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Abstract. The onset of separation in turbulent, neutrally stratified, boundary-layer flow over hills is
considered. Since the flows are fully turbulent, the occurrence of intermittent separation, in the sense
of any reversal of near surface flow, will depend strongly on the detailed structure and behaviour of the
turbulent eddies. Very little is known about such intermittent separation and the phenomenon cannot
be studied with numerical models employing standard turbulence closures; eddy-resolving models
are required. Therefore, here, as elsewhere in the literature, the arguably less physically significant
process of mean flow separation is studied. Numerical simulations of flow over idealised two- and
three-dimensional hills are examined in detail to determine the lowest slope, fcrit, for which the mean
flow separates.

Previous work has identified this critical slope as that required to produce a zero surface stress
somewhere over the hill. This criterion, when a mixing-length turbulence closure is applied, reduces
to requiring the near-surface vertical velocity shear to vanish at some point on the hill’s surface.
By applying results from a recent linear analysis for the flow perturbations to this condition, a new
expression for fcq is obtained. The expression is approximate but its relative simplicity makes it
practically applicable without the need for use of a computer or for detailed mapping of the hill.
The approach suggested differs from previous ones in that it applies linear results to a non-linear
expression for the surface stress, In the past, a linear expression for the surface stress has been used.
The proposed expression for #.; leads to critical angles that are about twice previous predictions.
It is shown that the present expression gives good agreement with the numerical results presented
here, as well as with other numerical and experimental results. It is also consistent with atmospheric
observations.

1. Introduction

Linear theory (e.g. Jackson and Hunt, 1975; Belcher er al., 1993) shows that
the flow perturbations induced by the presence of a low hill are dominated by
inviscid dynamics. This predicts that the effect of a hill on the flow past it, is to
induce a negative pressure perturbation at the crest of the hill so that the flow is
accelerated up the upstream slope. There is also a positive pressure perturbation
downstream of the hill which decelerates the flow on the downstream slope. As
discussed by Lighthill (1989), this adverse pressure gradient leads to the production
of near-surface vorticity of opposite sense to the boundary-layer vorticity. At low
slopes, the rate of production of this vorticity is small and it is annihilated by
cross-diffusion with the boundary-layer vorticity without having much impact
on the flow. However, for such slopes the rate of production of this vorticity is
proportional to the slope, and as this increases, so too does the adverse pressure
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gradient. Eventually the vorticity that this pressure gradient creates dominates; and
in two dimensions, a reversed flow occurs near the surface. Where this reversed
flow meets the downslope flow, there is a region of large convergence leading to a
component of velocity normal to the surface. Thus, the near-surface streamline that
approaches this point is lifted away from the surface. In a Lagrangian sense, Van
Dommelen and Cowley (1990) view this process as the formation of a singularity
in the continuity equation. The converging flow compresses the fluid element in a
direction tangential to the surface, resulting in the ejection of fluid away from the
boundary.

This process of streamlines or fluid elements migrating away from the near
surface is called separation. In the above discussion, only laminar flows have
been considered. If the flow is turbulent, its mean properties are governed by the
ensemble-averaged Navier—Stokes equations. Neglecting the effects of molecular
viscosity, i.e. assuming very high Reynolds number flow, and applying an eddy-
viscosity closure for the Reynolds stresses, the resulting equations are very similar
in form to those for laminar flow, except now viscosity is in general dependent on
the flow itself. This suggests that apart from the influence of the spatially varying
viscosity, the qualitative picture given above should still be valid for the turbulent
flows discussed here. _

Whilst non-linear effects in the mean flow may be present prior to separatior,
they become dominant after it has occurred. The onset of separation causes a
significant change in the mean streamline patterns and in other flow characteristics
such as the surface drag (Wood and Mason, 1993). Also, for turbulent boundary
layers, when the flow does not separate, most of the mean flow vorticity is confined
relatively close to the surface. Thus the structure of the inner region (where the
turbulence is in local equilibrium) has little effect on the outer region (where the
turbulence is governed by rapid distortion dynamics and the flow perturbations are
approximately inviscid). This is in contrast to laminar boundary layers, as discussed
by Hunt et al. (1988). However, once the flow separates, the surface vorticity can
be transported far from the surface, possibly leading to an elevated shear layer.
This will then influence the flow in the outer region.

It is clearly very important to know whether the flow is separated or not. Even
to diagnose this is not straightforward. This will be discussed in the next section
where three different types of flow visualization will be used to estimate the value
of the critical slope for separation from numerical model simulations.

Attention is then turned to trying to predict this critical slope, the primary
aim being to obtain a simple, approximate estimate of 8¢y that can be applied in
practical situations to a particular hill without the need for use of a computer and
without recourse to detailed mapping of the hill. Such an estimate should be useful,
for example, in simple dispersion or pollution models to indicate where possible
trapping of a pollutant in the lee of a hill may occur. It might also be useful in
predicting when the results of linear predictions of the flow field are likely to be
applicable.
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In Section 3 the case of a two-dimensional sinusoidally shaped hill is used to
develop a relatively simple formula for 8, which, it is demonstrated empirically
in Section 4, can be used successfully to indicate the onset or not of separation for
more realistically shaped hills.

The philosophy of this approach is the same as has proved successful in estimat-
ing the maximum flow speed-up over hills. Mason (1986) found good agreement
between the observed maximum fractional speed-up above Nyland Hill and an esti-
mate based on simple, linear scaling arguments. Belcher et al. (1993) also obtain
good agreement between observed profiles of fractional speed-up above Askervein
and the predictions of linear theory applied to simple, idealised hill shapes. These
and other similar results have led to the adoption of very simple, general esti-
mates of the maximum fractional speed-up (e.g. Taylor and Lee, 1984) which have
been incorporated into building codes (e.g. BRE, 1989). Of course, as with any
approximate formula which is verified empirically, caution must be taken when
applying such results in practice, as in extreme circumstances they may prove to
be inaccurate. However, when applied carefully, such estimates can be useful.

2. Diagnosing the Onset and Nature of Separation

Wood and Mason (1993) discussed three different sets of simulations of flow
over hills. In this section, the flow fields from these series of simulations will be
discussed and the slope at which separation first occurs will be estimated.

