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A B S T R A C T  

The aim of this work is to study complex ecological models exhibiting simple dynamics. We 
consider large scale systems which can be decomposed into weakly coupled subsystems. Perturbation 
Theory is used in order to get a reduced set of differential equations governing slow time varying 
global variables. As examples, we study the influence of the individual behaviour of animals in 
competition and predator-prey models. The animals are assumed to do many activities all day long 
such as searching for food of different types. The degree of competition as well as the predation 
pressure are dependent upon these activities. Preys are more vulnerable when doing some activities 
during which they are very exposed to predators attacks rather than for others during which they are 
hidden. We study the effect of a change in the average individual behaviour of the animals on 
interspecifie relationships. Computer simulations of the whole sets of equations are compared to 
simulations of the reduced sets of equations. 

KEY WORDS: Aggregation methods, competition, predation, individual behaviour, 
perturbation theory, 

1. I N T R O D U C T I O N  

It has been shown that simple mathematical models can exhibit complex dynamics (May 
et al., 1976). Simple discrete systems can exhibit cascades of bifurcations and chaotic 
behaviours (Lorenz, 1963; May et al., 1976). As a consequence, recently there has been a 
great interest in the study of these systems in various fields. For example, chaotic behaviour 
has been investigated in many disciplines. Simple systems such as a discrete logistic model 
in population dynamics can present complex behaviour with respect to parameters values. 
Roughly, we can say that there is a kind of paradox between the simplicity of the equations 
and the unexpected complexity of their solutions. 

The complexity (or the simplicity) of a system of ordinary differential equations or still 
of its solutions does not seem easy to define. Ecological systems often are considered as 
complex systems. Indeed, large numbers of  species interact in ecosystems and sometimes 
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they can be grouped into clusters, i.e. groups of strongly interacting species (Allen and 
Starr, 1982; O'Neill et al., 1986). The species are sets of individuals which can be of 
different ages. These individuals are doing many activities all day long such as searching 
for food of different types, feeding the young and so on. As a consequence, the populations 
must be divided into subpopulations corresponding to ages, activities, phenotypes, exposure 
to predation. Furthermore, these individuals can move, meet and interact in a fluctuating 
environment. This means that we would have to consider 1000 ordinary differential 
equations, for instance in a homogeneous case when neglecting the motions of the animals, 
and if we want to study the interactions between 10 species, with 5 age classes and 20 
activities. We certainly will consider this a very complex model. Anyway, it is a large scale 
system, or a system with many degrees of freedom and parameters. Consequently, it would 
be very difficult to handle so many equations and variables. 

Roughly, one considers the three ecological 'levels', the individual, the population and 
the ecosystem. The dynamics of ecological systems is a coupled process at each of these 
levels which necessitates development of methods for integrating these levels. Many authors 
have noted the importance of hierarchical structures in biology (Allen & Starr, 1986; 
Ehresmann & Vanbremeersch, 1987; MacMahon et al., 1978; Pattee, 1973; Whyte et al., 
1969). Methods using successive hierarchical clusters are good tools for the study of 
populations which are subdivided into subpopulations, themselves subdivided into further 
smaller sub-subpopulations and so on. These methods are mainly helpful for the integration 
of time scales. Another aspect concerns spatial scales. Processes occur very differently 
according to the level of observation, i.e. to the spatial scale (Burel & Baudry, 1990; Di 
Castri & Hadley, 1988; Wiens, 1989). 

Aggregation methods have been widely developed in different fields and particularly in 
ecological modelling. Large scale systems are condensed into smaller systems by 
aggregation of variables. These methods investigate conditions necessary to obtain a reduced 
set of equations governing the aggregated variables and depending upon them (Cale et al., 
1983; Gard, 1988; Gardner et al., 1982; Iwasa et al., 1987, 1989; Shaffer, 1981). 
Aggregation methods, such as perfect aggregation, cannot be applied in general. Perfect 
aggregation will be possible when parameters take particular values. 

The aim of this study is to show that aggregation methods can also be applied when 
there are different time scales in the dynamical systems. The aggregated system is then 
described with the help of approximation methods based on perturbation theory. This study 
shows that particular complex models or large scale systems can exhibit simple dynamics. 
Such a reduction in the complexity can be obtained when the system can be subdivided into 
subsystems or groups such that the strengths of the interactions within a subsystem are 
much larger than those between subsystems. The important differences in the strengths of 
the interactions lead to different time scales, respectively associated to the intra-group and 
intergroup dynamics. 

Then, with each subsystem is associated at least one slow time varying global variable, 
or aggregated variable, which must be a constant of motion, i.e. invariant for the intra-group 
dynamics. Consequently, the differences in the orders of magnitude of the time scales 
allows one to apply approximations which leads at each level to a reduced set of equations 
governing global variables or aggregated variables. We shall show that under certain 
conditions, perturbation theory enables to obtain such a reduced set of differential equations 
governing the global variables (Abraham & Robbin, 1967; Fenichel, 1971; Hirsch et al., 
1977; Hoppensteadt, 1966; Nayfeh, 1973). This reduced set of equations can be simulated 



113 

more easily than the whole set of equations. 
We can say that a hierarchical structure is the response to complexity for these systems. 

By taking an appropriate hierarchical organization, the complexity of the system is reduced 
because its elements mainly interact inside the same subsystem and very few between 
different subsystems. This spontaneous tendency to self-organize in a hierarchical way can 
be justified in the frame of thermodynamics (Auger, 1989, 1990). The existence of 
quasi-autonomous dusters rapidly evolving towards intra-group equilibrium leads to the 
decoupling between slow varying global variables and fast varying intra-group variables. 

