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Summary 

A high resolution method for determining the complex stiffness of single muscle fibres is 
described. In this method the length of the fibre is oscillated sinusoidally, and the resulting force 
amplitude and phase shift are observed and interpreted in terms of chemo-mechanical energy 
transduction. In activated, fast skeletal muscles of rabbit (psoas), frog (semitendinosus) and 
crayfish (walking leg flexor), we resolved at least three exponential rate processes. We named 
these (A), (B), (C) in order of slow to fast. These processes should reflect ATP hydrolysis and 
concomitant energy transduction since they are absent in muscles that are relaxed, in rigor or 
fixed. The great similarities in the complex stiffness data from different muscles suggests that 
there is a common mechanism of chemo-mechanical energy transduction across a broad 
phylogenetic range. 

Introduction 

More than 50 years ago, Fenn (1923) discovered that total energy liberated by a 
contracting frog sartorius muscle increases in proportion to the work performed. This 
'Fenn effect' can be described in terms of contemporary muscle mechanochemistry as a 
load sensitivity of some rate constants in the actomyosin ATPase cycle, so that 
crossbridges cycle more rapidly and hence hydrolyse more ATP when more work is 
done. This load sensitivity, explicitly visualized as the response to strain of individual 
crossbridges, has been the central assumption of recent work in muscle mechanics. In 
various forms this strain sensitivity has been incorporated into theories of contraction, 
to explain force-velocity data (Huxley, 1957; Julian, 1969; Hill, 1974; Hill et al., 1975), 
oscillatory work (Thorson & White, 1969; Abbott, 1973a), and transient responses to 
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a step change in load (Podolsky & Nolan, 1973) or in length (Huxley & Simmons, 1971; 
White & Thorson, 1972; Julian et al., 1974; Abbott & Steiger, 1977). Direct 
experimental measurement  of this strain sensitivity is sparse but a form of it was 
observed in skinned muscle fibres (Kawai & Brandt, 1976), where the dissociation 
reaction of crossbridges in low levels of MgATP was inhibited or slowed by moderate 
strain. 

There are several physiological techniques in current use which are assumed to 
depend on the strain sensitivity of the crossbridge reactions. In length-clamp 
experiments, perturbations in length are related to force changes, while in force-clamp 
experiments perturbations in force are related to length changes. There are three 
fundamental wave forms for these perturbations: step, sinusoidal and random noise. 
We believe that the sinusoidal length perturbation technique maximizes the data 
obtainable on how modification of the chemical environment alters the crossbridge 
cycle. 

This sinusoidal technique has mostly been employed to observe the phenomenon of 
'oscillatory work' in insect muscle (Machin & Pringle, 1959; Pringle, 1967, 1978; 
White & Thorson, 1973) but has also been used to study other muscle types (Buchthal 
& Kaiser, 1951; Rack, 1966; Steiger, 1971; Kawai et al., 1977; Kawai, 1978; Saeki et 
al., 1978). We modified the technique by introducing direct computer control of the 
length driver and direct access of the computer to both the force and length signals: 
the wave form of the length change is created in the computer, and amplitude and 
phase elements are resolved in the programmed digital logic. Our method extends 
Abbott 's (1973b) earlier application, in which he combined a computer with a resolved 
component indicator (analog device). The time required for measurement  is greatly 
reduced, a wider frequency range can be probed and quantitative analysis of the 
non-linearity can be made. 

Here we describe our technique and emphasize the change in 'complex stiffness' (a 
frequency response function) of a muscle fibre as it goes through relaxation, activation, 
rigor and fixation. We also correlate our results with those of the step analysis 
technique which is at present more commonly employed. 

Materials and methods 

Reagents 
Na2HaATP, H4EGTA (ethylene glycol-bis-(fl-amino-ethyl ether) N,N'-tetra-acetic acid) were 
purchased from Sigma Chemical Co. (St. Louis, Missouri); CaCO 3, MgO, Mg acetate, propionic 
acid, NaOH, KOH, imidazole from Fisher Scientific Co. (Pittsburgh, Pennsylvania). The 
concentrations of multivalent ionic species were calculated after solving the multiple equilibria of 
two metals (Ca, Mg) and two ligands (EGTA, ATP) by using the apparent association constants 
as follows (log values at pH 7.00): CaEGTA 6.28, CaATP 3.70, MgATP 4.00. Skinned psoas 
fibres were relaxed in a saline containing (Na salts in mM) 5 EGTA, 2 MgATP, 7.5 phosphate, 
39 sulphate, 43 propionate; activated in 2.4 CaATP, 5 MgATP, 5 free ATP, 7.5 phosphate, 24 
sulphate, 43 propionate (pCa 4.1); rigor was induced in 50 sulphate, 47 propionate with several 
washes. These solutions were buffered with 6 mM imidazole to pH 7.00, ionic strength was 
maintained at 200 raM, and experiments were carried out at 20 ° C. 
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Muscle preparations 
Rabbit psoas was prepared as described previously (Reuben et aI., 1977; Eastwood et aL, 1979). 
A small fibre bundle tied on a wooden stick was chemically skinned in saline containing (in raM) 
5 EGTA, 2 MgATP, 180 K propionate, 5 imidazole (pH 7.00) for 24-48 h at 2 ° C, as described 
by Wood et aI. (1975) for biopsies of human muscle. The preparation was then kept at - 2 0  ° C in 
an iso-ionic glycerol-saline (skinning saline + 6 M glycerol). Single fibres were dissected in the 
skinning saline and mounted in the apparatus for experiments. 

Frog (Rana pipiens) semitendinosus muscles were dissected in frog control saline (raM: 115 
NaC1, 2.5 KC1, 1.8 CaC1, 2 phosphate, pH 7.2) and either the ventral or the dorsal head of the 
muscle was isolated and used. A small bundle of fibres was tied to a wooden stick and 
chemically skinned for 4 days at 2 ° C in saline containing (Na salts in raM) 5 EGTA, 2 MgATP, 
40 sulphate, 40 propionate, 7.5 phosphate, 5 imidazole, pH 7.0. Single fibres were isolated for 
use in the experiments. 

A single fibre from the flexor muscle of crayfish (Orconectes or Procambarus) was dissected 
(Girardier et al., 1963) in crayfish control saline (raM: 200 NaC1, 5 KC1, 13.5 CaC12, 5 Tris 
buffer, pH 7.4). For intact fibre experiments, one end of the fibre was kept attached to the 
shell membrane and the other to the tendon. When mounted it was held only by the tendon 
and the shell membrane. For skinned fibre experiments, the sarcolemma was mechanically 
removed (Reuben et al., 1967, 1971) in the saline containing (in raM) 5 EGTA, 2 MgATP, 
170 K propionate, 5 inlidazole, pH 7.0, and the fibre mounted between two plastic clamps. 