The first set simulates flow over two-dimensional hills, or ridges. The width of
the hill (1) is the same as the width of the numerical domain (1000 m). So, by virtue
of the periodic lateral boundary conditions, this series simulates flow over an infinite
corrugated surface. The hills are referred to as “two-dimensional packed” hills. The
second set is similar to the first but now the hills are three-dimensional having a
circular horizontal cross-section. The diameter of the hills equals the domain width
in both horizontal directions so the periodicity makes these hills appear like infinite,
upturned egg boxes and are called “three-dimensional packed”. The third set keeps
the same hill shape and hill diameter (1000 m) but the numerical domain is 4000
m by 4000 m. The resulting distance between neighbouring hills is sufficient that
the hills are effectively isolated hills and are referred to as “three-dimensional
isolated”. The surface of all the hills, Z(z, y), is given by:

Zo(z,y) = h(cos(ﬂ\/(x//\)z +(y/A)2)? forz? + y> < X2/4
B 0 for;z:2+y2>/\2/4

with ¥ = 0 for the two-dimensional case.

All runs have 40 grid points in the vertical, stretched logarithmically near the
surface with the lowest internal grid point at 0.1 m above the local surface. In the
horizontal, the two-dimensional runs have 20 uniformly spaced grid points and the
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three-dimensional packed runs have 20 x 20 grid points. The three-dimensional
isolated hills have 40 x 40 grid points in the horizontal with the grid spacing in the
region of the hills similar to the other two cases but with the grid spacing stretched
away from the hill.

For all cases considered here, the driving force is a 10 m s~' geostrophic wind
(in a direction perpendicular to the ridges); a Coriolis parameter of 10™* s~ is
used; and a surface roughness length Zy = 0.1 m is chosen. All simulations are
run for 3000 s after being initialised with a steady, one-dimensional, planetary
boundary-layer profile, derived from a steady-state version of the same model
equations. Within each set of runs, the simulations differ from each other only in
the height of hill modelled. The height is varied from 50 to 300 m in 50 m steps
with a further run with a hill height of 10 m. This represents a change in the tangent
of the maximum slope of the hills from # = 0.03 to 0.94, i.e., a change in slope
from less than 2 to 43°. (In what follows, 6 and 6 strictly represent the gradient
of the hill, i.e., the tangent of the slope of the hill but, following convention, they
will generally be referred to as slopes.)

The numerical model solves the Boussinesq approximation to the ensemble-
averaged Navier—Stokes equations for the three components of velocity as well
as the mass continuity equation and an equation for the turbulent kinetic energy
(for use in the 1%—0rder turbulence closure). The equations are solved in a terrain-
following co-ordinate system without transformation of the Cartesian velocity
components (e.g. Clark, 1977). Further details of the model and numerical schemes
employed can be found in Wood (1992) and Wood and Mason (1993).

2.1. TWO-DIMENSIONAL HILLS

In two dimensions, the diagnosis of separation is relatively straightforward. In this
case, a streamfunction may be defined and evaluated numerically. Since the no-slip
condition is imposed, the surface is always a streamline but this streamline can
split with a section departing from the surface to enter the interior of the fluid. Such
an occurrence indicates separation.

The streamlines evaluated from the model results in two dimensions are plotted
for hill heights A = 100, 150 and 200 m in Figures 1 to 3. For » = 100 m the surface
streamline does not separate though a marked thickening of the boundary layer
in the lee of the hill is evident. For & = 150 m, however, the surface streamline
clearly separates close to half way down the lee slope and reattaches about a third
of the way up the up-slope of the next hill downstream. As the height of the
hill increases, the point of separation moves slowly upstream towards the crest
of the hill. The point of reattachment moves downstream towards the crest of the
downstream hill. For the steepest hill simulated, /2 = 300 m (not shown here}, over
half of the depth of the valley (peak to trough) is filled with recirculating fluid.
These results are consistent with the findings of Newley (1985) for the same shaped
hills, that the point of separation is close to where the surface pressure perturbation
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Fig. 1. Streamlines from the numerical simulation of flow over a two-dimensional, cosine-squared
shaped hill. The hill has wavelength, A = 1000 m and height 100 m corresponding to § ~ 17°.

reaches zero and that reattachment occurs close to the maximum surface pressure
perturbation.

From Figures 1 to 3, it may be concluded that the flow does not separate until
2t > 100 m. However this is not the case. Figure 4 shows a portion of the horizontal
profile of the component of surface stress parallel to the surface, normalised by its
value in the absence of the hill, for 2 = 100 m. (The crest of the hill is at X /A = 0
and the troughis at X /A =0.5.) It is seen that the stress reverses sign in the region
indicated by the arrow. This region is centred about 400 m downstream of the
crest of the hill. This indicates convergence of mass parallel to the surface which,
due to the imposition of incompressibility and zero mass flux through the lower
boundary, requires a non-zero normal velocity component and therefore separation
of the surface streamline. This is not evident in Figure 1 because the region of
reversed flow is very small in both its horizontal and vertical extent and is beyond
the resolution of the plotting routine. Thus, it is concluded that the present two-
dimensional simulations of flow over a sinusoidally shaped ridge with A/Zy = 10°,
just separate at A = 100 m, for which 8 = 0.31 and A/S), = 0.1 (where A is the
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Fig. 2. As for Figure | but the hill now has height 150 m and ¢ ~ 25°. The dotted line indicates the
zero value streamline and hence separation.

frontal, or silhouette area of the hill and S}, is its base area). This result will be
discussed in relation to other such results in Section 4 below.

2.2. THREE-DIMENSIONAL HILLS

Since a streamfunction cannot be defined in three dimensions, the above procedure
to determine whether or not the flow is separated, cannot be applied. However,
if the flow is steady (which is approximately true for the cases presented here),
the streamline pattern is the same as the pathline pattern and the streamlines may
be evaluated by tracing the path of a particle released into the flow. The flow is
separated if any such particle that is released arbitrarily close to the surface moves
a finite distance from the surface. Conversely, if all the particles remain within the
same order of distance from the surface as the height at which they are released,
the flow is everywhere attached or unseparated. This, though, is an arduous and
time-consuming task to perform in practice. Further, due to numerical limitations,
particles cannot be released arbitrarily close to the surface and from a practical
point of view, with a finite height of release, it is not obvious how to define what
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Fig. 3. As for Figure 1 but the hill has height 200 m and § ~ 32°.
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Fig. 4. A portion of the horizontal profile of the surface stress component parallel to the surface,
normalised by the undisturbed value of stress, for a hill height & = 100 m. (The crest of the hill is at
X/X = 0 and the trough is at X/\ = 0.5.)
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height such particles have to reach before separation may be deemed to have
occurred. Therefore here a different technique, detailed below, is used to determine
separation. As well as this, trajectories of two particles are used to visualise part of
the flow.