The influence of the average individual behaviour of animals on interspecific 
relationships, particularly in the framework of competition and prey-predator models is 
going to be investigated. In most mathematical models of predation, each interacting 
population is considered a whole i.e., all individuals are assumed to be identical and 
homogeneous in space and time. In this way, one has to consider two differential equations 
describing the time variations of the total population of preys and predators. These types 
of predator-prey models do not take into account the activities of the animals. Nevertheless, 
animals are doing many activities all day long whose sequences can also vary with seasons 
or else with environmental changes such as pollution or climate changes. 

For example, when one considers predator-prey models in connection to activity 
sequences, one should consider that the prey animals may be much more vulnerable when 
they search for food sources than for anything else. Indeed, they can be hidden from 
predators attacks. As a consequence, the predation pressure on the prey would not be fixed 
'a priori' but, it would be determined by the individual behaviour selected by animals with 
respect to surrounding environment. How a change in the individual behaviour can affect 
the interspecific relationships? In this study, we consider competition models and 
prey-predator models. 

2. K I N E T I C S  O F  S U B P O P U L A T I O N S :  P O P U L A T I O N  K I N E T I C S  

In this first section, we will briefly recall the method for the study of dynamical models 
of hierarchically organized populations described in more details in previous work (Auger, 
1982, 1983, 1985, 1986, 1989). Here, we present the method in the framework of regular 
perturbation theory~ 

2.1. Subpopu la t ions  S y s t e m  of  Different ial  Equat ions  

Consider a set of populations which can be subdivided into subpopulationso In general, 
the system is composed of many subpopulations i that can vary with time, i E [1, N]. Let 
ni(t ) be the number of individuals in subpopulation i at time t. The system behaviour is 
described by the set of differential equations governing the subpopulation variables hi(t): 

dn i 
dt = f i ( " l , " 2  . . . . .  n~). (1) 

Usually, such equations are nonlinear and the behaviour of the system can be very complex, 
in particular if there are many subpopulations leading to many coupled differential 
equations. For this reason, in our previous work Auger (1989), we have considered 
particular systems, i.e. hierarchically organized populations for which one can obtain a 
simplified description. 
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We consider a partition of two populations into subpopulations. Let N a be the number 
of  subpopulations in population c t ,  a E [1, 2]. Let i a be the index for subpopulation i of 
population a ,  i a E [1, Na]. The variables are n~(t), i.e. numbers of individuals in the 
i a th subpopulation of population ot at time t, noted more simply ~( t ) .  We use an upper 
index to indicate the population and a lower index to indicate the subpopulation. Using 
these notations, equations (1) become: 

IX 

dn  i 
= R ~ii(n a) + faii~(nIX, n~) ,  (2) 

dt  

with n a = (n~,n 2 ..... n•.) and n 13 --(n~l,n~ 2 ..... n~a), 

where  if(nIX) -- O ( I , ,  a I) and -- O( l" IX I), 
and where R >> 1 or still e = 1/R << 1. 

In equations (2), if a = 1, I~ = 2 and reciprocally. R is a constant, called scaling factor 
large with respect to one. Using eq. (2), we consider separately intra-population interactions 
and inter-population interactions./~/are intra-population ct functions only depending upon 
components of  group a vector ha,while t /~  are inter-population functions depending upon 
vectors n a and n t~. We assume that the intra-population terms are much larger than the 
inter-population terms. Thus, we can regard inter-population terms as perturbations with 
respect to intra-population ones. I f  we assume that the functions ~/ and ~/1~ are of  the 
same order of strength, it implies that the scaling factor is large or else that its inverse is 
a small parameter. Typically R = 50-100 (i.e. e = 0.02-0.01) is usually sufficient to apply 
perturbation methods. Eq. (2) may be rewritten in a more familiar way, that is in the 
framework of regular perturbation theory as follows: 

an? -_ (3) 
dz 

where e = 1/R << 1 and t -- e.'~ . x is a fast time scale with respect to t. We have put 
equation (3) in a form which is suitable to regular perturbation theory rather than in a form 
suitable to singular perturbation theory (Hoppensteadt, 1966; Nayfeh, 1973). We now use 
the Fenichel central manifold theorem (Abraham et al., 1967; Fenichel, 1971; Hirsch et a l ,  
1977). 

2.2.  F r o m  S u b p o p u l a t i o n s  to P o p u l a t i o n s  

Now, let us recall methods allowing to obtain differential equations governing 
population variables n a which are the following variables 

n a =  E n~ t '  (4) 
i 

Macro variables such as the total biomass of each population could be of interest. In this 
case we would also have a linear relationship between aggregated variables and 
subpopulations, but with parameters such as the average biomass of each subpopulation. In 
the following parts we limit the study to relations (4). Dynamical equations of populations 
n a can be obtained as follows 

dna  --" ~-~ dr, 
d'~ i=l 
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Eq. (5) is composed of 2 equations while equations (2) or (3) are composed of N 1 + N 2 
equations. For instance, in the case of  2 populations each one containing 10 subpopulations, 
we get 2 global equations (5) and 20 equations (2) or (3). Of course, such a system (5) is 
interesting if it is autonomous. This will be possible under certain conditions. Perturbation 
theory and particularly the Fenichel central manifold theorem will determine these 
conditions. For this determination the equations have to be written in a form suitable for 
applying this theorem. 

2.3.  S l o w  V a r y i n g  P o p u l a t i o n s ,  Fas t  V a r y i n g  S u b p o p u l a t i o n s  

Now, substitute time derivatives of equations (3) into equations (5) 

N a N c~ 

dn~  -- ~_~ ~ i (n  a) + ~ ~_~ f~i~(n~ [~) = I + E ,  (6) 
do; i = l  i=1 

For notational convenience, let I represent intra-population processes and E inter-population 
processes which are defined as follows 

N a N a 

I = E i f ( n ~  and E -- ~ E ffl~(na, nl3) �9 (7) 
. i = 1  i = 1  

Thus, the dynamics in eq. (6) can be represented by the two terms I and E. It is required 
that the intra-population term I vanishes in equations (6). This means that the population 
variable n ~ is a constant of  motion for the intra-population dynamics leading to a simplified 
form for eq. (6) 

N a 

dna -- E ~_, ffl~(na,nP). 
dx (8) 

N,X 

or still in time scale t dna = ~ ,  ~ii~(n%n~).  
dt i=1 

As a consequence, there is a time hierarchy. Population variables n ~ are slow time varying 
with respect to any subpopulation variable n~ 

dn o dn~ I-'~-I < <  I-~- I" (9) 

The characteristic time scale for population variables is t while it is x for subpopulations. 
Indeed, equation (6) shows that as a result of  the deletion of the intra-population part / ,  the 
population variables n a are only governed by small inter-population terms which are 
perturbations in equation (3). On the contrary, subpopulations are mainly governed by 
strong intra-population terms which are the dominant part of the equation (3). 