When mounted in the apparatus, the muscle preparations were stretched 10% from slack 
length (stretched length = Lo), which resulted in a sarcomere length of 2.5-2.6 ~m for rabbit 
psoas, 2.0-2.2/~m for frog semitendinosus and 7-8 ~m for crayfish flexor as measured by laser 
diffraction (wavelength 632.8 nm). At these sarcomere lengths the muscles have practically no 
resting force or stiffness while when fully activated they develop their maximum force. 

Length driver 
Details of the length driver and control circuits are shown in Fig. la. The length driver consists 
of two loudspeakers of high compliance (0.13m in diameter; 40-1284, Tandy Corp., Fort 
Worth, Texas), and a DC position sensor ('length :pickup' in Fig. la: 200 DC-B, Schaevitz 
Engineering, Pennsauken, New Jersey). One speaker is used to drive a stainless steel rod 
which interconnects all the moving elements including the muscle clamp. The other speaker is 
used to sense velocity. Since the position sensor has a low frequency response (170 Hz), the 
velocity signal is integrated to produce position signals at higher frequencies. The two position 
signals are then hybridized (cross over frequency at 31 Hz) to give a flat response up to 
1 kHz. Both velocity and hybridized position signals are fed back to the driving speaker to 
improve its stability and frequency response (see Machin, 1964, for discussion on feedback 
theory). Overall response is flat between DC and 200 Hz, and it has a second order roll off 
with 90 ° phase shift at 300 Hz: The whole unit is practically free of drift, total excursion is 
±1.0ram,  and length change as small as 0.1~m is possible. It has a low compliance 
(< 0.05 mm N -~) for externally applied force. A photo-electric position sensor (Photo FET in 
Fig. la) is used for calibration (see Appendix 1) but is not used to control the driver because of 
drift and gain change. 

Force transducer 
Two types of transducers were used for this work. One is the Bionix F-100 fitted with a 
plastic muscle clamp (resonance at 240 Hz; see Fig. 1, Kawai et al., 1977). The other uses 
strain gauge elements (AE 801; Aker's Micro-Electronics, Horten, Norway; Brandt et aL, 1976) 
to sense the motion of a stainless steel tube connected to the muscle preparation (Fig. lb). 
The resonant frequency for this assembly is 2 kHz, and its amplitude can be significantly 
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Fig. 1. (a) A diagram of length driver and control circuits (framework only*). Transfer functions 
are added to the diagram where appropriate, x is a co-ordinate on the driver and s is the Laplace 
parameter. (b) A sketch of experimental apparatus showing the muscle chamber, strain gauge 
assembly, a part of the length driver and other accessories. (c) Block diagram of the experiments. 
Arrows indicate directions of data flow and dotted arrows indicate controls. CPU, central 
processing unit of a minicomputer; MF, muscle fibre; SG, strain gauge; D/A, digital to analog 
converter; A/D, analog to digital converter. *Practical details available on request. 

damped by application of Vaseline in the gap where the stainless steel tube enters the muscle 
chamber. Compliance of both transducers is in the range of 0.2-0.4 mm N -1. 

Muscle chamber 
This is made of an aluminium block (30 mm x 47 mm x 13 mm) with an inside capacity of 
0.5 ml. Two stainless steel tubes from the length driver and force transducer assembly 
respectively enter the chamber through Teflon collars. Although saline does not leak along 
their gaps a small amount of Vaseline is applied at the other ends of the gaps as extra seals. 
The alurninium block has a heater coil, a circulation system for cold water and a temperature 
sensor (not shown in Fig. 1). These are combined together in a feedback network to maintain 
the block temperature at a desired level (+-0.1 ° C). Saline is constantly stirred to minimize local 
heterogeneity in solution composition and in temperature. The ends of the muscle preparation 
are either held in two plastic clamps or wrapped around the stainless steel tubes, then wedged 
under small clips. 
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Computer control of length driver 
On command  a minicomputer  (Nova 1220, Data General  Co., Southborogh,  Massachusetts)  
synthesizes a series of sine waves  via a D/A converter  (Fig. lc). Each sine cycle comprises 
8-400 micro s teps (Table 1) which are t imed by a p rogrammable  interval timer. To avoid 
interference from other  per ipheral  devices the computer  interrupt  envi ronment  is frozen while 
it controls the length driver and collects data. A second D/A converter  is used to set the 
ampl i tude  of each sine wave (Fig. lc,  Table 1). Ou tpu t s  of the two converters are mult ipl ied 
by an analog mult ipl ier  (Model 107C, Hybr id  Systems Corp.) and fed into the length driver. In 
this way  a flat response (error <1%) at least up to 1 kHz is possible even when  the length 
driver has a lower  frequency response.  The advantage  of this direct control method  is the 
presence of perfect synchronizat ion be tween  the length driver and  data collection program, 
which makes  data reduction (signal averaging and/or  Fourier analysis) possible dur ing the time 
of collection. 

Data collection and reduction 
Both length and force signals are amplified by operat ional  amp!ifiers to a few volts, then fed 
into two channels of a mult iplexed A/D converter. At  the beginning of oscillation at each 
frequency ->0.25 s is used to wait  for a s teady state to be set up  before data  are collected 
(longer t imes were tested without  affecting the results). At  100 ~s intervals, length and force 

Table 1. List of parameters  used to control experiments.  

Interval No. micro Recorded Highest No. cycles (n) Time (s) 
Frequency Amplitude timer steps per data points order of 
(Hz) control (ms) cycle per cycle (m)harmonics Short Long Short Long 

714 4.05 0.175 8 8 2 286 1143 0.4 1.6 
417 2.30 0.30 8 8 2 167 668 0.4 1.6 
250 1.22 0.10 40 8 2 100 400 0.4 1.6 
167 1.03 0.15 40 8 2 67 267 0.4 1.6 
133 0.97 0.075 100 20 8 54 214 0.4 1.6 
100 0.97 0.10 100 20 8 40 160 0.4 1.6 

80 0.97 0.12 100 20 8 32 128 0.4 1.6 
50 0.98 0.10 200 40 18 20 80 0.4 1.6 
33.3 0.99 0.15 200 40 18 14 54 0.42 1.6 
25 1.00 0.10 400 40 18 10 40 0.4 1.6 
16.7 1.00 0.15 400 40 18 7 27 0.42 1.6 
10 1.00 0.25 400 40 18 4 16 0.4 1.6 