As discussed above in relation to two-dimensional flows, separation occurs as a
result of strong convergence induced by the perturbation pressure force due to the
hill. This is true also in three dimensions, though the convergence may then be due
to the lateral component of velocity. Hence, one of the easier ways of looking for
evidence of separation is to consider the surface stress patterns. These are plots of
a collection of two-dimensional trajectories using the two horizontal components
of the surface tangential stress as the “velocity” field. The method of calculating
these and also for calculating the trajectories of the fluid particies, plotted here in
perspective, is essentially the same as that described in Mason and Sykes (1979a)
and uses a fourth-order Kutta-Merson integration technique.

A singularity in the surface stress is any point or line at which the magnitude
of the surface tangential stress vector vanishes. Hunt ef ai. (1978) note that such a
singularity usually indicates a point or line at which the flow is either separating
from or reattaching to the surface. The singularities may be classified as either nodes
or saddle points of separation or attachment. There are methods for determining
the classification of the singularity from the local surface stress field (see Hunt ef
al., 1978). However, the present numerical mesh is not fine enough to resolve the
behaviour of the stress near a singularity with sufficient accuracy to follow this
procedure. Hence, in what follows the singularities have been classified visually
from the pattern of the stress “streamlines”. A saddle point has only two shear
stress lines passing through it. On one of these, the stress vectors either side of the
singularity will be directed towards the singularity whilst on the other, the vectors
either side will be directed away from it. Thus on each line the vector changes its
direction at the singularity. A node has an infinite number of stress lines meeting
at it. If it is a node of separation, the stress vectors will all be directed towards the
node. If it is a node of attachment, they will all be directed away from it.

It is important to note that it is generally assumed that a singularity point
is a necessary condition for the presence of scparation. However, Mason and
Sykes (1979a) found that in their numerical simulations of laminar flow over hills,
separation did, in certain circumstances, occur with no singularity in the stress field.
The cause of this phenomenon is not clear but appears to be related to asymmetry
in the forcing of the flow (in Mason and Sykes’ case, this was the rotation of the
frame of reference).

Figures 5 to 7 show surface stress patterns and corresponding perspective plots
of two trajectories for the packed three-dimensional hills with ~ = 100, 150 and

200 m. In each trajectory plot one particle is released from the crest of the hill at
a height of about 0.65 m above the surface and, relative to the stress patterns, the
other particle is released from the lower left-hand corner at the same heightabove
the surface.
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Fig. 5a. Surface stress patterns (streamlines evaluated using the horizontal components of the surface
stress) from the numerical simulation of flow over a packed three-dimensional hill. The diameter of
the hill is 1000 m and its height A = 100 m giving § ~ 17°. The circular lines are contours of the
hill’s surface at surface heights 0.9%, 0.5k and 0.1A.

For h = 100, the stress “streamlines” are deflected by the hill and converge
in its lee. However, the convergence is not very strong and there is no evidence
of a singularity forming near the surface. The trajectory from the crest rises to a
maximum height above the surface of 2.9 m, the other trajectory remaining much
nearer the surface. This lifting of the trajectory is not dramatic but is evidence
of the thickening of the boundary layer in the lee of the hill. For & = 150 m, the
convergence has become considerably greater but there is still no singularity in
the stress pattern. However, the trajectory from the crest reaches a height of 6.9 m
above the surface in the lee of the hill. There is also the appearance of a kink in
the other trajectory followed by a slight lifting. However, there is still no clear
evidence of separation such as Mason and Sykes found for their case with no stress
singularity. By /# = 200 m, there are clearly two singularity points just upstream
of the base of the hill. One is a saddle point of separation upstream of, but close
to, a nodal point of attachment. Due to the periodicity of the flow, the separation
point is seen to be at the end of the convergence line. As the hill height increases
further, there is no change in the topology of the flow. The points of separation
and attachment become more distinct and the convergence line becomes a sharper
feature. For i > 200 m, plots of the trajectories (only that for & = 200 m is shown
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Fig. 5b. Perspective plot of the trajectories of two particles released into the flow field of the run
shown in Figure 4a. The view of the hill is from a slightly elevated position and is nearly from the
south-easterly direction (where the positive y-axis is in the northerly direction and the positive z-axis
is in the Easterly direction). The two particles are released from a height of about 0.65m above the
surface, one from the South-Westerly corner of the domain and the other from the crest of the hill. In
the plot the heights of the trajectory and the hill’s surface are scaled by.1.14. In these units the top of
the box plotted is at a height of 1.

here) all show a similar picture and give a clear indication of the strong convergence
and upslope flow followed by separation from the surface.

These diagrams suggest that the flow is still attached at # = 150 m but separated
for A =200 m (for which § =0.63 and A/ S5 = 0.1).

Figures 8 to 10 show the surface stress patterns and trajectory plots for the
isolated hills with & = 150, 200 and 250 m. The release points and heights cor-
respond approximately to those for the packed hills. For convenience, only the
central portion is presented of the full 4 km x 4 km domain, which is similar in
dimensions to the domain presented for the packed hills.

For i = 150 m, the surface stress patterns for the isolated case are in essence very
similar to those for the packed case at the same hill height. However, in the packed
case, the downstream hill causes a region of large pressure on its upstream slope,
which strongly diverts the flow round the hill in question. This leads to a highly
asymmetric velocity field in the lee of the hill and a consequent enhancement of
the convergence compared with that seen in the isolated case.
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Fig. 6a,b. As for Figures 5a and 5b but for a hill height A = 150 m corresponding to § ~ 25°.
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200 m corresponding to ¢ ~ 32°.

Fig. 7a,b. As for Figures 5a and 5b but for a hill height &
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Fig. 8a. Surface stress patterns from the numerical simulation of flow over an isolated three-
dimensional hill. The hill has a diameter of 1000 m and hill height 2 = 150 m, corresponding to
6§ ~ 25°. Only the central portion of the domain is shown so that the horizontal extent of this plot
corresponds approximately with the same area, relative to the hill, as presented in Figures 5a-7a.
Again the circular lines are contours of the hill’s surface at surface heights 0.9%, 0.5k and 0.1 4.