2.4.  E q u a t i o n s  fo r  the P o p u l a t i o n  F r e q u e n c i e s  

Let us define new variables, intra-population frequencies v~(t) as follows 

n (O (lo) 
n~ 

These frequencies are the proportions of individuals in the different subpopulations i of each 
population ct. Let us consider the intra-population part of the equation (3) alone, or else by 
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putting t ffi 0 into equation (3) 

,d,,~ _- p~ (n~) ' (n) 
a~ 

In general, eq. (11) will be characterized by several equilibrium points. We assume eq. (11) 
with at least one equilibrium point. Let us consider a neighbourhood of one of these points 
at equilibrium. We assume positive equilibrium subpopulations n~ *~ and frequencies vff" 
solutions of the next eq. (12) 

~ ( , , %  -- o, (az) 

In the vicinity of this point, we define relative frequencies as follows. 

V~k(t ) -- v~(t) - v'~', (13) 

Using the previous relative frequencies, the equilibrium point is 0. Now, we consider the 
linear part of eq. (11) around this steady state point 

-- E A~V~j, i e [ 1 , N  a] 
dx ] 

where ~ V~i -- 0 and A~/ -- at 0, 

(14) 

Moreover, for the use of the Fenichel central manifold theorem, let us rewrite this previous 
equation by considering Na-1  variables V~/only 

W = jr1 "~ffv7 + O(IVal2) '  i e [ l ' N a - l l '  (15) 

where [Val 2 is the square of the norm of the following vector V a = (V1 a, V2 a, ... , 
r~a_l )  and where the parameters .4/~ can be easily expressed in terms of the parameters 

Na_ l  
ai~. In equation (15), r ~ a  is replaced by [1 - F. V~/]. We assume that all the eigen- 

i=1 
values L~ associated to eq. (15) have negative real parts. This is a stability condition for 
each subpopulation. This condition is required in order to apply the Fenichel central 
manifold theorem. 

2.5.  T h e  C o m p l e t e  S y s t e m  o f  E qua t i ons  

From definitions (10) and (13), it is easy to show that: 

~ ( 0  -- [~ ( t )  + ~ ' l  �9 ~"(0, (16) 

into equation (8), one gets dynamical equations for populations: 

N - 
dn a ~ -- ~}2 e r~ ( ' " , ' ~ , v " , v~ , ' " ' , ' ~ ' )  -- ~, ,~ (17) 

i,=1 

where P?~(.~,.~,V~,VL~',v% -- f ~ ( ( ~ * ~ - ' ) . . ~ , ( ~ * v ~ ' ) . . b ,  
a ,  ~ ,  a .  . I~* I~* P * -  

and where v a* ffi (v 1 ,v 2 ....... vN~ and v 1~* ffi (v 1 ,v 2 ...... ,vN~ ), 
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Thus, functions F i ~  are obtained by substitution of expressions (16) into functions f/al3. 
Moreover, due to assumptions concerning functions f/a and f / ~  (see equations (2)), the 
variable n a can be factorized defining functions N a. Another set of equations relates to 
relative frequencies Vi a. To get these equations, let us derive with respect to time ~ the 
previous relations (16): 

~.  d ~  0 8 )  dn i = [V~/+vi ]. and + n a . ~ . 
dr  d'r dx 

Substituting dn~ by its expression (3) and dn a 
"-~ ax 

derivatives dV~/ can be extracted and may be rewritten as follows 
dx 

by its expression (17) into (18), 

dV~/ Na-1 
-- E '~ ,~~ § ~ va  I ~) § ~ ~7("a'"~'V~ v~*)" (19) 

oh; /--1 

or still d V a  - - A a V  a + o([Va[  2) + e ~a(na,nf~,Va,Vl~,va*,v~*). 
dx 

Functions ~i  a can be easily written. ~ a  is the vector (~ia). Particular functions ~ i  a will 
be calculated in the framework of the examples of next sections. The last equation is the 

de 
following one, _ _  ~ 0. Grouping equations (17), (19) and the one regarding t, one 

d'~ 

gets the following completed set (20) 

dn  Ct --. F. n aNa(n a,n~, Va, Vf~,va*,vf~ *) , 

,~  (20) 

d v ~  - d a v  '~ + o(IVa 12) § e V~(,,~ VLva' ,v~ *) and ~de -_ 0. 
dx dx 

Written in this form, we can now apply the Fenichel central manifold theorem. First, we 
present this theorem in a form which is suitable for our study. 

2.6. F e n i c h e l  Cent ra l  M a n i f o l d  T h e o r e m  

We assume the existence of a vector field X on R//, N = k1§ X is C | [(0),R2,0] is a 
set of zeroes for X. In our application, the variables are V a = [Vi a ] E  Rkl : k 1 = (N 1 + N 2 
- 2), n = (,,1,,,2) ~ R2 and e ~ R. 