7.14 1.00 0.35 400 40 18 3 12 0.42 1.6 
5 1.00 0.50 400 40 18 2 8 0.4 1.6 
3.13 1.00 0.80 400 40 18 2 5 0.64 1.6 
2 1.00 1.25 400 40 18 1 4 0.5 2 
1 1.00 2.50 400 40 18 1 2 1 2 
0.5 1.00 5.00 400 40 18 1 1 2 2 
0.25 1.00 10.00 400 40 18 1 1 4 4 

For the current report, only frequencies-< 167Hz are used. Higher frequencies are used for calibration 
curves of Fig. 9. 
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signals are sampled and added to the previously accumulated samples at the same respective 
position in the cycle. Thus 8-40 points (depending on frequency; Table 1) represent the time 
course of the signal averaged cycle. Data are accumulated for the n cycles (Table 1) needed to 
obtain a duration which just exceeds 0.4 s (short time course) or 1.6 s (long time course). As 
soon as the data are collected the length driver is stopped and the data are expanded into 
Fourier series: 

where 

P(t,f) i Pk(f) exp(2~ikft) 

(~/f 
Pk(f) = f/n J0 e(t, f) exp(-2~ikft) dt (1) 

and f is frequency of oscillation, t is time, P(t,f) is periodic force time course. The term 
corresponding to k = 0 represents the average force, k = + 1 represents the linear component 
and k = + 2, --- 3, + 4 . . . .  represent harmonic components. 

Complex stiffness Y(f) is a frequency response function of the muscle relating force to length 
changes: Y(f) = PI(f)/L l(f), where L~(f) is obtained similarly to equation 1 from periodic length 
time course data. The complex stiffness represents ratio of amplitudes of force to length (hence 
'stiffness') by I Y(f) l, and phase shift between force and length sine waves by arg[Y(f)]. 
Data are standardized with the size of the preparation when this information is reliable: 
YM0C) = Y(f)'Lo/Ao, where L 0 is the length of the muscle preparation, and A 0 is its 
cross-sectional area .  YM(f) is called the 'complex modulus', its real part is called the 'elastic 
modulus' and the imaginary part the 'viscous modulus'. L 0 is measured through a dissecting 
microscope with an ocular micrometer and the diameter through a compound microscope 
(400 x). Cylindrical shape is assumed in Order to calculate the cross-sectional area; this 
calculation was only performed for single fibres of rabbit psoas. The unit of stiffness is N m -1 
and of modulus is N m -2. 

Total elapsed time to collect data at 16 frequencies (0.25-167 Hz) is 22 s, including waiting 
periods for steady state, complex stiffness calculation and storage of the results in a disc file. 
Two seconds later the reduced data are displayed as a Nyquist plot and as frequency plots. 
This display is used to judge the quality of the data, the condition of the muscle preparation 
and the condition of the overall experimental system. The data thus collected are corrected for 
the system response; appendix 1 details the correction procedure. 

Results 

Rabbit muscle 
Chemical ly-skinned rabbi t  psoas fibres were  first washed  in a relaxing saline, t hen  
t ransferred to an activating saline, washed  wi th  rigor saline several t imes to induce the 
'h igh rigor'  state (Kawai & Brandt,  1976) and  relaxed again. Fig. 2 illustrates a series of 
length  and tension time courses  recorded  in two of these condit ions;  Lissajous figures 
are also shown.  In activated muscle  the Lissajous f igures  rotate clockwise in the h igh 
and  low f requency  ranges  whi le  they  rotate counter-clockwise at m e d i u m  frequencies 
(shaded).  This means  that  the f ibre  absorbs  work  from the oscillating length  driver in 
the h igh  and  lo.w f r equency  ranges,  while it generates  'oscillatory' work  at m e d i u m  
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(a) Active 

(b) Rigor 

.~7 ~1~ ~7 
~1/ ~/.25/ 

Fig. 2. Raw data collected from chemically skinned rabbit psoas during activation (a), and rigor 
(b) at 16 frequencies (Hz). Each record constitutes a length (thin line) and force (thick line) time 
course and Lissajous figure. 8-40 points (Table 1) were collected per curve and these are 
connected by straight lines. The full length of the axes corresponds to 10 #m or 120 #N. 
Peak-peak amplitude change: 0.23%L o. Each time scale is adjusted so that only one averaged 
cycle is displayed. For the purpose of display, drift during measurement is subtracted. 

frequencies. This work is net work, the difference be tween the work performed by the 
muscle during the shortening phase and by the driver during the lengthening phase. 
The shaded area enclosed by the Lissajous loop is proportional to the amount of 
mechanical energy produced per cycle of length oscillation. Oscillatory work is absent 
when fibres in the high rigor state are studied (Fig. 2b). In this condition the Lissajous 
figures are least sensitive to frequency changes, and small amounts of energy are 
absorbed by them. 

Fig. 3 shows complex modulus data taken from Fig. 2 for activated and rigor 
conditions and the data from the relaxed fibres are also include& The complex 
modulus data are relatively simple and constant for relaxed or rigor muscles. At L 0 
relaxed muscle is least stiff and points scatter around the origin o f  the Nyquist plot 
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Fig. 3. Plots of complex moc[uius YM(f) of rabbit psoas during relaxation (0 . . . ~), activation 
(©- -O) ,  and high rigor ([] . . . .  E2). Unit of moduli is 105 N m -2. Activated and rigor data 
are derived from Fig. 2. Some of the frequency points are omitted from the plots for simplicity, 
and the filled symbols correspond to decade frequencies (1, 10, 100 Hz), In (b), horizontal bars 
along frequency axis (abscissa) indicate characteristic frequencies a, b, c and their 95% 
confidence ranges. Phase of relaxed muscle is indeterminate and not entered here. In (c), 
approximate locations of characteristic frequencies are marked, and the numbers around data 
points correspond to frequency. Isometric force was 1.35 x 105 Nm -1. 

(Fig. 3c). Rigor muscle is mos t  stiff and there is a weak  f requency dependence  

(Fig. 3a, b). The dynamic  modu lus  is slightly h igher  at high frequencies and the phase 

shift is minimal  (an advance:  4 - 5  ° before correction, 2 -3  ° after correction). This 
t endency  of the complex modu lus  is true of all the muscle types  we studied. The rigor 
muscle ' s  h igh elasticity and  low viscosity approximate  an elastic material. The Nyquis t  
plot of activated muscles is trifoliate (Fig. 3c). There is a point  of crossover where  both  
ampl i tude  and  phase are the same for two different  frequencies.  This point  divides the 
plot into three arcs. 

