has the graphical representation shown in Figure 5. Circular nodes represent operators. 
Constants are operators that require no arguments. Square nodes represent variables. 
We call the nodes occurring on the far left origins of the graph, and the single node 
occurring on the far right the destination of the graph. This representation allows us to 
view constraints associated with ca-queries as constraint graphs (cf. [26]), which may 
be solved by local propagation. A constraint graph is satisfiable when the variables take 
on values that make the specified relation true. The relation implicitly specified by the 
graph above is that the value associated with the arc that terminates at the destination 
is greater than or equal to the value of the destination. In the given example, the graph 
in Figure 5 is satisfied since the value that is associated with the right most arc, which 
emanates from the node u, is T. 

Representing normal constraints as constraint graphs in the above manner, one can 
see that Algorithm l corresponds to local propagation. In steps 14 - 16, the algorithm 
computes the values of the origins, and propagates the results along the arcs to the right 
to fill in the values for the variables. When the least upper bound left of the destination 
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is eventually computed, the result is checked against the value of the destination in step 
9. The order in which values are computed is thus left to right, delineated by operator 
nodes. In particular, to compute the value for each of the nodes containing U and ~, all 
nodes whose arcs terminate at the operator node must first be evaluated, and the resulting 
values propagated. 

The node labeled with R is obtained from the two inequalities V -<_ t and V ~ f, 
since any lattice element ? that satisfies both inequalities must satisfy "y _-_-< rT{t, f}. This 
is also the basis behind steps 14 - 16 of Algorithm 1, which can be stated in the next 
proposition. 

PROPOSITION 5 Given a normal constraint E = ~i 5 ~-i, ..., t~,~ -< %~. Suppose for 
some 1 <_ i < j <_ n, ~ and ~j are the same variable. Then the constraint 

E1 ~- q-1,'",Ei-1 ~- Ti--l,l~i+l -~ Ti+I,".,F~j--1 -~ Tj--1, 
Ej ~ R{Ti,Tj}, t~j+ 1 ~_ Tj+l , . . . , /%n ~--- Tn 

is solvable iff E is solvable. 

Typically a constraint associated with a ca-query consists of several disjoint constraint 
graphs. For example, the constraint associated with the query 

~- p:  (t, {V } } , q :  ( V , { T } } , r :  ( t , { f } )  

contains two disjoint constraint graphs. The first is formed by the constraints associated 
with the p and q atoms, namely t _~ V, V _-j 5-. The second is formed from the r atom 
with the single inequality t -<_ f. We refer to each set of atoms that forms an independent 
constraint graph as a network. Equivalently, a network of a ca-query ~-- Q is an element 
in the partition 7r of the atoms in Q where for each pair N1, N2 E % no annotation 
variable occurs in both Ni  and N2. Thus the two networks in the above ca-query are 
N1 = {p : ( t , {V}) ,q  : (V,{T})}, and N2 = {r : ( t ,{f})}.  A result that parallels 
the independence of computation rule in classical logic programming is that for ALPs, 
networks can be solved independently. 

PROPOSITION 6 Suppose +- Q is a query that contains networks Ni , . . . ,Nk .  Then 
Q has a ca-proof iff each of ~ Ni ,  ~ N2, ..., +-- Nk has a ca-proof, and the resulting 

substitutions of the object variables are compatible. 

Preef:  As Ni , . . . ,  Nk do not share any annotation variables, a substitution (7 for the 
annotation variables is a solution to EQ iff it is a solution to each of EN1, -.., E:v~. Thus 
the if part of the statment is immediate. The only if part follows from the additional 
assumption that the substitutions for the object variables are compatible. • 

5.2. Literal Selection Strategies 

The example in Section 3.2 demonstrated the importance of eventually trying each literal 
in a network. In this. subsection, we analyze possible strategies for selecting literals. 
Interestingly, each literal selection strategy relates to how the constraint graph is modified. 
Recall the earlier discussion on the difference between how constraints are used in our 
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Figure 6. A Modified Constraint Graph 

system as compared to their use in conventional CLP systems. In a ca-deduction, a 
constraint is continually modified until a solvable constraint is constructed. As constraints 
can be represented by constraint graphs, it is therefore not surprising that the order in 
which literals are selected for performing ca-resolution determines how the associated 
constraint graph changes. We illustrate this point with an example. 

Example: Let us reconsider the constraint graph corresponding to the query 

+---Pl :.(t,{U,V}),p2: (V, {f}},p3 : (V,{t}),p4 : (U, {T}) 

shown in Figure 5. If we select the atom P4 : (U, {m}) to perform ca-resolution, and if 
our program contains the clause P4 : W +- P5 : W, then the ca-resolvent is 

+--Pl:  (t, {U, V}),p2 : (V, {f}},p3 : (V, {t}),p4 : (U, {T, W}),p5 : (I/V, {}). 