For any point n and at (0,n,0), we consider the set of eigenvalues of the linear part of 
X which is noticed DX(n) .  We assume that DX(n)  owns k 1 eigenvalues with negative real 
part and that 0 is an eigenvalues with multiplicity 3. At any point n E R 2, one can consider 
two spaces E s and E c respectively the stable and central spaces of  DX(n)  such as dim(E s) 
= k 1 and dim(E c )  =n3. All the eigenvalues of DX(n)  restricted to E s have negative real 
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parts. Using these notations and assumptions, the Fenichel central manifold theorem can be 
expressed in the next form: 

T h e o r e m :  

On any bounded part A included into R 2 and for k ~ N, there exists a manifold W, 
graph of an application C k, let say V~(n,~) : Ax[-e,+e] --, R kl, such as W(n,0) = 0, 
being invariant through X and being tangential to En c at any point (0,n,0). W is a central 
manifold (of class k). 

The invariability of W means that at any point (V~X,n,e) E W, the field X is tangential 
to W. At points (0,n,0), the central manifold W is tangent to the space (0,R2,0). At these 

points, En c is generated by (0,R2,0) and by the vectors OVa (0,n,0) = W ~ ( n ) ,  see  
0e 

appendix 1 for the details of calculation. In the next sections, we shall apply this central 
manifold theorem to examples of population dynamics with subpopulations. 

2.7. Reduced  Set  o f  Equat ions  for Populat ions  n 

The whole set of differential equations is the previous one (20). In (20), we consider the 
linear part of the intra-population equations in the neighbourhood of an equilibrium point 
such as indicated before. The central manifold Im can be calculated as follows 

V~(n ,e )  = e W ~ ( n )  + o(e2) with W~ = -(ha)-10p"(n,va*,vl~*)), (21) 

where ap~(n,va*,v I~*) = r 

The details of the calculation of the central manifold are given in the appendix 1. The 
central manifold is a graph of a function of (n,e). Consequently, equation (22) is obtained 
by substitution of W ( n , e )  into equations (20) 

an a (22) 
dx -- e g a(na,nf~,v'X*,vl3*,~), 

where ga(n%nl~va*,@*,e) = naNa(n%nl~,Va(n,e),Vt~(n,e),v ,v f~ ), 

or still using time t dn= = ga(n%n~,va* ,v l~* ,e ) .  
d t  

In this way, one gets a reduced system (22) governing the slow time variation of the 
populations n 1 and n 2. We can expand g'~ in powers of e. 

dn• " ~ I~ a* I~* O(e). (23) - - g 0 ( n , n , v  ,v ,0) § 
d t  

Equation (23) is an e-perturbation of equation (24) obtained for e = 0. 

d n  a ~ a f~ a .  f~. (24) = g o ( n , n , v  ,v ,0). 
d t  

This equation (23) remains unchanged for small values of ~, if (24) is structurally stable 
[3, 24, 40]. We recall this important notion in appendix 2. Now, let us study particular 
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examples of  subpopulation dynamics where the reduced limit equation (24) will be 
structurally stable. 

3. I N F L U E N C E  O F  A C T I V I T Y  S E Q U E N C E S  

O N  C O M P E T I T I O N  M O D E L S  

In most models of competition between species, the competition between two species 
for the same food source can lead to the extinction of one of the two competing species. 
Classical models of competition do  not take into account the activities of the animals. 
Nevertheless, the animals do many different activities all day long such as searching for 
different food types. As a consequence, when one considers competition in connection to 
activity sequences, one must take into account that the animals may strongly compete in 
some activities and only weakly in other activities. In this section, we discuss the influence 
of  the average individual behaviour on parameters in competition models. How can a 
change in the individual behaviour affect the interspecific competitive relationships? How 
can small changes in the individual behaviour have large effects on the population and 
ecosystem? 

3.1. T h e  Class ica l  C o m p e t i t i o n  M o d e l s  

Let us recall a classical competion model described in May (1976) and in Murray 
(1989). Let n 1 and n 2 be the populations of two species 1 and 2 competing for the same 
food source. In a Lotka-Volterra competition model, the competition process is described 
by the differential equations 

dn  1 
d t  = rl nl [ 1-nl/Kl-bl2n2/K1]'  

(25) 
dn 2 

= r2n2[1-n2/K2-b21nl/K2] , 
d t  

where rl, r 2 are the linear birth rates,/<'1, K 2 are the carrying capacities respectively for 
species 1 and 2. b12 and b21 are parameters relative to the competition effects between the 
two species. These parameters are positive. Depending upon the values of the parameters 
and upon the initial conditions, several cases can appear but in most cases only one species 
will survive and supplant the other; the principle of competition exclusion. 

3.2. C o m p e t i t i o n  M o d e l s  a nd  Ind iv idua l  A c t i v i t y  S e q u e n c e s  

In a similar way, we consider two competing species 1 and 2 but with their individual 
activity sequences. The animals can select different activities r all day long, such as 
searching for food of different types, resting, hiding, reproducing and so on. We assume the 
existence of  such a set of discrete activities. Let r be the index for the activities of the 
animals of  species 1 or 2. N 1 and N 2 are the numbers of possible activities for an animal 
of species 1 and 2, respectively. For simplicity, we make the choice N 1 = N 2 = N. Let us 
divide the total populations of the two species into subpopulations corresponding to the 
activities. As a consequence, let nrl(t) and n2(t) be the numbers of animals of the 
subpopulations, i.e. belonging to species 1 and 2, respectively, and doing the activity r at 
time t. Consider the following differential equations 
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dnl  -'-R 1 I 1 1 I 1 I I 12 2 1 
d t  ( ~ k ~ s l l s - ~ k ; J l r ) + r n r [ 1 - n r / g - ~ s b r s n s / g  ]' 

dn2 2 2 2 2 2 2 2 2 1 n ], 

-at- ks s ] t 

(26) 

where R is the scaling factor between intra-population and inter-population parts of  the 
equations, typically 100 or even 1000. The matrices A a = [/Cars] describe the activity 
changes for animals of  species 1 or 2. /Cars is the rate of transition from the activity s 
towards the activity r for animals of species a.  In this example, we chose the linear 
functions )~/ . r a is the linear birth rate for animals of species a,  and K a the 
corresponding carrying capacity, b~ ap are competition parameters between animals of 
species a performing the activity r and animals of  species 1~ performing the activity s. We 
now assume that for some (couples of) activities the animals are in strong competition and 
that for others they are in weak competition. Then, the parameters b~ a13 are large and small 
respectively. 