Data analysis 
Since an exponent ia l  process is represented  in a Nyquis t  plot by  one hemicircle wi th  
its centre on  the abscissa (see Machin, 1964), the presence of three arcs is compatible  
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with the existence of three exponential processes in the length to force relation- 
ship. We name the respective processes (A), (B), (C) in the order of slow to fast. 
Process (A) is a low frequency-exponential advance, and centres around 1 Hz where 
the muscle absorbs net work from the length driver. Process (B) is a medium 
frequency-exponential delay centering around 17Hz and the muscle generates 
oscillatory work. Process (C) is a high frequency-exponential advance centred at 
around 100 Hz and again the muscle absorbs work. 

The data for activated fibres can be approximated by a transfer function of the sum 
of three exponential rate processes: 

Process (A) Process (B) Process (C) 

Ai d Bif Cif 
YM(f) = H + + 

(a + if) (b + if) (c + if) 
(2) 

where A, B, C are magnitude parameters, a, b, c are characteristic frequencies of 
processes (A), (B), (C) respectively, and H is the elastic modulus at DC. Mechanical 
equivalence of equation 2 is depicted in Fig. 7c. The data are fitted to equation 2 by a 
least squares method in order to obtain magnitude and frequency parameters. The 
fitting procedure is complicated because equation 2 is non-linear with respect to the 
characteristic frequencies. A description of such a procedure is given in Appendix 2. 
Fig. 7a is a Nyquist plot which is the result of fitting the data of Fig. 3 to equation 2. 
We also calculate the 95% confidence range for the fitted parameters (Appendix 2). 
Usually the range is about +15% for frequency parameters a, b and c (entered in 
Fig. 3b). Although we do not imply that complex stiffness of activated muscle is 
perfectly represented by equation 2, it is a good approximation of the data in the 
present frequency range as shown by the narrow confidence limits. Obviously the 
data would fit better to transfer functions which incorporate more rate processes at 
higher frequency ranges which we should consider when  the frequency range is 
extended in the future (cf. Abbott & Steiger, 1977; Ford et al., 1977). 

Comparison of rabbit psoas with other muscle preparations 
To discover whether  other fast skeletal muscles have similar properties to those of 
skinned rabbit psoas fibres, the flexor muscle of crayfish walking legs and the 
semitendinosus muscle of frog were tested before and after disruption of the 
sarcolemma (skinning). Raw data from an intact crayfish fibre is displayed in Fig. 4, 
and Fig. 5 shows Nyquist plots from all preparations. Fig. 5a is obtained from a single 
fibre of crayfish activated by elevating the K + concentration in the bathing saline. 
Fig. 5b is from frog semitendinosus muscle in a caffeine contracture. Fig. 5c, d 
respectively represent a mechanically-skinned single fibre of crayfish and a 
chemically-skinned single fibre of frog semitendinosus. Both were activated by high 
Ca and high MgATP solutions. All three processes (A), (B), (C) are present as labelled 
in the figure. Significantly, oscillatory work previously associated with insect muscles 
is manifest in all the fast striated muscle preparations we studied. 
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~3/ ~~  

Fig. 4. Raw data obtained from intact crayfish single muscle fibre during K activation (200 K 
propionate, 5 imidazole, pH 7.0, 20 ° C). See Kawai et al. (1977) for details of activating 
conditions, and legend of Fig. 2 for conventions. Full length of axes corresponds to 16 ~m or 
6 raN. Peak-peak length change: 0.27%L 0. Because these data were obtained with our original 
equipment when a carrier amplifier (low frequency response), Bionix F100 strain gauge, and 
plastic muscle clamps were in use, data at the higher frequency are contaminated with phase 
delay artifacts. This error is compensated for (Appendix I) in the Nyquist plot of Fig. 5a by use 
of curve 5 of Fig. 9d. 

(a) 
0 

(b) 

c 

b 400 

9 

(c) (d) 

c 

b 15 

Fig. 5. Nyquist plots during activation. Plots of complex stiffness Y (f). (a) Intact crayfish single 
muscle fibre with K activation (for conditions see legend of Fig. 4 from which this data was 
derived). (b) Intact frog semi-tendinosus muscle (one head) with caffeine activation [20 Caffeine, 
115 NaC1, 2.5 KC1, 1.8 CaC12, 2 Na propionate, pH 7.2, 10 ° C]. (c) Mechanically skinned 
crayfish single fibre activated by a pCa 3.8 solution [(Na salts) 17.2 MgATP, 2.86 CaATP, 2.92 
ATP, 3.5 phosphate, 88 K propionate, 5 imidazole, pH 7.00, 20 ° C]. (d) Chemically skinned 
frog semitendinosus single fibre activated by pCa 3.9 solution [(Na salts) 2.5 CaATP, 2 MgATP, 
5 ATP, 7.5 phosphate, 28 sulphate, 13 propionate, 50 imidazole, pH 6.75, 10 ° C]. Approximate 
locations of characteristic frequencies (a, b, c) are indicated in each figure. The abscissae indicate 
units of stiffness in N m -1. Isometric force was 20, 72, 5.4, 0.86 mN; length was 4.8, 18, 4.4, 
3.0 mm in the order (a)-(d) respectively. 
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Analysis for non-linearity 
By visual examination of Fig. 2b it is clear that the sinusoidal waveform of the force 
time courses of rigor muscle is minimally distorted and that the corresponding 
Lissajous loop is elliptic in appearance. In active fibres, however,  there is some 
distortion in the frequency range where the oscillatory work is prominent  (Figs. 2a, 4). 
Quantitative analysis for non-linearity is carried out by estimating the magni tude of 
the harmonics in the waveform of the force time course. From equation 1 the relative 
amplitude of the kth harmonic is calculated by: 

h (f) = [ P (f) I/,/I(f) (3) 

where k = 1, 2, 3, . . .  ; h~(f) is linearity, and I(f) is half the oscillation power:  

= f /.n// 
I ( f )  = k=12[Pk(f)]2 = JO [P(t,f)- P0]2dt 

P0 is the average force. Theoretically we should be able to calculate harmonics up  t o  
half the number  (m) of the data points in a cycle (Nyquist frequency; see Bendat & 
Piersol, 1971), but in our experience we can only calculate m/2-  2. The highest 
practical order of harmonics is shown  in Table 1. Distortion (non-linearity) is 
calculated by: 

J(f) = hk(f)] 2 = ~/[1 -- h~(f) 2] (4) 