The constraint graph that represents the associated constraint is shown in Figure 6. One 
sees that the origin of the graph has been modified, and the overall depth of the graph 
is increased since the longest path now is of length five. Suppose on the other hand, the 
atom Pl : (t;, {U, V}) is chosen first for applying ca-resolution. This does not change 
the depth of the graph, but instead modifies the graph by adding new arcs that terminate 
at the node u left of the destination. [] 

For our interpreter, we have classified constrained atoms into four categories, which 
has enabled the development of literal selection strategies. With respect to the constraint 
graph, one of the literal selection strategies corresponds to modifying the graph in a 
"depth-first" manner, where the length of some path in the graph is increased, as illustrated 
in the previous example. Orthogonally, literals may be selected so as to modify the 
constraint graph "breadth-first". Each of these strategies for selecting literals is a guidance 
strategy, in the same spirit as guidance strategies are used in theorem proving [40]. Such 
a strategy imposes an ordering on the search space, but does not eliminate any part of 
it. It is generally accepted in theorem proving that the usefulness of guidance strategies 
typically can only be supported experimentally. We are currently experimenting with 
several literal selection strategies to determine their effectiveness. 
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5.3. Restriction Strategies 

We consider briefly restriction strategies for pruning the search space, some of which 
have been incorporated into the interpreter. The most interesting aspect about these 
strategies is that they are semantically based, where properties related to the underlying 
lattice A are used to systematically eliminate irrelevant search paths. 

5.3.1. Linear A restriction 

In the case where A is a totally ordered set, it is straightforward to verify that P ~ Q iff 
there is a proof by annotated resolution of +-- Q from P without using reduction. Using 
ca-resolution, we may state this equivalently in the following way. 

PROPOSITION 7 P ~ Q, where Q has the form p : # iff there is a ca-proof R of 
p : (#, {}} from P,  and R does not contain a ca-query in which there is a constrained 

annotated atom q : (/3, S} such that ISI > 1. 

Indeed, this result can be generalized based on the notion of n-wide lattices introduced 
in [23]. A lattice A is n-wide if for every finite subset E of A, there is a finite subset 
Eo C E containing at most n elements such that UE = wE0. Clearly, a totally ordered 
set is 1-wide. For an n-wide lattice, we may generalize the above result to ISI > n. 

5.3.2. Conditional CA-resolution 

Another interesting strategy, when given a constraint graph, is to use the value of the 
destination to determine "backwards" what the value of the origins might be. This idea 
is also found in constraint programming [26]. 

Example: Suppose the lattice A is FOUR and that we arrive at the query +-- p : 
(q - ,{ t ,V}) ,q  : IV, {}) during a deduction. Realizing that to solve the constraint 
T ~ U{t, V} associated with the p atom, V must be either f or T, we may then substitute 
the lower of the two for V throughout the query and remove the p atom, thus obtaining 
the ca-query +-- q : (f, {}). This indicates that if we are able to show q has a truth 
value greater than or equal to f from the program, then the original query is proved. 

[] 

This approach, where we begin with the destination of the graph, and compute backward 
towards the origins, may allow greater flexibility for incremental computation within 
a network. In the above example, the query ~ q : (f, {}) represents a condition for 
solvability of the original query. Once the condition has been established, we no longer 
need to keep the atom p in the query. This in turn reduces the search space as the 
number of literals from which we may select for ca-resolution decreases. A similar idea 
was considered in [29] for theorem proving with c-annotated only clauses. 

The difficulty with this approach however, is that backward solving may involve a con- 
siderable amount of non-determinism. Returning to the example above, if the underlying 
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lattice is large, there may be a number of values that can be substituted for V, but only 
a few such values can lead to a refutation. In other words, there may be truth values 
#1, ...#n other than f such that the query +-- q : (#i, {}), 1 < i < n, also represents a 
correct condition for solvability of the original query, but for the given program, only 
one or two of these values for q can be shown to hold. 

It appears unlikely that a general solution to this problem can be found. More promising 
is that there may exist special classes of lattices possessing properties that can assist in 
determining which of the possible truth values represent the "better" choices - ones 
that are more likely to lead to a refutation. In [25], an optimal such class of lattices 
has been identified in which a single "correct" choice of truth value is guaranteed to 
exist. The class is non-trivial as it encompasses many of the lattices that have been 
used in annotated logic programming applications. Our current work involves giving 
a precise characterization of the class, along with analyzing the efficiency that can be 
gained by ca-resolution when augmented with procedures that take advantage of this 
special property. 