As the animals often change activities, i.e. several times per day, there is a hierarchy 
in the order of  magnitude of the parameters of the model. As a consequence, the intra- 
population part is very large with respect to the inter-population part. In our notation, 
parameters kr~ , r a, b,~ are of  the same order of magnitude and the hierarchy is introduced 
by means of  the large value of the scaling factor R >> 1 or the small value of e = 1/R 
<< 1. 

3.3. Intra-population Dynamics 
Let us study the intra-population part of the equations alone 

- - I - - R  n - ksrn r . 
d t  (27) 

or still dnra 
d'c r 

Instead of treating an abstract system, we shall consider a particular system (27). Other 
models for activity sequences have been developed (Metz et al., 1983). Our model can be 
represented schematically by a transition graph shown in figure 1. Such a graph displays 
the activities and shows the links between them. This particular graph was described in 
previous work (Auger, 1989), we briefly recall it. Activity 1 is a fundamental activity, for 
instance hiding from predators. The only possible transitions are from 1 to another activity 
i and then return from i to the first activity which is a branching point. From this activity, 
the animals have choices for various activities. The equations (27) may be rewritten as 

dn 
follows, in which h -- 

arc 

(k ~ (2L Ct a) r ~e 1 , h~ = rlnl -klrnr , 

r = 1 , 8~ -- lan~ - 
(28) 



121 

F~g.1. The branching graph is an example of activity transition graph for animals belonging to 
species r The animals select new activities such as research of different types of food from 
a fundamental activity 1. 

h~ x is a linear combination of  the Na-1  other equations. This means that ha(t) = ~ nat(t) 
. . . . . . .  r 
is a constant of  motmn for the mtra-populatlon dynamics because the activity changes are 
not responsible for the variations of  the total numbers of animals of  each species. 
Furthermore, the frequencies v a , represent the proportions of animals of species et engaged 

or* in activity r and rapidly approach equilibrium activity frequencies v,  such as 
ct  

a .  k~ 
V r ---- 

N" a (29) 

klr + klr E a 
s=2 kl, 

Indeed, returning to section 1, one can look for the dynamical equations governing the 
relative frequencies V~/which are given by 

dV~id~ -- E kiTVT " e q~(na'nl3'v~/'V~k'e) ' (30) 
J 

In this precise case, one can get the functions ~b a as follows 

12t ~ S  r (v i  
i --- 

al~ o* 13. a13 v13 

11 1 
In (31), if a = 1, then 18 = 2 and reciprocally..Keeping Na-1  variables, the eigenvalues 
of  the linear part of system (30) have negative real parts. Then, the conditions required to 
apply the Fenichel central manifold theorem are obtained. The central manifold can be 
developed as an e power. In this example, the equations for the populations equivalent to 
equations (23) are the following 
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dnl  r ln  I - n l / K l - ( n 2 / K  1) o 0 v i v i +2.,00 v i t v  i +vj )  , 
dt  0 (32) 

- - [ 1  (~.21 2, 1, ,-,.21.a. 1, ..1,)] tin2 r2n 2 -n2 /K2-(n l /K 2) oij v i v] + b o o  vi[v j +•) . 
dt q 

We have used the slow time t instead of the rapid time x. These equations can be rewritten 
in a simpler form 

dnl  r ln  1 - n l / K l - ( n 2 / K 1 )  bq v i v j +0(e) , 
dt 

' J  /J (33) 
dn ~- --- /'2/'12 [1 21 2* 1. -n2/K2-(nl/K2) ( E  bil v i v j +0(e)) ]  . 
dt t \ 0 / j  

The non-perturbed system for e = 0 is 

dn 1 
dt -- rlnl [ i - n l / K l - b l 2  n2/K1] ' 

dn2 (34) 
dt -- r2n2 [1-n2/K2-b21 hi~K2] ' 

For certain conditions of  the parameters rl, r 2, Kp K 2, bt2 and b21, system (34) is a 
Morse-Smale system (see appendix 2) and consequently is structurally stable. In this form, 
we returned to the classical competition model. But, now the global interspecific parameters 
b 12 or b 21 at first order are calculated from the equilibrium activity frequencies through the 
following relations 

b12 ~ . 1 2  1. 2* b21 ~ b 2 1  2.  1. = L ,  OmVrVs and -- ~ rsVrVs . (35) 
r,s. r,s 

It is interesting to notice that the global interspecific parameters depend upon the 
equilibrium activity frequencies for the animals of species 1 or 2. The previous relations 
establish links between the individual and the population level. On the other hand, system 
(26) is composed of 2 N equations (for 2 species and N activities for animals in each 
species) while system (32) is composed of only 2 equations. Jumping from the individual 
to the population level generates an important reduction in the number of variables. 

Parameters b ~  and b~  can vary very much. If, for some pairs of activities, animals 
strongly compete, then these parameters are large. As a consequence, the value of the global 
parameters b 12 and b 21 is not fixed. It will depend upon the activity frequencies vr 1" and 
vs 2. of  the animals of  both species. 

