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ABSTRACT 

Our work is aimed at studying the optimization of a complex motor behaviour from a global 
perspective. First, 'free climbing' as a sport will be briefly introduced while emphasizing in particular 
its psychomotor aspect called 'route finding'. The basic question raised here is how does the 
optimization of a sensorimotoricity-environment system take place. The material under study is the free 
climber's trajectory, viewed as the 'signature' of climbing behaviour (i.e., the spatial dimension). The 
concepts of learning, optimization, constraint, and degrees of freedom of a system will be discussed 
using the synergistic approach to the study of movement (Bernstein, 1967; Kelso, 1977). Measures of 
a trajectory's length and convex hull can be used to define an index whose equation resembles that 
of an entropy. This index is a measure of the trajectory's overall complexity. Some important concepts 
related to the thermodynamics of curves will also be discussed. The optimization process will be 
studied by examining the changes in entropy over time for a set of trajectories generated during the 
learning of a route (ten successive repetitions of the same climb). It will be shown that the entropy of 
the trajectories decreases as learning progresses, that each level of expertise has its own characteristic 
entropy curve, and that for the subjects tested, the mean entropy of skilled climbers is lower than that 
of average climbers. Basing our analysis on the concepts of degrees of freedom and constraint 
equations, an attempt is made to relate trajectory entropy to system entropy. Based on the postulate 
that trajectory entropy is equal to the difference in entropy between the unconstrained and constrained 
system, a model of motor optimization is proposed. This model is illustrated by an entropy graph 
reflecting a dynamic release process. In the light of our results, two opposing views will be examined: 
movement construction vs. movement emergence. 
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1. F R E E  C L I M B I N G  AS A C O M P L E X  M O T O R  B E H A V I O U R :  

Value  and  Speci f ics  o f  this Field o f  S tudy  

Free climbing is an anti-gravitational motor activity consisting of moving up vertical 
structures using natural means (arms, legs, and body in general). These structures may be 
rocks or artificial climbing walls. The optimization of this complex motor behaviour can 
be studied by analyzing its repeated executions and extracting the characteristics of motor 
expertise. But an empirical understanding of the activity is needed first in order to define 
its essential characteristics and situate them in the broader study of the subject's relationship 
to the environment (system vs. constraints). 

1.1, 

The movements performed by a climber are adapted to the form of the vertical 
environment. The climber must interpret the ever-changing structure of the rock and move 
accordingly. This process has been called route finding, one of the key terms in the 
climber's vocabulary. Experts say that a good climber is able to take full advantage of the 
biomechanical properties of his body in order to interpret the rock structure in an ongoing 
manner and produce a series of movements which are linked together into actual 
'sentences', the framework of the climber's motor behaviouro 

The study of this kind of behaviour has shown that complex systems function in two 
complementary modes, the informational symbolic mode and the dynamic mode (Pattee, 
1977). These two modes appear in fact to be strongly interconnected in a climber's motor 
behaviour. On the symbolic side, the sequence of movements has its own 'syntax" which 
appears to be dictated by the shape of the spatial environment. On the dynamic side, the 
intrinsic motricity developed by good climbers enables them to constantly adapt to those 
environmental constraints. 

At the 'syntactic' level, the movement sequence is generated by a chain of states which 
is constrained internally by a simple contiguity rule. In such a chain, the final position of 
one movement is identical to the initial position of the next movement, and there is no 
recourse to intermediate positions, which increase the energy expended on the task. This 
rule must be applied to every link in the chain so that their concatenation can take place, 
thereby forming a well-connected sequence through which the dynamic process can be 
expressed. This sequence can be compared to a rhythmic flow. In the synergistic approach 
referred to here (Haken, 1977) each movement, which is optimized by its constraint 
equations (environmentally specified patterns), is generated by a 'coordinative structure' 
(Kugler, Kelso, & Turvey, 1980). In motor skills, viewed here as optimized, 
constraint-reducing behaviours, the muscles of the body are organized into coordinative 
structures with varying degrees of autonomy (Turvey, Shaw, & Mace, 1978). In the 
synergistic theory of movement coordination, the coordinative structures act as states which 
'attract' the dynamics of the sensorimotor system (Sch6ner & Kelso, 1988). 