The results of calculations of non-linearity in data from activated muscle 
preparations are summarized in Fig. 6. Only terms corresponding to D(f), hi(f), h2 ( f )  , 

h3 ( f )  , h4(f) are shown since higher order terms vanish rapidly. Fig. 6a was obtained 
from chemically-skinned rabbit psoas (data from Fig. 2a); Fig. 6b from intact crayfish 
flexor (from Fig. 4). As shown in Fig. 6 most  of the non-linearity is explained by the 
2nd order harmonic modulat ion and amplitudes are progressively less for the 3rd and 
4th order terms. In rabbit psoas w h e n  the peak-peak length oscillationis 0.23% L 0, the 
distortion does not exceed 0.11 so that the non-linear power  is 41.2%, and linearity 
is ~ 0.994. The non-linear profiles in activated rabbit psoas and crayfish muscles are 
strikingly similar al though distortion is larger in the latter. Relatively larger 
non-linearity, evident at frequencies around oscillatory work [process (B)], peaks 
approximately at the frequency where the dynamic modulus  becomes a min imum (cf. 
Figs. 3a and 6a). This frequency is slightly higher than the characteristic frequency b. 

Distortion associated with processes (A) and (C) is smaller. In Fig. 6a this amounts  
to 0.06 with a corresponding linearity of 0.998. Distortion for rigor or fixed muscle is 
likewise small and we obtained 0.04 for the data in Fig. 2b, When  the same analysis is 
carried out on a blank (no muscle), we usually find thatD(f) > 0.9 with corresponding 
amplitude of 1 #N. This is due to instrumental  noise and the value indicates a limit to 
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Fig. 6. Plot of relative harmonic amplitudes hk(f) (terms corresponding to k = 1, 2, 3, 4 are 
labelled) and distortion D(f). Curve 1 represents linearity, and curve D represents distortion 
(non-linearity). Note breaks in the ordinates. (a) Data derived from Fig. 2a (activated psoas) 
except for the top curve ( - - # )  which was derived from Fig. 2b (rigor). (b) Data derived from 
Fig. 4 (activated crayfish muscle). 

our measurements. This limit indicates that we are able to detect periodic deflection of 
the strain gauge by 0.2 nm, since its compliance is 0.2 mm N -1. 

Discussion 

Non-linearity in force time course 
Calculation of Pl(f) by means of the Fourier integral (equation 1) corresponds to fitting 
a periodic force time course P(t, f) to sine and cosine functions of the same periodicity. 
This is in essence a linear regression method involving three fitting parameters. We 
assess goodness of fit, therefore, by evaluating the regression coefficient which in our 
case is equivalent to the linearity h 1 (equation 3; curve 1 in Fig. 6). It is 0.994 for the 
worst case in the data of Fig. 2a, and 0.985 in the data of Fig. 4. Thus it is apparent 
that the force response is so linear that its time course is described adequately by sine 
and cosine functions of the same periodicity, which validates the present sinusoidal 
analysis technique as applied to muscle systems. 

The very high linearity (-~ 0.998; Fig. 6a) associated with process (C) is unexpected 
from the results of step length change experiments. Huxley & Simmons (1971) 
reported severe asymmetries in their rate constant measurements of 'phase 2', which 
corresponds to process (C) (see below); the rate constant is faster on release and 
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slower on stretch in intact frog semitendinosus preparations. Similar asymmetries are 
observed in other muscle types (Heinl et al., 1974; Abbott  & Steiger, 1977). Al though 
a general qualitative conversion method  which relates a non-linearity in the sinusoidal 
analysis to asymmetry in the step analysis technique is not available at hand (unless a 
model  is involved), it appears that the non-linearity observed in process (C) is much  
smaller than would have been anticipated from the step analysis experiments. We are 
forced to conclude, therefore, that the muscle responds more linearly to a sinusoidal 
length change than to a step change. 

Although we can only speculate on the immediate cause of this discrepancy, an 
observation of Sugi & Tameyasu (1979) may be relevant (see also Sugi, 1979). They 
discovered by ultra high speed cinematography that with a quick length release their 
semitendinosus preparation buckled at the released end. Such buckling, which 
perturbs the tension signal, could account for the discrepancy. It would be useful to 
combine high speed cinematography with measurements  of force transients. The basis 
for the linearity/asymmetry may not be clarified until we are much  closer to an 
unders tanding of the transduction process, but obviously it is important  to use several 
techniques and to compare their respective results. No one method  can be considered. 
as certain in such a complex system. 

The relatively large non-linearity associated with process (B) (oscillatory work) is 
striking, al though the corresponding linearity is still 0.994 (psoas), representing a 
degree of non-linearity not serious enough to distort our measurements .  This is seen in 
both rabbit and crayfish preparations (Fig. 6). The maximum non-linearity takes place 
approximately at the frequency at which the dynamic modulus  is minimal (cf. Figs. 3a 
and 6a), a frequency slightly higher than the optimal frequency for oscillatory work. At 
this frequency the force signal is most  distorted, presumably because the crossbridge 
stroke interferes with the length driver most  significantly. Steiger (1971) observed 
larger distortion in sinewaves associated with oscillatory work in freeze-dried cardiac 
preparations (see also White & Thorson, 1972; Abbott,  1973a). It is possible that the 
distortion is associated with irreversible reactions such as hydrolysis of MgATP and 
oscillatory work production. 

Correlation of rate processes with force transients 
It is useful to correlate the 'rate processes' we observe in sinusoidal analysis to the 
'stages' (Huxley & Simmons, 1971) or 'phases'  (Huxley, 1974) of step analysis. The 
correlation is graphically presented in Fig. 7a, b which is qualitatively derived as 
follows. We set s = 2rrfi (s is the Laplace parameter) and rewrite equation 2: 

As Bs Cs 
Y(s) = H +  - -  + 

(2rra + s) (2rrb + s) (27rc + s) 

In transient studies, force change relates to length change by 

aP(s) = y(s) aL(s) 
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where  &L(s) and  &P(s) are Laplace t ransforms of the length  and force deviat ion time 

courses a / ( t )  and aP(t) respectively. For a step length  change of the size 5l, 
&L(s) = 51/s. By substit t l t ing this in the above equations,  we obtain 

B c 1 
AP(s) = + (2~a + s) (21rb + s) + (27rc + s 

51 

By per forming  an inverse Laplace transform, the force t ime course is (for t > 0): 

(Phase, 2) (Phase 3) (Phase 4) 