* 2* 1" 1" 2* Thus, if the animals change their activity sequences vr 1 and v s to v r + A v  r and v s 
2* 1" 2* + Av s , where Av r and Avs are the variations in the activity frequencies, the global 

parameters of  interactions between the species change, b 12 and b zt become b 12 + Ab 12 and 
b 21 + Ab 21 with 

Ab12 r , .121".  1, 2, 1,_ 2.1 -- 2.,o,~W,v~ +v,av~] 
r,s 

and (36) 
. 2 f t .  1. 2* 1.--  2.1 

Ab 21 -- ~ Os~LaV r v ~ + v ,  a v ~  ], 
r,s 

where A b  12 and Ab 21 are variations of the global interspecific parameters at first order. 
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Equations (34) can be non dimensionalized by defining new variables and parameters 

d t  t d t  t 

with 

n i r 2 b 2 1 K 1  u i = -- b ~ and -- -- ~ i - -  1,2, t I r l t  , p -- ~ a 12 12K2 a 21 
g t r 1 ' K 1 K 2 " 

Four steady states (0,0), (1,0), (0,1) and (u 1 -- 
1 - a  12 �9 1 - a  21 

i - a l 2 a  21 , u 2 -- 1 - a l 2 a  21)  exis t .  

Except in the case of  weak competition, for which a 12 < 1 and a 21 < 1, the steady state 
point (u [ ,u2*)  is unstable and, depending upon the initial conditions or upon the values of  
the parameters, the system evolves either towards (1,0) or (0,i) which are stable. This 
means that only one species can survive. In summary, in strong competition, only one 
species survives. In weak competition, both can coexist. Our hierarchical approach includes 
an approximation which must be checked. Let us consider a particular case and compare 
numerical simulations of the whole set of equations for subpopulations and of the reduced 
set for populations. 

3.4. N u m e r i c a l  S i m uIa t i ons  

3 . 4 . 1  S t r o n g  c o m p e t i t i o n  c a s e  

Consider the example of  two populations and three activities 

1 1 _- 100 (-3 , .~+0 2~ .0  3.3) �9 .~[1-.11. 
d t  

d.4 
-_ ( -o  - , 

d t  

_ _ - -  I -o  . 
d t  

d4 2 2 2 - 

d t  

d.~ 
-- 100 -0.3n2+0.9n 1 + n 1 - n  2] _ 4.1n2n2,1 2 "27" 

-- 100 ( - 0 . 4 5 4 +  1.3n2) + n ~ l - n  2] _ 4.5n 31n32, 
d t  

(38) 

For simplicity, we have chosen the canonical form with r 1 = r 2 = 1. For each species, we 
have a branching activity graph, branching from activity 1 towards 2 and 3. In this case, 
we have chosen a scaling factor equal to 100. Figure 2 (a) presents a computer simulation 
of  the above equations. Instead of presenting the six subpopulations, we present the result 
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Fig.2. Strong competition case. (a) R = 100 that is e = 0.01. Simulation of the whole set of 
equations showing that for various initial conditions, the trajectories are converging 
towards (0,1). (b) Simulation of the reduced set of equations with similar trajectories. 
(e) time variation of the activity frequencies of population 1. (d): time variation of the 
total populations 1 and 2. The comparison between (e) and (d) shows two very different 
time scales for subpopulations and populations variables. 

for the two population variables .n 1 and n 2 obtained by summation over the three 
subpopulations corresponding to activity classes. Figure 2 (a) shows that trajectories with 
various initial conditions are converging towards (0,1) which is the sign of  strong 
competition. Using equations (29) let us calculate the equilibrium activity frequencies 

I*  I ,  I *  
v I -- 0.0706, v 2 = 0.529, v 3 -- 0.4, (39) 
2* 2.  2 .  v 1 -- 0.145, v 2 -- 0.435, v 3 -- 0.419. 

T h e n ,  using equations (35), one gets the global competition parameters 
a l  2 ~12 1,  2 ,  . 1 2  1,  2 ,  

-- o22V 2 V 2 + o55v3 v 3 -- 1.723, (40) 
a21 . 2 1  1, 2,  . 2 1  1,  2 ,  

-- o 2 2 v  2 v 2 + OS3v3 v 3 -- 1 .683 .  

These parameters are larger than unity which is in agreement with the strong competition 
case. Figure 2 (13) shows the result of  the numerical simulation of the global competition 
equations which are 

dnl__nl[l_nl_l.723n2], dn2__n2[l_n2_l.683nl]. (41) 
dt dt 
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The simulation shows that the trajectories of the global equations are nearly identical to the 
trajectories obtained in figure 2 (a). It is a Morse-Smale system (see appendix 2) and our 
approximation at first order is then valid. Figures 2 (c) and (d) respectively present the time 
variations of  the activity frequencies for species i and the time variation of the population 
variables for the same initial conditions (0.3, 0.7, 0.5, 1., 1,  1.) obtained from the whole 
set of  equations. Their comparison shows that as a result of a choice of a large scaling 
factor R = 100, that is e = 0.01, the characteristic time scales for intra-population 
frequencies and for population variables are very different. Typically, for ~ equal to about 
0.01, the approximation is valid. 

In order to test the validity, one can define measures of the differences between the 
population trajectories calculated from the reduced set and from the whole set of equations. 
Such methods are used to characterize the success of aggregation processes such as Iwasa 
et al. (1989). In our study, the theorem proves that there exists a central manifold and that 
for enough small values of  e, the trajectories tend to the approximate ones at an 
exponential rate. In this application, the time scales are really very different and g should 
probably be smaller than 0.01. 

It is interesting to note that e does not need to be known because finally it does not 
appear in the approximated population equations. All is needed is to apply the theorem, i.e. 
to have some stability conditions verified for the intra-population part of the equations (real 
parts of  all the eigenvalues being negative for the intra-population terms). Then, there exists 
a central manifold with required properties and, for E sufficiently small, one can use the 
global population equations instead of the whole set of equations. 