A chain of movements can also be considered as meta-synergy which is a second-order 
structure specific to complex motor skills. The higher-order coordinative or 'cooperative' 
structure has a semantic dimension for the subject (route finding): "There is no intelligible 
language without a geometry, an underlying dynamic dimension where the language 
formalizes the stable structural states" (Thorn, 1968). In the present study, we shall attempt 
to provide evidence of the emergence of this higher-order synergy in the production of 
movement. An original method will be used to analyze an evolving series of trajectories 
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obtained by repeated execution of the same task. The climbers' trajectories are viewed here 
as the 'signature' or written trace of their relationship to the environment (see section 2). 

1.2. I n t e rna l  a n d  Ex t e rna l  Cons t r a in t s .  

The shape of a climber's trajectory (which can be defined, for example, as the line 
drawn by his center of gravity) is subjected to two types of constraints. 

External constraints are environment-generated. The climbing route itself has a specific 
'constraining force' (its difficulty) which is exerted on the system (see climbing route 
difficulty, paragraph 3.1). The main constraints imposed by the spatial environment are the 
form and orientation of the handles, which can force the climber to adopt certain postures, 
and the spatial coordinates of the handles, which determine the general path of the route. 
In order to neutralize the effects of such spatial constraints, it suffices to test subjects in the 
same environment (on the same climbing route). 

Internal constraints are subject-dependent. They are mainly manifested in the subject's 
level of expertise (at the time of execution), which is considered here to correspond to the 
sensorimotor system's degree of plasticity. An expert's behaviour should be highly flexible, 
enabling him to adapt with ease to more stringent constraints. To cope with such 
environmental constraints, the system must develop a series of adapted coordinative 
structures, "the immediate adjustment to any kind of disturbance being the necessary result 
of a dynamic system in which all muscles are forced to act as a unit" (Kelso, Holt, Kugler, 
& Turvey, 1980). The subject's degree of expertise is in effect his ability to produce a 
well-linked chain of correct, accurate, and well-formed movements. This involves control, 
precision, and coordination. The ability to produce such a movement sequence will be 
assessed here by means of a collective variable which attempts to measure the complexity 
of the climber's trajectory. 

In summary, spatial constraints in the environment (topo-kinesis) provide a means 
through which a climber can express his skill (morpho-kinesis), and the shape of the 
resulting trajectory is considered to be an account of how well the climber's system 
integrates them. 

1.30 D e g r e e s  o f  F r e e d o m  a n d  C o n s t r a i n t  E q u a t i o n s  

The number of degrees of freedom of a system is the smallest number of independent 
variables needed to identify a system state. The mathematical equation for a system's 
degrees of  freedom N is 

N = n D  - C (i) 

where n is the number of elements in the system, D is its dimension, and C is the number 
of  constraint equations affecting it (Turvey, Fitch, & Kelso, 1982). A constraint equation 
is a link established between two elements in the system which reduces the number of 
degrees of  freedom. For example, in a two-dimensional space, two points with coordinates 
(x, y) and (x', y') form a system with four degrees of freedom. If  the link between these 
two points is defined (a constraint equation), the system then has only three degrees of 
freedom. When subjected to environmental constraints, the human system can reduce the 
number of degrees of freedom by creating dependencies or couplings between the muscular 
activities at different joints (Bernstein, 1967). The greater the number of environmental 
constraints, the greater the term C (equation 1) and the smaller the number of degrees of 
freedom. 
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2. T R A J E C T O R Y  A N A L Y S I S  

2.1. C h o i c e  o f  an  I n d e x  

A trajectory is a line drawn by a moving point. It is a geometric object. Thus, in the 
analysis of trajectories, we are only studying the spatial aspects of the process. As a 
geometric form, a trajectory contains global information about the climber's motor 
behaviour. 
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Fig. 1. Trajectory of a 'searching' climber. 
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Fig. IBIS. Trajectory of a 'searching" climber. 
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By measuring the geometric properties of a trajectory, treated here as a physical object 
with a certain amount of unity, we are in effect globally analyzing the process which 
generated that trajectory. For example, in 'on sight' climbing, i.e., climbing in an entirely 
unknown environment, the trajectories of certain climbers (those with a low level of 
expertise) contain a series of more or less complex nodes which are indicative of a search 
process (fig. 1 and IBIS). A trajectory can thus be considered as a physical object whose 
complexity can potentially be measured with an index. The index used here is derived from 
measurements of  trajectory length, and its equation leads to a measure of a curve entropy. 