A significant change in the surface stress patterns is seen between /4 = 150 m
and A = 200 m. For the latter there is clearly flow separation with upslope flow in
the lee of the hill. The nature of the separation is different to that of the packed
case. There is a well defined nodal point of separation, a nodal point of attachment
and evidence of two saddle points connecting these nodes. Upstream, near the base
of the hill, there is a region of strong convergence.

Despite the evidence in Figures 8a to 10a suggesting that there is separation at
f =200 m with reversed upslope flow in the lee of the hill, there is only minimal
evidence from the trajectories. The trajectories shown are typical of many others
that have been considered and only lift slightly from the surface reaching a height
of 7.1 m (compared with 23.6 m for the packed case). When released as close
to the surface as the vertical resolution will allow (0.1 m), the particle moves up
the downslope but due to the limitations of the trajectory routine, hits the surface.
Particles released much higher than this show the same basic behaviour as those
presented here. This indicates that the separation is a very small feature in terms of
its vertical extent. Even for & = 250 and 300 m (not shown here), the trajectories
only reach maximum heights of 13.1 and 36.1 m respectively, and at this height,
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Fig. 8b. Perspective plot of the trajectories of two particles released into the flow field of the run
shown in Figure 8a. As in Figure 8a, only the central portion of the domain is shown so that the
horizontal extent of the plot corresponds approximately with the same area, relative to the hill, as.
presented in Figure 5b. The particles are released from the same height and similar positions, relative
to the hill, as in Figure 5b.

there is no sign of the reversed flow. The more localised nature of the separation and
hence the greater horizontal shear in the isolated case is clear from the trajectories
in these last two cases in which the rate of change of the particles’ direction is
much greater than for the packed cases.

Again these diagrams suggest that the flow is still attached at /o = 150 m but
separated for & = 200 m (for which § = 0.63 and A/S;, =0.1).

In the next section, a formula giving . as a function -of the ratio of the
horizontal length scale of the hill to its surface roughness, A/ 7y, is proposed. Its
predictions for 8. will be compared with the above results in Section 4.

3. A Linearised Estimate of the Critical Slope

For very high Reynolds’ number flows, such as those considered here, it is generally
accepted (see for example Mason and King (1984)) that the onset of separation
depends on the peak slope exceeding some critical value, 8. say, which will depend
on the roughness length and the exact shape of the hill. The dependence on the
surface roughness length, Zg, arises because, as noted by Britter ez al. (1981), when
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200 m corresponding to § ~ 32°.

Fig. 9a,b. As for Figures 8a and 8b but for a hill height &
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Fig. 10a,b. As for Figures 8a and 8b but for a hill height » = 250 m corresponding to 8 =~ 38°,
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Zy decreases, for a given slope, the near-surface flow speed increases, enabling the
boundary layer to support a larger adverse pressure gradient before it separates.
Conversely, as Zp increases, the near-surface flow is reduced and the shear in the
mean flow is increased and, in the absence of other factors, these make separation
more likely. However, diffusion will also increase, inhibiting separation. It is clear
that the exact dependence of 8., on Z is not simple.

The analytical work of Hunt ef al. (1988a) and Belcher et al. (1993), as well as
the observational and modelling comparisons of Mason and King (1985) suggest
that linear analysis provides good predictions of the mean flow characteristics up to
slopes for which the flow is nearly separated. Further, if consideration is restricted
to flow upstream of the point of separation, the linear results may still provide
reasonable agreement with observations of the mean flow. Thus, whilst non-linear
effects become very important close to separation, it may be possible to obtain an
approximate value for . by extrapolating the linear results to see where they
predict separation.

This is the method that Tampieri (1987), following the work of Nanni and
Tampieri (1985), uses to obtain an estimate of ;. However, a further estimate of
Berie 1s derived here for two reasons. The first reason is that, as argued below, an
improved estimate of ¢ can be obtained by recognising that close to separation,
non-linear terms are important and that where possible, these terms should be
retained but, in the absence of any non-linear analysis, evaluated using linear
results. The second is that Tampieri bases his estimate on the linear analysis of
Jackson and Hunt (1975) which has been superseded by the more complete analysis
of Belcher (1990). The latter analysis provides a better description of the dynamics
of the flow perturbations.

Tampieri (1987) and Nanni and Tampieri (1985) work in two-dimensions and
recognise separation as the occurrence of zero surface stress somewhere on the
surface of the hill. They then apply a linear estimate of the perturbation surface
stress and look for where the sum of this and the upstream surface stress vanishes.
Close to the hill’s surface, the turbulence is in local equilibrium (e.g. Belcher ez al.,
1993). This allows the use of a first order, mixing-length turbulence closure and
SO
ov |l
0Z107"
where T denotes the stress. Writing U as the sum of its upstream value, {/y, and the
perturbation, Al/, this expression becomes
oUy  OAU| 00Uy OAU
9z | oz (azJr dZ)
For 0U/0Z > 0, as considered here, the modulus signs may be neglected and the
requirement for the surface stress to vanish is that

Uy  OAU

57" a7 =0 as 7 — Z,, (2)

T(Z) x

T(Z) x

H
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where Z is the height of the hill’s surface. The no-slip surface boundary condition
gives Uy + AU = 0 on Z = Z,, so Equation (2) requires that Al = —/y close
to the surface. It is this requirement that leads to a prediction of #.q; as will be:
described in more detail later.

Nanni and Tampieri (1985) and Tampieri (1987), however, write Equation (1}
in terms of the upstream stress, 7o, and the perturbation from this, A7, so that

T(Z) =19+ AT.

Rather than retaining the full non-linear expression for 7 in terms of the mean
velocity, they subtract 7p x (0Up/82)? from Equation (1) and retain only first-
order terms in AU to obtain:

OAU 0Uy

AT X 2557

The vanishing of 7 at the surface then requires that

oly OAU
— + 22— =10 Z — Z
9z oz s s
or that AU = —%Ug close to the surface. Since the linear form for AU varies

as #, the peak slope of the hill, the resulting estimate of . is a factor of a half
too small due to the neglect of the non-linear term, (?AU/9Z)%. Whilst at slopes
such that this term is important, the linear estimate for it will be in error, it is
hoped that this error will be less than that due to neglecting it completely and so
here AU = —Uj is considered a better indication of the onset of separation. Some
empirical evidence to support this, based on the resulting predictions for 6, 18
given in Section 4.