3. 4.2. From strong to weak  competition 

Usually, in order to go from strong to weak competition, one considers smaller values 
of the competition parameters. Now, we consider a case which is still derived from the 
previous case but in which the parameters of the activity transition graph have been 
changed. The equations are 

1 1 1 100(-0032n1§247247 at 
d " l  1001 0.2nl+0,015.1~t ~ ~ f) n l [ l _ n  1] 1 2 
dt - + - 4"2n2 n2, 

d"l  100 ' -0"3nl  + 0"017n" ~ ; 1) n~[ 1 - " 1  ] 1 2  
"dt -- + - 4"5%n3' 

(42) 
2 

2 2 2 dnl -- 100(-2.21i I +0.3,2+0.45n3) + , ~ [ 1 - , 2 ] ,  

2 2 1 2 
dt -- + - 4"ln2n2' 

2 

--  oo(-o.454§ 1.34) § 4 1 1 - : 1  - 

The inter-population part is the same as in the previous model, i.e. we have large values for 
the competition parameters. Thus, we remain in a case of large competition parameters. But, 
a new sequence of activities for animals of species 1 is now chosen. Figure 3 shows the 
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Fig. 3. Weak competition case. R -- 100 that is ~ = 0.01. Simulation of the whole set o f  equations 
and of  the global equations for different values of  ~: (a) ~ = 0.01 and (b) ~ = 0.005. This 
figure shows that the phase portrait is kept. For ~ = 0.005, both trajectories are nearly 
confounded. For  various initial conditions, the trajectories are now converging towards a stable 
node S(nl*,n2*). The change in the activity sequence of animals of  species 1 has an important 
consequence, that is the two species can now coexist. The numerical of the reduced set o f  
equations is not shown because it exhibits similar trajectories. 
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variations of the population variables n 1 and n 2 obtained by numerical simulations of the 
whole set of equations (42). This figure shows that all the trajectories are now converging 

�9 1"  2 * -  towards the steady state point (n ,n ). This means that we are in a case of weak 
competition with coexistence of  the two species. Indeed, using equations (29), let us 
calculate the new values of the equilibrium activity frequencies for species 1 (unchanged 
for species 2) 

1. 1. 1. (43) v 1 = 0.884, v 2 -- 0.0662, v 3 -- 0.0500, 

Contrary to the previous case, the animals of species 1 are doing activity i for most of  their 
time (about 88%), only few of them are doing activities 2 and 3 for which they are in 
strong competition with animals of species 2. Consequently, we expect the global 
competition parameters to be much smaller than in the previous case. Indeed, this is the 
case and we get 

a12 .12 1, 2. ,12 1. 2. 
-- n22V 2 V 2 + 033V 3 V 3 -- 0.2157, (44) 

a21 .21 1, 2. ,21 1, 2, 
-- D22V 2 V 2 + 033V 3 V 3 --- 0.2107. 

These parameters are smaller than unity which is in agreement with the weak competition 
case. Then, we get global competition equations 

dn I -- n l [ l - n l - O . 2 1 5 7 n 2 ] ,  

d t  (45) 

dn 2 -_ n2[1-n2-0 .2107nl ] .  
d t  

The trajectories of  the global equations and of the total system of equations are presented 
on the same figure 3. For e = 0.005, they are nearly identical. Phase portraits are globally 
unchanged. Similar to the previous case, time variations of the activity frequencies and of 
the population variables obtained from the whole set of equations show very different time 
scales which are not shown. 

4. P R E Y - P R E D A T O R  M O D E L S  A N D  A C T I V I T Y  S E Q U E N C E S  

4.1. Class ica l  P r e y - P r e d a t o r  M o d e l  

The earliest predator-prey model is the Lotka-Volterra model which exhibits trajectories 
of various amplitudes and time periodicity with respect to initial conditions. These 
trajectories are centers. This model assumes exponential growth of the preys in absence of 
predators. It also requires a non bounded predation pressure for preys. More realistic 
classical predator-prey models have been developed (see May, 1976; Murray, 1989; 
Volterra, 1931). Let us recall a classical prey-predator model. The following differential 
equations describe the predator-prey interaction 
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dt (nl § ) ' (46) 

an 2 = sn2 ( l _ h n  2) 
dt n 1 ) ' 

where r, s, K, k, D and h are positive constants, r and s are, respectively, linear growth 
rates for the preys and the predators. K is the carrying capacity of the prey. In absence of 
predators, the prey population obeys a logistic growth equation, k and h are predator-prey 
coefficients of  interactions. The predation term shows a saturation effect for large prey 
densities. It is very useful to rewrite the system in a non-dimensional form with new 
variables u and v and only three parameters a, b and d 

du = u ( l - U )  - auv 

~ "  ~ ' (47) 
__dr -_ by(1 - ~ )  
a'x u 

where 

k b -- s and d = D u(~) -- nl(t) V(X) - hn2(t) �9 -- rt, a -- ~ r '  - 
" - - ~ '  T '  r ~ "  

There exists a steady state point with positive populations (u*,v*) such as 

u* --- v* arid u" = ( 1 - a - d )  + [ ( 1 - a - d )  2 + 4d] 1/2 (48) 
2 

A stability analysis around this steady state point can be performed. For a detailed analysis, 
we refer to [35]. Roughly, for some values of the parameters in the tri-dimensional phase 
plane (a,b,d), there is a stable domain, for which all the eigenvalues of the community 
matrix are negative. In this case, the steady state point is a stable point. For other parameter 
values, the steady state point is unstable for which limit cyclic oscillations of the two 
populations occur. Consequently, there is a bifurcation surface of Hopf-Andronov in the tri- 
dimensional parameter plane separating stable and unstable domains. 

4.2.  A c t i v i t y  D e p e n d e n t  P r e d a t o r - P r e y  M o d e l s  

We consider two interacting species 1 and 2 with activity sequences. Animals can still 
select different activities i all day long. Consider the following dynamical differential 
equations 

IW.~k I 1 w.~ 1 1~ xiknk , 

(49) 
2 . 2  2 ~ ~2 2 \  ( .  

dt b s Ksini w-~ 21 1 
L P i t n k  

k 

R is the scaling factor between intra-population and inter-population terms. The terms k~s 
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still describe activity changes for animals of species 1 or 2. Other terms describe growth 
of the populations and their interactions, r and s are linear growth rates for preys and 
predators, respectively. K is the carrying capacity for the prey. ~ f  are predator-prey 
parameters between preys 1 doing activity i (for instance search of food of type t) and 
predators 2 doing activity k (hunting preys 1). Similarly, ~ are predator-prey parameters 
between prey 1 doing activity k and predator 2 doing activity i. 