AP(t) = [C exp(-27rct) - B exp( -2~bt )  + A exp(,27rat)  + HI  5l (5) 

f = a  f = c  

"4 

"--~C : L' 
~ - - ~ B ~  ~ 

, /  

I . . . . . .  L'_L,~L,,I. ~, .%/. .V / . . . . . .  71 I Rest 

(c) 

~ - z  27rc 

i i .i i i i i 1 ~  i i I i i i i i  I i i i 111111 I [ 

0 9 99 999 ms 

(a) (b) 

Fig. 7. Correlation between sinusoidal (a) and step (b) analyses and equivalent diagram (c). (a) 
Theoretical curve to describe complex modulus data of an active muscle is represented in a 
Nyquist plot. The curve and points (corresponding to our experimental frequencies) are 
calculated by using equation 2 with best fit parameters to a curve of Fig. 3: a = 0187; b = 21.9, 
c = 83.8 (unit in s-1);H = 15.1, A = 80.8, B = 86.3, C = 118 (unit in 105 N m-2). Approximate 
magnitude or position of these parameters are indicated, f, frequency. (b) Simulated force time 
course following a step length increase. The data are calculated using equation 5 with the same 
parameters used to construct (a). Rate constants of each phase are indicated by arrows. Note 
logarithmic time scale. Diagonal line LL' symbolizes the inverse Laplace transformation. (c) 
Equivalent mechanical diagram to explain three rate processes (A), (B), (C) and the constant H of 
equations 2 and 5. Expression of the process (B) is tentative. Resting component is almost 
negligible. 
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The equation is rearranged in the order of fast to slow. From equation 5 the following 
time course is predicted (Fig. 7b). On step length increase (~l > 0) at t = 0, there is a 
simultaneous increase in force corresponding to Y ~ l ,  where Y~ = H + A -  B + C, 
which is equivalent to phase 1. Then there is a fast relaxation of the force with a rate 
constant of 2nc. This corresponds to phase 2 and magni tude Of -C~l .  This is followed 
by a reversal of the force with an exponential rate constant of 2nb and magni tude of 

B~I. This part of the force is often called 'delayed tension'  and corresponds to 
phase 3. In most  data reported on frog muscle (for example, Huxley & Simmons,  
1971) this phase exhibits a plateau (their earlier abstract shows a 'delayed tension';  
Armstrong et al., 1966), because delayed tension is less evident in the step method  
since it is bounded  by two exponentially decaying time courses. This is clearly 
shown in  Fig. 7b as smaller delayed rise in force than projected from the Nyquist  
plot of Fig. 7a. In the sinusoidal method  we unambiguously  observed process (B) in 
both intact and skinned frog preparations (Fig. 5b, d). 

After the delayed tension, the force once again changes its direction and relaxes 
exponentially with a slow rate constant of 2ha. This corresponds to phase 4, and its 
magni tude is - A ~ l .  The final force level is slightly higher than before the length 
increase, and corresponds to H~l (cf. Sugi, 1972; Edman et al., 1976; Hill, 1977). We 
always find H > 0, al though it is small compared to the other parameters. It should be 
clear in the foregoing discussion that the rate constants are obtained by multiplication 
of the characteristic frequencies a, b, c by 2n (see also Pringle, 1978). This factor 2n 
must  not be forgotten w h e n  comparing the limits of resolution of the sinusoidal and 
step methods:  if the highest resolved frequency is 167 Hz, then the limit of time 
resolution is I ms and not 6 ms. 

In this correlation the polarity of process (B) (phase 3) allows it to be identified 
unambiguously  because its polarity is unique (negative). We define process (C) 
(phase 2) as the one faster than (B), and process (A) (phase 4) as that slower than (B). 
Whereas we resolve only one process be tween DC and (B), there may be more than 
one process between (B) and infinite frequency (Abbott & Steiger, 1977; Ford et al., 
1977). This method  of identification and correlation of each process or phase is useful 
when  various muscle preparations are to be compared under  numerous  experimental 
conditions, since process (B) is universally present in all preparations studied so far. 
Table 2 summarizes the correlations between the various reports. The present rate 
processes apparently relate to "length transients' observed in force step experiments 
(Podolsky, 1960; Civan & Podolsky, 1969; Podolsky et al., 1974); see Huxley (1974) for 
the correlation between length and force transients. 

The above correlation is qualitatively valid w h e n  (i) a system is linear and (ii) the 
property of the system is unaffected by the length change. Al though these are difficult 
conditions to meet  in a muscle system, we can assume that the system behaves so 
w h e n  t h e  length change is infinitesimally small. In fact we satisfy the linearity 
requirement w h e n  the peak-peak length change is about 0.2-0.3%L 0 (see p. 290). At 
larger amplitudes we have to extrapolate the above correlations and therefore the 
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correlation becomes qualitative. Even so the polarities and the speed of the processes 
which are used to map our processes to phases of Huxley (1974) remains the same. 

Interpretation of the rate processes in terms of mechanochemistry 
Our objective is to map empirically the apparent rate processes to intrinsic chemical 
reactions in a crossbridge cycle scheme (e.g. Lymn & Taylor, 1971; Trentham et al., 
1976; Stein et al., 1979). This mapping can be carried out by changing an experimental 
condition which is known to alter a particular chemical reaction and by following the 
change in the rate processes. Simple experiments include the elimination of substrate 
(MgATP) or Ca ions. Processes (A), (B) and (C) are present in a fully active muscle but 
they are absent in a rigor or relaxed muscle. This is convincing evidence that these 
three rate processes are fundamental properties of cycling crossbridges. The fact that 
all of them are present in a variety of fast striated muscle tissues leads us to suggest 
that they are fundamental properties of the transduction mechanism. 

We reported earlier (Kawai & Brandt, 1975, 1979; Kawai & Orentlicher, 1976; 
Kawai, 1978, 1979) that physiological concentrations of MgATP can limit the rate 
processes (B) and (C) in both crayfish and rabbit systems. We use this observation as 
evidence that MgATP binding to rigor-like actomyosin linkage and subsequent 
dissociation are represented in processes (B) and (C). Evidently (B) is oscillatory work 
and since one actually detects a maximum in mechanical energy production which is 
correlated with ATPase rate (R/iegg & Tregear, 1966; Steiger & R/iegg, 1969; Pybus 
& Tregear, 1975) a maximum in the number of transduction steps must  occur at 
around frequency b. It seems that phosphate greatly affects process (B), but  not (C) 
(Kawai & Orentlicher, 1976) indicating that (C) is not limited by the particular energy 
transduction transition. The phosphate effect is, however,  opposite from expectation 
and further clarification is needed (cf. White & Thorson, 1972). Process (A) is related 
to the force recovery phase earlier studied by Hill (1953), although he used a bigger 
length release (about 5%) and therefore the phenomena are not necessarily identical. 
We find that this process is least sensitive to factors such as physiological concentration 
of MgATP, phosphate, temperature, etc. and we conclude that process (A) is not 
limited by these factors. 