6. Summary and Discussion 

Kifer and Subrahmanian developed the first query processing procedure for annotated 
logic programming [22], [23]. However, their proof procedure requires complex ma- 
chinery, namely both annotated resolution and reduction, for answering queries. The 
bottleneck rests with the restrictive semantics currently defined for satisfaction of anno- 
tated atoms. In this paper, we presented a top-down resolution procedure with constraint 
solving for processing queries in ALPs based on the observation that the semantics 
of annotated atoms may be naturally generalized to set membership. The new pro- 
cedure captures the effect of e~irlier approaches through a considerably smaller search 
space. Constraints within our procedure are handled differently from conventional CLP 
systems, and certain completeness issues absent in classical horn clause programming 
surface with the new procedure. We have attempted to identify the key implementa- 
tion issues of our procedure along v~ith possible optimization techniques that include 
semantically-based restriction strategies. All the theoretical development in this paper 
has been driven by practical implementation concerns. The study presented in this pa- 
per has already contributed to the work on amalgamating databases at the University of 
Maryland [2], [1], [36]. 

Several other developments with similar aim as our research are by Friihwirth [11], 
and by Adah and Subrahmanian [2]. The work of Friihwirth is interesting in that query 
processing of annotated logics is handled completely within the framework of CLR A 
cursory examination indicates a close relationship between his work and ca-resolution 
with respect to the structure of the search space. Details are currently under investiga- 
tion. The procedure of Adah and Subrahmanian is an adaptation of s-resolution [30], 
augmented with OLDT-resolution to improve termination behavior and efficiency. It uses 
the device of sets of annotations, which plays a prominent role in ca-resolution. 
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6.1. On the Language of Annotations 

An interesting aspect regarding the work on hybrid knowledge bases [31] is that an 
SLD-like query processing procedure can be defined without the need to resort to either 
the reduction inference rule, or the use of constrained annotations. The simplicity and 
elegance of such a query processing procedure is very appealing both theoretically and 
practically. However, in general, such a procedure does not exist for annotated logic 
programs. 

The conditions under which annotated logic programs have a straight forward SLD- 
like query processing procedure is not entirely clear at this point, and is a topic of 
current investigation. One possibility, arising out of a closer examination of the theory 
of hybrid knowledge bases, is that the existence of such a procedure may be due to 
certain restrictions placed on the language of annotations. A key difference between the 
theory of hybrid knowledge bases and the theory of annotated logic programming in 
general is that the annotations used in hybrid knowledge bases are not elements taken 
directly from the underlying lattice. Rather, a different set of syntactic objects, called 
g-representations, are introduced as annotations. Formally, suppose f is a function in 
HAft such that for all inputs S C_ R + to which f assigns a non-zero output, f gives the 
same output, say cr, to each z E St. Then the pair (a, St) is called the g-representation of 
f .  A function f is said to be g-representable if there is a a E [0, 1] and St C_ R + such 
that:f = (a, St). Not every function in A is g-representable; any function whose set of 
outputs contains more than two elements cannot be so represented. Consequently, the 
set of elements in/-gN'C that may be used as annotations constitute a rather small subset 
of all the elements in HN'C. It has been shown in [31] that such a restriction causes a 
slight loss of expressiveness. However, we postulate that such a specialization may very 
well be what is necessary to formulate a simple SLD-like query processing procedure for 
annotated logic programming without using either reduction, or constrained annotation. 

6.2. On the Efficiency of CA-resolution 

The claim is made in this paper of the superior efficiency of ca-resolution as compared to 
annotated resolution and reductionl The astute readers will have observed that the lengths 
of ca-deductions may be considerably longer than corresponding deductions obtained 
from annotation resolution and reduction, in which the only steps displayed use the 
annotated resolution inference rule. This observation may give the appearance that we 
are simply modifying the structure of the search space, but without any real reduction in 
the size. 

But surely a fair comparison must take into account the number of reduction steps 
performed, even if these steps do not explicitly appear. There is, moreover, a simple 
argument that supports the efficiency claim. Theoretically, an infinite number of reduc- 
rants may be computed from a finite number of clauses. Thus, the possible number of 
clauses on which annotated resolution may be applied is infinite at each deduction step. 
This, in comparison with the finite number of choices - the program clauses - that is 
available for the application of ca-resolution, indicates a much larger search space. In 
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practice, the disparity between the sizes of the search spaces is unlikely to be so drastic. 
Analytically, the examples that we have examined, though small, support the improved 
behavior of ca-resolution. Presently, no experimental comparisons are available as we 
do not have an implementation of annotated resolution and reduction. 

Acknowledgments 

The useful comments of the referees are gratefully acknowledged. Discussions with 
Thom Frfihwirth have improved our understanding of the role of annotations. Barbara 
Messing pointed out a mistake in an earlier draft. 

Notes 

1. The articles [12], [16] provide excellent accounts of the field. 

2. Of course, Prolog is still incomplete due to its use of depth-first search. 

3. Recall that normal constraints were defined in Section 2.1. 
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