In what follows, Belcher’s linear analysis is used to determine the lowest slope
for which

U Z)+ AU(z,2) <0

for some value of z and for Z close to zero, where 7 is the height above the local
surface (i.e. Z = Z — Z,). This expression can be written as

S AU(x. Z)

Since UO(Z ) may be assumed to be positive, Equation (3) requires that

Al (z, Z) <1

— “4)
Uo(Z)

AS(z,2) =
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where AS(x, Z) is the fractional speed-up factor (e.g. Jackson and Hunt, 1975).
This condition will first be satisfied where AS(z, Z) attains its minimum value.
Since only the linear perturbations are being considered, then for the sinusoidal
shape considered here, this will be the negative of its maximum value which will
occur near the crest of the hill. Here the small phase shift of the maximum in the
velocity perturbation away from the crest (z = 0) is neglected so that the maximum
value of AS(z,7), as z is varied, can be approximated by AS(z = 0,7) =
AS(Z), say. The linear theory of Belcher (1990) predicts that AS (Z) is constant
through the depth of the inner surface layer and is equal to its maximum value,
AS™ Thus, Equation (4) reduces to the requirement that

Asmax Z 1. (5)

For hills of a general shape, this result is only an approximation. For a given
shape though, it may be possible to obtain a more accurate estimate of . by
evaluating the minimum value of AU(z, Z) directly from application of Fourier
transforms and a linearised model of flow over hills. Here, however, we seek a
more easily applicable result and, though more approximate, propose the use of
Equation (5). Further, it is clear that when ASMAX ig close to unity, non-linear
effects become important since the flow perturbations are of the same magnitude
as the undisturbed flow and separation must be considered likely (as noted by
Taylor and Lee, 1984).

Belcher’s expression for the perturbation to the mean velocity (his equations
4.31 and 4.33, Chapter 2) gives the following expression for the maximum frac-
tional speed-up:

U (hm) U
ASMAX g 20 m/ (1 +42—> ) i 6
U2 (1) wUo(1)) ©

where the constant terms in Belcher’s expression have been evaluated to give the
approximate number 4.2. Here, an analytical shape function has been evaluated
and combined with the ratio of the hill’s height scale and horizontal scale to give
the maximum slope, §. For a sinusoid, this is exact at least within the context of
the linear analysis. For a general hill, replacing the complex shape factor by the
maximum slope of the hill follows from the general discussion of Jackson and
Hunt (1975), Hunt and Simpson (1982), the scaling arguments of Mason (1986)
and the building guidelines of the UK BRE (1989) and, as discussed earlier, gives
good agreement with data over, for example, Askervein and Nyland Hill.

In Equation (6), / and %, are height scales derived from the linear analysis.
Detailed discussion of these scales is given by, for example, Belcher er al. (1993).
[ is the height scale of the inner region, the region above the hill within which
linear theory suggests that the turbulence is in local equilibrium, permitting use
of a mixing-length closure for the turbulence. Above this height, the turbulence
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perturbations are governed by rapid distortion dynamics and, as noted above, the
flow perturbations are approximately inviscid. ! is estimated from the following
implicit equation:

z(g@) ~ %MA. N

Kl

The other height scale appearing in Equation (6) is /,,. This represents the height
below which shear in the upstream profile is important to the dynamics of the
perturbations to the mean flow. Above this height, the mean flow perturbations
are described by both inviscid and irrotational dynamics. %2, is obtained from the
following implicit equation:

B (-‘EQ> ~ = (8)
KUy 4
Further, a neutral, logarithmic upstream (or undisturbed) wind profile is assumed:
y U0 Z
Up(Z) = 1 — . 9
o(Z) = ——log ( Z()) )

Here u. is the friction velocity given by the square root of the upstream surface
stress, 7g;  is von Karman'’s constant; and 7 is the surface roughness length.

The requirement given by Equation (5), together with Equation (6), is then used
to obtain the following linear estimate for 8

o Ug(hm)< U ) -
Beriy { b 42 (10)

or, substituting for the assumed logarithmic, upstream profile:

. (log(1/ 7o)
= Qloglln/Z0) (1 + 4.2/ 10g(1/ 7))

Substituting the logarithmic profile, Equation (9), into Equations (7) and (8) for {
and h,,, respectively, it is found that both [/Zy and h,, /7, are functions only of
A/ Zp. Hence Equation (11) suggests that 6, is also only a function of A/ Z.

The complex dependency of the critical slope for separation on the exact shape
of the hill has been removed in Equation (11). This is because the shape is replaced
by the maximum slope, as discussed in relation to Equation (6) above. However, it
is clear that the detailed shape of the hill and exact form of the upstream wind profile
will have an influence on the precise value of ;. Whilst some allowance for such
effects could, in principle at least, be made within the framework presented above,
they would add considerably to the complexity of the result and hence detract from
its practical applicability.

(1




THE ONSET OF SEPARATION IN NEUTRAL, TURBULENT FLOW OVER HILLS 157

1.00

0.80 4

ecrit
0.40 ]

0.20

0.00

LA RLLL ) LELL LA RLL ] LML AALY | LA RLLL ] T T
10 10 10™ 10 10 10
MZy

Fig. 11. The critical slope for which separation first occurs, 851, is plotted on a linear scale against the
ratio of the hill’s wavelength to its surface roughness length, A/Zp, on a logarithmic scale. The solid
line shows the predictions of f;; given by Equation (11) and the dashed line shows the predictions
given by Tampieri (1987). The squares are results from two-dimensional numerical and laboratory
studies. The triangles are similarly derived results but for three-dimensional hills.
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Due to the various assumptions underlying its derivation, there are limitations
to the shape of hills to which Equation (11) should be applied. Its predictions
are likely to become inaccurate when either the hill exhibits a strong streamwise
asymmetry (when the association of the maximum speed-up with the maximum
slow-down will be in error) or when three-dimensional effects are likely to be
important. In the latter case, the expression for the flow speed-up will still give a
reasonable reflection of the adverse pressure gradient induced by the hill but the
presence of lateral convergence of the flow in the lee of the hill is likely to delay
the onset of separation.