Appendix 1 

Method of correcting complex stiffness data 
There are two classes of systematic errors (type I, II) which can be removed from the data by 
appropriate corrections. We use complex number nomenclature to quantify these errors since it 
is easier to handle them in the frequency domain. Type I error is associated with the electronics; 
it arises in the magnetic-electric position sensor, force amplifier and from the use of a 
multiplexed A/D converter for the length and force signals (Fig. lc). Type I error is represented 
by E(f). Type II error arises in the mechanics of the force transducer assembly, which includes 
the strain gauge element, muscle clamp, Vaseline seal, and lever connecting the gauge to the 
clamp (Fig. lb). This error is represented by g(f). Mass, viscosity and elasticity are the important 
parameters governing g(f). 
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Reference 

~ Length 
driver 

Strain L-L o(f) ~-J 
o gauge Blank 

Fig. 8. Mechanical arrangement of system calibration, g(f) ,  r( f ) ,  o(.1:) represent true complex 
stiffness of strain gauge, reference and blank respectively. 

In order to quantify type I error, a photo field-effect transistor (Photo FET in Fig. la: FF600, 
Teledyne Crystalonics, Cambridge, Massachusetts) is used to observe the performance of the 
length driver ('position signal', Fig. la, c). Output of the transistor is fed into the force amplifier 
(SW in Fig. lc is connected to 'calib' side), and a frequency response function E(f) is collected in 
the usual manner. In this way all type I errors are lumped together in E(f). It is displayed in 
Fig. 9c, d for our original equipment (curve 5), and for our most recent equipment (curve 6). 

We have to obtain g(f) at each frequency in order to compensate for type II errors rather than 
determining mass, viscosity and elasticity of force transducer assembly (cf. Ford et al., 1977). In 
our case, the type II error is not described in a simple second order differential equation since (a) 
the lever connected to the strain gauge has a complicated bending motion and (b) the interaction 
between the Vaseline seal and the stainless steel rod is in no way first order. Instead we 
determine g(f) by a measurement at each frequency. 

In order to obtaing(f) we need a reference material whose true complex stiffness r(f) is known. 
It is best if r(f) is constant with frequency but this is not a requirement. The reference material is 
mounted in the apparatus and complex stiffness is measured in the usual manner. The 
measured complex stiffness i~09 is related to r(f) by: 

where o(f) represents blank coupling between the length driver and the strain gauge. Equation 6 
is derived from the fact that r(f) and o(f) are parallel to each other, and that they are connected 
serially to g(f) (Fig. 8). g(0) is the DC stiffness of the strain gauge and must be measured 
independently Jig(1 Hz) I is used for this purpose], g(0) appears in equation 6 because the force 
is sensed after multiplication of this parameter with the displacement of the gauge lever. In the 
frequency domain the true force p(f) and observed force P(f) are related by 

p (f) -- [ g (f)/g (o)]P O <) 
since the strain gauge is a displacement sensor. 

The measurement is repeated after the reference material is removed. This is to assess the 
true blank coupling o(f) which arises from resonance of table and standing waves on the 
surface of the saline. By setting r(f) = 0 in equation 6, measured blank coupling O(f) is: 

• 0 ( f )  = E ( f )g  (0)o (f)l[g ( f )  + o (f)] (7) 

From equations 6 and 7 we can solve for g (f) ando (f). 

• f r ( f ) [ E ( f ) - R ( f ) / g ( o ) } ]  
g ¢ )  : <) o(s l{ o--- 777 j 
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. . . .  [ ,  (f)[E (f) - R (f)8(o)]] 
o(r) = l J 

Once g(f) and o(f) are known,  measured  complex stiffness Y(f) relates, to correct y(f) by (cf. 
equation 6) 

Y(f) = E(f)@(o)[yf f)  + o ( f ) ] / [ g ( # )  + y ( f )  + o ( / ) ]  

Solving this for y(f) we get 

y( f )  = g ( f )Y ( f ) / [ g (O)EO0 - Y(f)] - o(f)  

This corrected form of the complex stiffness is used in all of our reports. 
For reference material we used fixed muscle, first bringing a fibre into the high rigor 

condition (Kawai & Brandt, 1976), then treating it with 2.5% glutaraldehyde for -> 5 rain (half 
fix time is - 1 min, judged by stiffness time course). We find this material to be more suitable 
(less viscous, lighter) than a rubber  band, a spring or a thin steel wire. Normalized frequency 
response r(f)/r(O) of fixed muscle is always reproducible and invariant. For this reason we 
fixed most  fibres after each experiment,  observed R(f) and O(f) and calculated g(f) and o(f) 
[see Fig. 9a, b for g(f)]. Peak-peak  ampli tude is reduced to 0.1%L o and 1.6 s (long time course) 
is spent  at each frequency, because (a) fixed muscle is 4-8 times stiffer t h a n  a high rigor 
muscle and (b) better S/N is attained in a longer data collection period. For convenience we 
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Fig. 9. Calibration functions g (f) (a, b) and E(f) (c, d). (a) and (c) are ampli tude plots. (b) and (d) 
are phase plots. Frequencies at which data are collected are indicated by • and the data points 
are connected by straight lines. (a) and (b) Curve 1 is for Bionix F100 gauge with plastic clamps; 
curves 2-4 are for our gauge assembly using Aker 's  elements: curve 2 (no Vaseline), 3 (moderate 
amount  of Vaseline), 4 (excess Vaseline). (c) and (d) A Clevite Brush carrier amplifier has a sharp 
roll off (curve 5) than use of a low-noise operational amplifier (BB3500E, curve 6). Curves 2 and 
6 are used to create data in Figs. 3 and 5d, while curves 1 and 5 are used to create data in 
Fig. 5a. 
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approximate r(f) with a real constant. This introduces a trivial error in the correction procedure, 
since in reality r (f) of a fixed muscle is weakly frequency dependent:  
] r ( l O O H z ) / r ( 1 H z ) l - 1 . 1 ,  a r g [ r ( f ) ] - 3  ° (this can be compensated if necessary). With 
our most  recent equipment  (curves 2, 3, 6 in Fig. 9), we are approaching the ideal case: 
Eft) ~ 1, g(f) ~ g ( 0 )  > ] Y(f)1, and o(f) ~ 0 over the frequency range we routinely use. 