2.2.  E n t r o p y  o f  a S y s t e m  

There are several definitions of entropy. Generally speaking, if a system can occur in 
P equally probable states, then the entropy of that system is defined as the logarithm of P 
(P is also the number of degrees of freedom of the system). 

The term 'state'  should be clearly defined. To illustrate, take the example of a die. A 
priori, there are six states, so the die's entropy is log 6. But if we consider the parity of the 
die, then the 1-3-5 side is one state and the 2-4-6 side is another, making two states in all. 
So the entropy is now equal to log 2. 

2.3.  T h e r m o d y n a m i c s  o f  C u r v e s  

Let F be a finite curve of length L and let c be its convex hull (its 'perimeter'). Let D 
be a straight line which crosses the curve. Then there are m points where D and F intersect 
(fig. 2). The entropy of system D is equal to log~m (each of the m points can be considered 
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Fig. 2. Entropy of a curve (see text). 
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to be a state of the system D N r) .  Let D vary. Then the mean number of intersections is 
equal to ~ ,  and the entropy of r is logarh. 

Santolo's classic theorem (Santolo, 1976) states that ria -- 2L/c. Therefore, the entropy 
H of a curve (or trajectory) is definedby the equation H = loga2L/c (Mend~s France, 1981). 

2.4. M e a s u r i n g  the In te rac t ion  B e t w e e n  the C l imber  and  His  E n v i r o n m e n t  

W e  are attempting to measure the plasticity of a system functioning in a constraining 
environment. The climber's trajectory contains a" certain amount of information. Only the 
geometric properties of the trajectory are of interest to us here. 

Let N be the number of degrees of freedom of the unconstrained system ( for example, 
the climber on the ground) and let N' be the number of degrees of freedom of the 
constrained system (the climber in action on the climbing wall). Then N' < N (see equation 
1), and the change in the entropy of the system, AS, is defined by the equation 

AS = logaN - logaN' (2) 

The entropy H of the climber's trajectory is 

H = loga2L/c (3) 

At this point, we propose the following postulate 

H = a S  (4) 

This gives us 

H = logan - logaN' (5) 

This postulate can be considered legitimate for the following reasons: 
= First of all, the movements of good climbers have few or no restrictions. They have 

nearly as much control over their movement while climbing as they do on the ground. In 
other words, the vertical environment is not very constraining, so N' is close to N and AS 
remains small. Moreover, the trajectories of experienced climbers are very smooth (fig. 3) 
and their entropy values are very small. (Ideally, if N' = N, then H is null, 2L/c = i, and 
the trajectory is a straight line.) 

- Secondly and inversely, the vertical environment is highly constraining for poor 
climbers (to the extent that they sometimes become completely immobilized and have no 
degrees of freedom; this usually leads to a fall). In this case, N'is much smaller than N and 
AS is large. The trajectories of such inexperienced climbers are complex and twisted (fig. 4) 
and their entropy value is high. 

- In summary, the equation H -- AS expresses the ecological relationship between the 
climber (AS) and the environment (H), i.e. between the dynamics of the climber's system 
and the external constraints. 

3. E X P E R I M E N T A L  P R O C E D U R E  A N D  D E S C R I P T I O N  O F  D A T A  

3.1. Subjects  

Subjects were tested as they 'learned' a climbing route (ten successive repetitions of the 
same climb): The subjects were assigned to one of two groups on the basis of their level 
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of expertise (other parameters such as age, weight, height, and limb length were not 
considered). 

The difficulty scale used in free climbing is divided into eight levels. The four most 
difficult levels are divided into three sub-levels each (6a, 6b, and 6c for difficulty level 6, 
etc.). A climber is said to be at level 6b, for example, if he is capable of 'on sight' climbing 
of level-6b routes, that is, if he can climb them without prior knowledge of the terrain. 