4. Comparisons of the Linear Prediction of 6. with Numerical Predictions
and Observations

In Figure 11, values of 8., given by Equation (11) are plotted as a solid line against
A/Zy on a logarithmic scale. For a fixed value of A, as Zg decreases, 8.5, is seen to
increase, in qualitative agreement with the discussion at the beginning of Section
3.

To attempt to validate the assumptions behind the derivation of Equation (11),
actual values of . are required. Such values obtained either numerically or from
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TABLEI

Values of critical slope from various studies discussed in Grant and Mason {1990)
and plotted in Figure 11

Source Critical slope  log,q(A/Zp)  Turbulence closure
Newley (1985) 0.34 3.5 2nd order

Newley (1985) 0.40 44 2nd order

Taylor ef al. (1976) 0.31 4.0 st order

Mason and King (1984)  0.47 5.8 1st order

wind tunnel (or water channel) studies are hard to find and of course cannot be
determined from field experiments unless, fortuitously the hill shows only a small
separated region. A brief review of values of 0 with associated values of A/ Zg is
given by Grant and Mason (1990) for various numerical studies of two-dimensional
flows. These values are plotted in Figure 11 and are tabulated in Table I. (Where
necessary it is assumed that L, the half width of the hill at half its height, is related
to Aby L ~ A/4.) These results also include the present case for which separation
is found to occur at .4 ~ 0.31 for two-dimensional hills with A/Z = 10%.

The wind tunnel results of Gong and Ibbetson (1989) are also shown. They
make measurements of turbulent flow over isolated two- and three-dimensional
hills of the same shape as used in the present study. The two-dimensional hills have
a peak slope of 0.25 and that of the three-dimensional hills is 0.29. In both cases,
A/Zy =~ 2353. In the two-dimensional case, Gong and Ibbetson report evidence
of “weakly intermittent flow separation” and for the three-dimensional case, they
suggest that the flow may separate (but with different separation characteristics to
the two-dimensional case, in agreement with the present findings). This suggests
that in both cases, the slope is close to, though slightly greater than the critical
slope. The three-dimensional case has been plotted in Figure 11 as a triangle. The
present results for the three-dimensional hills suggest that separation does not occur
until # ~ 0.63 for A\/Zy = 10 This too has been plotted as a triangle.

The final results shown are those of Britter er al. (1981). In a wind tunnel study
of turbulent flow over a two-dimensional hill, having a “Witch of Agnesi” cross-
section, they report that, with A\/Zy ~ 508, “separation just occurs” at h/L = 0.4,
corresponding to a peak slope of 0.26.

4.1. COMPARISON WITH TWO-DIMENSIONAL RESULTS

If we first consider the two-dimensional results (plotted as squares), then it is clear
from Figure 11 that Equation (11) predicts the variation of 8. with A/Zy quite
well. As discussed above, for fixed A, as Zy decreases, it becomes harder for the
flow to separate. This is seen both from the line and from the model and wind
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tunnel results. Equation (11) appears to be a lower bound on 8., which suggests
that the non-linearity present in the full numerical models and wind tunnel flows
slightly inhibits separation.

In Figure 11, the prediction of 8. given by Tampieri (1987) is also shown,
plotted as a dashed line. It is seen to lie below that given by Equation (11) and is
consistent with its underpredicting 8.4 by a factor of about two. The somewhat
poor agreement seen between Tampieri’s prediction and the numerical results
appears to contradict Figure 4 of Tampieri (1987). In that figure, Tampieri found
seemingly good agreement between his linear prediction and the results from a
numerical model. (That model is very similar to the two-dimensional version of
the model reported by Wood and Mason (1993).) By comparing the discussions and
the results presented in Tampieri (1987), Nanni and Tampieri (1985) and Giostra
et al. (1989), it would seem that the numerical results (plotted as a dashed line
in Figure 4 of Tampieri (1987)) have been incorrectly plotted at half the critical
hill height for separation whereas the other results including the linear prediction
have been plotted at the full (i.e. peak-trough) hill height. Hence, the apparent
agreement between the numerical results and the linear prediction of Tampieri
(1987) is spurious, the latter in fact underpredicting the numerical results by a
factor close to two.

4.2. COMPARISON WITH THREE-DIMENSIONAL RESULTS

The two three-dimensional cases, plotted as triangles in Figure 11, are now con-
sidered. The upper one is the result from the present study, which appears not to
separate until A > 150 m. The other triangle is the wind tunnel result of Gong and
Ibbetson. With only two data points, it is difficult to conclude very much. Further,
Gong and Ibbetson’s result is only for intermittent separation which may be due to
fluctuating large eddies and not representative of mean flow separation as discussed
here.

The present model results suggest a larger critical slope for the three-dimensional
hills than for their two-dimensional counterparts. This is in agreement with the
results of Mason and Sykes (1979a and 1979b) who find that three-dimensional
hills separate at a greater slope than two-dimensional ones. Their results are for
laminar flows for which no closure assumptions are required.

From the model output, the maximum tangential surface pressure gradient can
be evaluated. For hill heights below that for which separation occurs, this maximum
pressure gradient is found to increase approximately linearly with slope. Further,
for the two-dimensional hills, the rate of increase of this pressure gradient with
slope is approximately 20% larger than for the three-dimensional hills. Therefore,
for a given slope, two-dimensional hills have a larger adverse pressure gradient
than the three-dimensional ones. Thus the three-dimensional hills may be expected
to separate at a slope approximately 20% greater than the two-dimensional ones,
at least for the shape of hills considered here. This would suggest that separation
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over the three-dimensional hills may occur nearer to h = 150 m (0 = 0.47) than
to the plotted value of h = 200 m (6.4 = 0.63). Due to the limited number of
simulations performed, this latter value is the lowest value of % for which it is
certain that separation occurs. Thus, the actual increase in the value of . from
two- to three-dimensional models may be overestimated in Figure 11.

4.3. COMPARISONS WITH ATMOSPHERIC OBSERVATIONS

From the above discussions, it would appear that the naive application of linear
theory to obtain Equation (11) gives reasonable agreement with the model and
wind tunnel results.