In order to judge the integrity of the correction procedure for each day we collected the 
complex stiffness data of high rigor muscle and compared its corrected form with the standard 
rigor curves such as those in Fig. 3a, b. If it is visibly different from the standard, as marked 
by a break in the curves, similarly corrected data is judged unreliable. In this way we obtain 
quite consistent data even with different muscle clamps, different strain gauges, different 
amounts  of Vaseline in the seal, different fibres, different amplifiers, etc. This method of 
correction is particularly useful when  a strain gauge or an amplifier has a low frequency 
response.  

Appendix 2 

Method of data fitting 
Complex stiffness data Y(f) [or modulus  YM(f)] is fitted to equation 2 by an expanded version 
of the least squares method which minimizes D, the sum of modulus  squared deviations: 

D = Z [ A y I R = Z A y * A y  
f f 

aY  = Y - [H + AX(a) + BX(b) + CX(c)] (8) 

where X(a) = fi/(a + fi), etc.; * indicates the complex conjugate and the summation is over the 
N (usually 16) frequencies at which measurements  were made. In equation 8, X and Y are 
experimentally determined complex quantities, and a, b, c, A, B, C, H are fitting parameters  (real 
quantities). The sign of B (negative) is self-contained for convenience. A complication here is 
that equation 8 is non-linear with respect to parameters  a, b, c, and thus the fitting procedure 
must  be iterative. The fact that complex quantities are used requires some precautions. 

It was  necessary to invent a technique to find 'best  fit' parameters.  The following strategy 
was devised and found satisfactory. (1)The best fit is defined as one which minimizes D. 
(2) An iteration of linear approximations is used to get sufficiently close to the best fit 
parameters.  (3) The iteration consists of alternately computing least squares magnitude 
parameters  with fixed frequency parameters  and computing least squares frequency 
increments. The fitting is performed as follows. 

Step 1. Find from the Nyquist  plot the approximate a, b, c, which are the frequencies for 
the maximum (or the minimum) of the viscous modulus.  In Fig. 3c these are 0.7, 17 and 
100 Hz respectively. 

Step 2. Based on the previously determined a, b, c, find H, A, B, C which minimize D. Since 
equation 8 is linear with respect to these magnitude parameters,  ordinary linear fitting can be 
applied. In equation 8, by setting 

~DI~H  = O, ~DI~A = O, ~DI~B = O, ~ l ~ C  = o 

( i )  ( N (1, x(a))(1, X(b)) (1, X(c)) \</ (1, Y)\ 
= (X(a), 1) (X(a), X(a)) (X(a), X(b)) (X(a), X(c)) I /(x(a), 

(X(b), 1) (X(b), X(a)) (X(b), X(b)) (X(b), X(c))]  ~(X(b), Y ) I  
(X(c), 1) (X(c), X(a)) (X(c), X(b)) (X(c), X(c))/ \(X(c), Y ) !  
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where 

(X, Z) = X (X*Z + XZ*)/2 = ~ R(X*Z) = ~ [R(X)R(Z) + I(X)I(Z)] 
f ~ f 

for given complex numbers  X and Z; R, I symbolize real and imaginary parts. 

Step 3. Improve previously determined a, b, c by application of a linear expansion: 

X(a + dia) = X(a) + X'(a)Aa; etc. 

where X'(a) = - f i / (a  +fi)2. If we replace all Xs in equation 8 with the right hand term of the 
above equation and the likes, the usual least squares method can be peformed since a Y  is 
linear with respect to Aa, Ab, dic. By setting 

~DI~Aa = O, ~D/~ab = O, ~Dt~ac = O, 
we get 

Aa) /A(x'(a), x'(a)) B(x'(~), x'(b)) 
•b =~A(X'(b), X'(a)) B(X'(b), X'(b)) 
Ac \a(X'(c), x'(a)) B(X'(c), x'(b)) 

C(X'(a), X'(c))~-~/(X'(a), ,~Y)\  

c(x'(b), X'(c))] |(x'(b), aY)j 
c(x'(c),X'(c))/ \(X'(c), aY)/ 

where a + Aa, b + dib, c + z~c are better fit parameters and therefore replace a, b, c. z~Y is 
defined in equation 8. 

Step 4. Repeat steps 2 and 3 until all relative frequency improvements ([ Aa/a I, lab~ b ], 
I z~c/c I ) are less than 0.005. Usually 40 iterations are sufficient to achieve this accuracy and the 
total computation takes - 0 . 5  rain with a Nova 800 computer equipped with a hardware 
floating point arithmatic unit. If the intial values are within a factor of three, the above 
iteration converges for good quality data such as shown in Fig. 3. If different initial values 
within this limit are input, the iteration converges to the same place (this depends on the 
quality of data). 

Calculation of confidence ranges 
It is always necessary to assess the reliability of the parameters obtained as a result of fitting 
because any data can be fitted to any functional form if enough fitting parameters are given. 
For the fit to give meaningful parameters, the goodness of fit should be sensitive to the values 
assigned to these parameters. This sensitivity is tested for by calculating the 95% confidence 
ranges of the fitted parameters according to Fisher's F-statistics. The 'degree of freedom' (Nd.f.) 
appropriate to do this test is: 

Nd.f. = 2N - (number of fitting parameters) = 2N - 7 

where N is the number  of frequencies at which data are collected. N is multiplied by two 
because two points are observed (real and unaginary parts) at each frequency. 

The 95% confidence range is evaluated by: 

D (a,b,c)fD (ao,bo,co) ~ F(N¢~.) 

where D is defined in equation 8 as a function of a, b, c. a o, b o, c o are best fit frequency 
parameters. The F number  is 1.84 for Nd.f. = 25. The above inequality indicates that any 
parameters in this range produce a value of D which does not differ statistically from the 
minimum value. Since it is impractical to evaluate all the possible ranges, for convenience we 
calculate the 95% confidence range for each parameter by fixing all the others at their best 
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values. In the case of the frequency parameter ao for instance, we find a which satisfies 
D(a, bo,co) = F(N d.f.)D(ao,bo,co) 

Since D function is approximately symmetrical around the best fit value ao, we get two values 
for a, the lower and upper limits. We obtained, for the data in Fig. 3, (in Hz) 
a = 0.87(0.72 - 1.05), b = 21.9(19.5 - 24.8), c = 83.8(76.5 - 91.9) where the 95% confidence 
ranges are indicated in brackets and plotted in Fig. 3b as horizontal bars along the abscissa. 
Some other fitted parameters and their confidence ranges have already been published (Kawai 
et al., 1977; Kawai, 1978, 1979). 
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