Group S1 contained three level-6b subjects (average skill). Group $2 included four 
level-7b subjects (highly skilled). The degree of expertise claimed by each subject was 
assessed and confirmed by a group of experts. 

3.2.  I n s t ruc t ions  

Subjects were asked to climb in a natural manner. Each subject had to repeat the same 
climb ten consecutive times. The ten trajectories obtained for each subject were used as an 
' image '  of  the motor optimization process. A one-minute resting period was allowed 
between climbs. 

3.3.  E x p e r i m e n t a l  S e t u p  

A climbing route was constructed on an artificial climbing structure at the E.N.S.A. in 
Chamonix, France. It was a moderately difficult route, rated at level 6a. None of the 
subjects in either experimental group would have trouble with a 6a route. 

The climbers were photographed and videotaped by cameras located 17 meters from the 
10-meter-high wall. The trajectories were defined by the movement of  a light-emitting diode 
attached to the climber's back at waist level. The camera was in position B on a tripod, 
with the diaphragm closed (16 or 22). The film sensitivity level was 100 ASA and the 
surrounding lights were dimmed. The shutter was opened when the climb began and closed 
when the climber reached the summit of the route, approximately one minute later. 

The videotapes were processed by a computer system which digitized the trajectories 
and calculated the entropy value of each trajectory via an algorithm. 

4. R E S U L T S  (fig.  5 and  6) 

4.1. 

An analysis of variance was computed on the changes in entropy across climbs. Main 
effects of  the climb number (location in the series of ten) (F(9,45) -- 21, p < .001) and 
expertise level (F(1,5) -- 57.8, p < .001) were obtained, in addition to an interaction between 
these two factors (F(9,4S) = 4, p < .005). These results indicate that the successive 
adjustment of this complex behaviour to external constraints produces a series of trajectories 
of  decreasing entropy. Figure 7 illustrates this transition towards an optimal, relatively 
stable and smooth trajectory (spatially homothetic). 

The entropy curve of the expert climbers (level 7b) fell rapidly at first, and then reached 
a clear, stable plateau by the third climb. For the average climbers (level 6b), the decline 
in entropy was more gradual and more irregular across climbs. The speed at which the 
sensorimotor system achieves a stable regime thus appears to increase as the level of 
expertise increases. This conclusion was confirmed by the study of the relationship between 
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Fig. $. Mean trajectory entropy for groups S1 and $2. 
Fig. 6. Mean trajectory entropy by mean climbing time. 

the time a subject took to make a climb and the entropy of the corresponding trajectory 
(parametric curves). It is clear from figure 6 that these two variables are correlated, with 
the expert climbers clustered in the area where both entropy and climbing time are optimal. 

4.2. Discuss ion  

Among the results presented above, the one pertaining to the effect of skill level needs 
further qualification. Indeed, other measures showed that the absolute value of the entropy 
was not discriminate. For example, certain very skilled climbers produced high-entropy 
trajectories. Although these trajectories are very smooth, they also span a wide area, and 
seem to reflect the ability of these climbers to utilize all of their body's geometric and 
ballistic properties. Because of this, we shall initially consider only the climb-number effect 
and the entropy changes for a given subject to be significant findings from this study. In 
particular, the way in which the entropy declined appears quite significant (quick appearance 
of a plateau for experienced climbers). In addition, the change in entropy (AH), which 
diminished between the first and last trajectories, decreased as the level of expertise 
increased. The entropy differentials between the beginning and end of the optimization 
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Fig. 7. Optimization of a climber's trajectory. 
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process represent a decrease in the number of degrees of freedom of the system. Indeed, 
H' = logaN - logaN' and H" = lognN - logaN", and therefore, AH = logaN"/N'. For group 
$2 (skilled climbers) N"/N' was equal to 1.27, and for group S1 (average climbers) it was 
equal to 1.46. 

5. G E N E R A L  D I S C U S S I O N  

5.1. 