It is interesting now to consider whether Equation (11) is in accord with atmo-
spheric observations. Whilst 8., cannot usually be estimated from such observa-
tions, if Equation (11) gives a reasonable approximation to the actual critical slope,
then observations of attached flow would be expected to generally lie below the
line in Figure 11 whilst separated flows should generally lie above it. In Figure 12,
the observed peak slopes of various hills over which observations have been made,
are plotted against estimated values of \/Zg on a logarithmic scale. The prediction
of Equation (11) is also plotted, as a line. The observations have been plotted as
letters whose corresponding details are presented in Tables II and ITI. (Note that it is
the bottom left hand corner of each letter that corresponds to the actual data point.)
To plot the characteristics of a particular hill in this way, its peak slope, its local
roughness length and its horizontal length scale, A, are all required. Invariably not
all of these parameters are given in the literature and so some of them have to be
estimated either from other parameters or from graphs. Where this has been done,
the figures used are prefixed by a ‘~’ in Table III. A further source of error is that
separation may also be related to small areas of large slopes whilst the peak slopes
given here are necessarily the slopes appropriate to large scales and are obtained
from data which will have been implicitly, or even explicitly, smoothed.

The first thing to note from Figure 12 is that all the experiments for which
separation is reported, lie above the line given by Equation (11). This agrees with
the comment above that this equation provides a lower bound for . and also
the suggestion that three-dimensional hills may have a slightly larger 8.y, than
that predicted by Equation (11). Kettles Hill lies well below the line in agreement
with its non-separated flow. Brent Knoll lies just on the line and Askervein just
above it. In Table III both of these are shown to be non-separating. However, for
Brent Knoll, Mason and Sykes (1979c¢) report fluctuations in the flow that are large
enough to reverse the flow in the lee of the hill and for Askervein, Teunissen e al.
(1987) report that quite extensive areas of separation occur in the lee of the hill for
wind directions perpendicular to the hill’s major axis, though this is not evident
from the published data. Clearly these two cases are marginal and so are not in
great disagreement with Equation (11). Thus, Equation (11) would appear to give
a reasonable guideline for the onset of separation.
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Fig. 12. Estimates of the maximum slope, #, of various hills at which observational experiments
have been carried out are plotted on a linear scale against A/Z; on a logarithmic scale. The key to
the symbols is given in Table II and whether the flow was observed to separate or not is indicated
in Table III. Also shown are the predictions, given by Equation (11), of the critical value of slope at
which separation first occurs, fcrr.
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TABLE I
Key to symbols plotted in Figure 12 with references

Plotted symbol  Hill Reference(s)

A Askervein Taylor and Teunissen (1987)
Salmon et al. (1988a)

Blashaval Mason and King (1985)

BK Brent Knoll Mason and Sykes (1979c¢)

w

K Kettles Hill  Salmon et a/. (1988b)

L Llanthony Grant and Mason (1990)
N Nyland Mason (1986)

S Sirhowy Mason and King (1984)

5. Conclusions

The numerical simulations of neutral, turbulent flow over two- and three-
dimensional hills, presented by Wood and Mason (1993), have been considered in
detail to determine what is the lowest value of #, the maximum slope of the hill,
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TABLE I
Relevant details of hills plotted in Figure 12

Hill Peak slope  Zp(m) A (m) Separation? (Y/N)
Askervein ~0.39 0.03 800 N
Blashaval ~0.45 0.01 ~800 Y
Brent Knoll ~0.36 0.02 ~1200 N
Kettles Hill  ~0.18 0.01 2400 N
Llanthony ~0.32 0.5 2620 Y
Nyland 0.45 0.05 ~500 Y
Sirhowy 0.62 0.003 ~2000 Y

required for these flows to separate. A combination of streamline plots, surface
stress patterns and particle trajectory analysis has been used to visualise the flow
and hence determine the onset and nature of separation.

The two-dimensional flows studied here, with A/Zy = 107, are found to sep-
arate at § = 0.31 (4/5, = 0.1). Both the packed and isolated three-dimensional
cases (again with A\/Zy = 10%) separate close to § ~ 0.63 (4/S5, ~ 0.1). The
three-dimensional isolated hills, for which separation has just occurred, have a
complex surface stress pattern, having two nodal singularities and two saddle point
singularities in the lee of the hill. At the steepest slope (not presented here), for
which 8 = 0.94 (A/ S}, ~ 0.15), upstream separation occurs. For the packed three-
dimensional hills, the surface stress patterns are much simpler, having just one nodal
and one saddle point singularity. For both three-dimensional cases the separation
region is much smaller and shallower than in the two-dimensional case.

By extrapolating results of a two-dimensional linear analysis beyond its range
of validity and assuming a logarithmic upstream or undisturbed velocity profile,
an approximate expression for the value of 8, the slope for which the flow first
separates, is obtained:

(log(l/Zo))*
(log(/m /Z0))*(1 + 4.2/ log(1/ Z0))

Hcrit =

This shows good agreement with two-dimensional numerical model predictions
of 8. and is generally in accord with observations though it is suggested that this
estimate represents a lower bound to the actual critical slope for separation. Due
to the approximations made in deriving this estimate for 8.y, it is likely to become
less accurate for hills with a strong streamwise asymmetry.

The only other known estimate for 8y is that given by Tampieri (1987) which
is approximately half that suggested here. This is because the present derivation
retains a term which is non-linear in the flow perturbation, AU, and estimates this
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non-linear term using linear results. Though this approach is not strictly rigorous,
the comparisons with numerical and experimental results, as well as with atmo-
spheric observations, suggest that it gives better results than completely neglecting
this term, as Tampieri did.

Finally, as well as providing a useful, practical estimate of when flow over a hill
is likely to separate, the expression for 8. gives a method of predicting those hills
for which linear analysis is likely to be useful. This can be achieved by comparing
the actual maximum slope of a particular hill, , with the corresponding prediction
of B.yi. Thus, for /8. < 1, it is expected that linear theory would provide useful
guidance on the flow structure whilst for 8/6.5 = 1, it is unlikely to do so.

Acknowledgements

I would like to thank Paul Mason and Alan Ibbetson for their help and support
during the period of this work and Alan Grant, Fiona Hewer and David Pick who
provided helpful comments on this manuscript.

References

Belcher, S. E.: 1990, Turbulent Boundary Layer Flow over Undulating Surfaces, Ph.D. dissertation,
Cambridge University.

Belcher, S. E., Newley, T. M. J., and Hunt, J. C. R.: 1993, ‘The Drag on an Undulating Surface Due
to the Flow of a Turbulent Boundary Layer’, J. Fluid Mech. 249, 557-596.

BRE: 1989, The Assessment of Wind Speed over Topography, Building Research Establishment,
Digest 346, HMSO, London.

Britter, R. E., Hunt, J. C. R., and Richards, K. J.: 1981, ‘Air Flow over a Two-Dimensional Hill:
Studies of Velocity Speed-Up, Roughness Effects and Turbulence’, Quart. J. Roy. Meteorol. Soc.
107, 91-110.

Clark, T. L.: 1977. *A Small-Scale Dynamic Model using a Terrain-Following Transformation’, J.
Comput. Phys. 24, 186-215.

Giostra, U., Tampieri, F,, and Trombetti, E: 1989, ‘On the Onset of Separation in Turbulent Boundary
Layer Flow over Two-Dimensional Humps of Various Size’, Nuovo Cimento, 12C, 649-661.

Grant, A. L. M. and Mason, P. J.: 1990, ‘Observations of Boundary-Layer Structure over Complex
Terrain’, Quart.J. Roy. Meteorol. Soc. 116, 159—186.

Gong, W. and Ibbetson, A.: 1989, ‘A Wind Tunnel Study of Turbulent Flow over Model Hills’,
Boundary-Layer Meteorol. 49, 113-148.

Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H.: 1978, ‘Kinematical Studies of Flow Around
Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualisation’, J. Fluid Mech.
86, 179-200.

Hunt, J. C. R,, Leibovich, S., and Richards, K. J.: 1988, ‘Turbulent Shear Flows over Low Hills’,
Quart.J. Roy. Meteorol. Soc. 114, 1435-1470.

Hunt, J. C. R. and Simpson, J. E.: 1982, ‘Atmospheric Boundary Layers over Non-Homogeneous
Terrain’, in E. J. Plate (ed.), Engineering Meteorology, Chapter 7, Elsevier Sci., Amsterdam, pp.
269-318.

Jackson, P. S. and Hunt, J. C. R.: 1975, ‘Turbulent Wind Flow over a Low Hill’, Quart. J. Roy.
Meteorol. Soc. 101, 929-955.

Lighthill, J.: 1989, An Informal Iniroduction to Theoretical Fluid Mechanics, Oxford, Clarendon
Press, 260 pp.



164 NIGEL WOOD

Mason, P. J.: 1986, ‘Flow over the Summit of an Isolated Hill’, Boundary-Layer Meteorol. 37,
385-405.

Mason, P.J. and King, J. C.: 1984, ‘Atmospheric Flow over a Succession of Nearly Two-Dimensional
Ridges and Valleys’, Quart. J. Roy. Meteorol. Soc. 110, 821-845.

Mason, P. J. and King, J. C.: 1985, ‘Measurements and Predictions of Flow and Turbulence over an
Isolated Hill of Moderate Slope’, Quart. J. Roy. Meteorol. Soc. 111, 617-640,

Mason, P. J. and Sykes, R. I.: 1979a, “Three-Dimensional Numerical Integrations of the Navier—Stokes
Equations for Flow over Surface-Mounted Obstacles’, J. Fluid Mech. 91, 433-450.

Mason, P. I. and Sykes, R. L: 1979b, ‘Separation Effects in Ekman Layer Flow over Ridges’, Quars.
J. Roy. Meteorol. Soc. 105, 129--146.

Mason, P. J. and Sykes, R. L: 1979¢, ‘Flow over an Isolated Hill of Moderate Slope’, Quart. J. Roy.
Meteorol. Soc. 105, 383-395.

Nanni, S. C. and Tampieri, E: 1985, ‘A Linear Investigation on Separation in Laminar and Turbulent
Boundary Layers over Low Hills and Valleys’, Nuove Cimento 8C, 579601,

Newley, T. J.: 1985, Turbulent Airflow over Hills, Ph.D. dissertation, Cambridge University.

Salmon, J. R., Bowen, A. J., Hoff, A. M., Johnson, R., Mickle, R. E., Taylor, P. A., Tetzlaff, G., and
Walmsley, J. L.: 1988a, “The Askervein Hill Project: Mean Wind Variations at Fixed Heights
Above Ground’, Boundary-Layer Meteorol. 43, 247-271.

Salmon, J. R., Teunissen, H. W., Mickle, R. E., and Taylor, P. A.: 1988b, ‘The Kettles Hill Project:
Field Observations, Wind-Tunnel Simulations and Numerical Model Predictions for Flow over
a Low Hill’, Boundary-Layer Meteorol. 43, 309-343.

Tampieri, F.: 1987, ‘Separation Features of Boundary-Layer Flow over Valleys’, Boundary-Layer
Meteorol. 40, 295-307.

Taylor, P. A., Gent, P. R., and Keen, J. M.: 1976, ‘Some Numerical Solutions for Turbulent Boundary
Layer Flow above Fixed, Rough, Wavy Surfaces’, Geophys.J. R. Astr. Soc. 44, 177-201.

Taylor, P. A. and Lee, R. J.: 1984, ‘Simple Guidelines for Estimating Wind Speed Variations due to
Small Scale Topographic Features’, Climatol. Bulletin 18, 3-32.

Taylor, P. A. and Teunissen, H. W.: 1987, ‘The Askervein Hill Project: Overview and Background
Data’, Boundary-Layer Meteorol. 39, 15-39.

Teunissen, H. W., Shokr, M. E., Bowen, A. J., Wood, C. J., and Green, D. W.R.: 1987, *The Askervein
Hill Project: Wind-Tunnel Simulations at Three Length Scales’, Boundary-Layer Meteorol. 40,
[-29.

Van Dommelen, L. L. and Cowley, S. J.: 1990, ‘On the Lagrangian Description of Unsteady Boundary-
Layer Separation. Part 1. General Theory’, J. Fluid Mech. 210, 593-626. ’
Wood, N.: 1992, Turbulent Flow over Three-Dimensional Hills, Ph.D. thesis. University of Reading.
Wood, N. and Mason, P. J .: 1993, ‘The Pressure Force Induced by Neutral Turbulent Flow over

Hills’, Quart. J. Roy. Meteorol. Soc. 119, 1233-1267.