We shall attempt here to show that the synergistic approach to the study of complex 
motor behaviours can be applied to the interpretation of the results obtained above. To 
begin, we need: 

* a definition -- the number of degrees of freedom of a system: N = nD-C (equation 
1, see paragraph 1.3) 

* a postulate -- AS -~ H (see paragraph 2.4) 
* a law -- the second law of thermodynamics: dS/dt ~, 0 

First, equation 1 is used to define the number of degrees of freedom of the system. As 
the environment becomes more constraining, the number of constraint equations C required 
to adapt the system to the environment increases, thereby causing N to decrease. This gives 
us N' < N < nD (see paragraph 1.3). 

Now, from equation 5 we get logaN' --- logaN - H, where logaN' is the natural log of 
the number of degrees of freedom of the constrained system (for example, during the first 
climb), N is the number of degrees of freedom of the unconstrained system (the climber 
resting on the ground), and H is the entropy of the trajectory (the first one, for example). 
By assigning an arbitrary value to N (such that N' < N < nl)), we can get a general idea 
of how the entropy of the system evolves during the learning process. For example, for 
logaN = 9.8, we obtain the system entropy curve shown in figure 8. 

The initial state of the system is logan (climber on ground), the state of maximum 
constraint is lognN', and the final state is logaN", where N" is the value of N' when the 
system is stable (at least for group $1). For the sake of simplicity, the $2 parameters are 
not shown in the figure, and the same value of logan was used for both groups (same 
number of degrees of freedom for the resting systems). The question mark shown in fig. 8 
indicates the uncertainty of the value of logan (logaN' < lognN < loganD). 

The first outstanding point from these results is that trajectory entropy decreases as the 
number of climbs increases, and consequently, if we assume that H -- AS, the entropy of 
the constrained system (logaN') rises as the motor optimization progresses 
(self-organization). 

Furthermore, the shape of the curve showing the change in system entropy across climbs 
suggests a release phenomenon wherein the system is abruptly brought into a state of 
maximum constraint (greater for S1 than $2) where the degrees of freedom are frozen 
((Vereijken, Van Emmerik, Whiting, & Newell, 1992), and then gradually moves towards 
the attractor state N" (at a slower pace for S1 than $2). 
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Fig. 8. Entropy release of the sensorimotor system during task optimization. 

5.2. Conclus ion :  E m e r g e n c e  o f  M o v e m e n t  versus  

Cons t ruc t ion  o f  M o v e m e n t  

In complex motor tasks, the construction of the movement by the system implies the 
existence of a motor program of increasing complexity (see "the acquisition of sequencing"; 
Keele & Summers, 1976; Martenuik & Romanow, 1983). Keele suggests that motor 
programs are generated by linking together a series of small behavioral programs which 
gradually increase in size and eventually form a single unit. Logically, this progression 
towards greater complexity must lead to a gradual decline in the number of degrees of 
freedom, and thus, a gradual decrease in system entropy as the system goes from the 
unconstrained state to increasingly structured states of constraint. Figure9 is an entropy 
graph showing this point of view, where arrival at the final state occurs 'from above'. This 
model obviously invalidates the postulate H = AS explained above (paragraph 2.4), and 
views the entropy of the system as comparable to the entropy of its trajectory, i.e. H = S. 
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Fig. 9. Decrease in entropy or release of the sensorimotor system. Two possible ways to reach the 
final state. 

Note that in order to avoid a potential paradox at this point, the initial and final states must 
not be confused with the path that leads from one to the other. 

Now, from our point of view, developed here, the optimization of a motor behaviour 
appears instead to go though a phase of  system release which allows the movement to 
emerge. Thus, the transition from" the initial, unconstrained state to the final, constrained 
state passes through an intermediate phase of maximum constraint (the high entropy values 
on the initial trajectories are indicative of this phase). This enables the system to evolve 
towards a state of equilibrium, considered to be an attracting state whose weight depends 
on the subject's motor ability. This attracting state is more stable when the system's 
intrinsic dynamics are in place (Sch6ner & Kelso, 1988). The release stage of motor 
optimization is attained by reducing the number of constraint equations and augmenting the 
number of the degrees of freedom by ' unfreezing' the system (Vereijken et al., 1992); in 
the end, only those constraint equations which are indispensable to the movement are 
selected. It appears as though the system applies the second law of thermodynamics in order 
to regain its stable state. 
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