Various other choices of equations could be made. Here, we have chosen that the 
predation term in the equation for the predator is proportional to the subpopulations of the 
preys which are vulnerable. For some couples of activities (i,k), the preys are vulnerable. 
For others, they are hidden from predators. In the vulnerable case, the coefficients kl.. 2 and 
p ~  will be large and in the other case, the coefficients will be small and even equal to zero. 
As a consequence, the strength of the predation is not fixed a priori  but will be fixed by 
the individual behaviour of the animals. 

All conditions required to apply the central manifold theorem are realized. Thus, there 
exists a central manifold which can be calculated. At first order, one can obtain two 
differential equations governing population variables of the preys and of the predators nl(t) 
and n2(t) 

ant(t) i[ n 1] kt2'~l" 2 
- - r .  [ l - W ]  - 

(so) 
d,:(O ,,r '-] 

- sn I 1 - ~ / .  
dt [ n z ] 

The global interspecific parameters k 12 and h 21 are given by 

2. 
k12 T.~.12 1, 2. h21 Vr -- 2.  K,~Vr Vs and = ~ (51) 

21 1. 
r,s r i L  p rs v s 

Parameters k a2 and p ~  determine the values of the global predation parameters k 12 and h 2x 
of the animals. 

4.3. Numerical  Simulations 

Consider an example with one prey population doing three possible activities. For 
simplicity, we assume that the predators only are engaged in one activity: hunting preys. 
This system is described by 

dnl  -- 100(-3.2n I +0.2n~ +0.3~)  + ni l [ I -ni l ,  
dt 

d~=, i00(_0.24+1.5nli) + n21[l_nl] _ 6.n~n 2 
dt [hi +0.2] ' 

1.n~ n 2 
d~ -- 100(-0.3~+1.7n 1) + n l [ 1 - n l ] -  [ n1+0"2] 
dt - -  / . 2 )  

0.1n 2 1 -  
dt 1 1 

[1.2n 2 + 0.2n 3 ] 

(52) 
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Fig. 4. Prey-predator models with activity sequences (a) R = 100. Simulation of the whole set of 
equations showing a stable limit cycle. (b) Simulation of the reduced set of equations with 
similar trajectories. (c): time variation of the total populations of preys 1 and predators 2. (d) 
time variation of the activity frequendes of preys population 1. The comparison between (c) 
and (d) shows two very different time scales for subpopulations and global variables 
explaining the agreement between (a) and (b). 

W e  see that the prey is hidden from its predator in activity 1 and is 6 t imes more exposed 
to the predator  attacks in activity 2 than in activity 3. Figure 4 (a) presents a computer  
simulation of  the four previous equations with the initial conditions (0.1,0.1,0.1,0.3). W e  
present the result for the two global populations n 1 and n 2 with summation of the three 
subpopulat ions of  the prey.  Figure 4 (a) shows that there exists a stable limit cycle for the 
prey and predator total populations.  The equilibrium activity frequencies are 

i .  i. (53) v 1 -- 0.0706, v~* = 0.529, v 3 -- 0.400. 

Then, one can calculate the values of the global parameters 

k12 .12 1. .12 l* . 1. . 1. 
= s V2 +g3 V3 = O.V 2 +l .V 3 --- 3.58, 

h21 -_ 1. 1. -- -- 1.40. 
21 1 ,  21 1 ,  . .  1 ,  ~ -  1 ,  

P2 v2 +P3 v3 1"'dr2 +u'2"v3 

(54) 
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Then, the global approximated prey-predator equations are at first order 

dn 1 -- n l [ 1 - n  1-  3'58n2 ], 

dt [n i + 0.2] ] (55) 

dn~=dt O'in2[ I- l'40n2]'n 1 ] 

The simulation is presented on figure 4 (b) with the initial condition (0.3,0.3). The 
simulation shows that the trajectory of the global variables are nearly identical to the 
trajectory obtained previously for the whole set of four equations. This shows that the 
approximation of using equilibrium frequencies for the intra-group part is correct. Figures 
4 (c) and (d) respectively present the time variations of the global variables and of the 
activity frequencies for the preys for the same initial condition obtained from the whole set 
of equations. Their comparison shows that as a result of a choice of a large scaling factor 
R = 100, that is e = 0.01, the characteristic time scales for intra-population frequencies and 
for population variables are very different. As soon as the scaling factor R is large enough, 
the central manifold theorem can be applied. Instead of simulating 2N equations (with N 
activities for each interacting population), a reduced set of two global equations only can 
be simulated. 

Now, let us assume that during the year, due to climate changes, the preys may modify 
their activity sequences. For instance, some food sources may become rare and the animals 
may have to search for other food. This will modify their activities sequences. As a 
consequence, the activity frequencies of the preys may vary and this will induce in turn a 
variation in the global parameters. For instance, with frequencies of the preys now equal 
to 

1. 1. 1, (56) v 1 = 0.884, v 2 -- 0.0663, v 3 -- 0.0501, 

one obtains new values of the predator-prey parameters, which are k 12 = 0.448 and h 21 = 
11.2 and two global competition equations 

dnldt = n t [  1 - n l -  0"448n2']' 

dn2-_ 0"ln2{ 1 _ [ : i . : : ' : i  j (57) 

T --V-] 
The numerical simulation of this reduced set of equations is presented in figure 5. The 
simulation shows that with various initial conditions, the trajectories of the global variables 
are now converging towards a stable point S. With R = 100, that is ~ = 0.01, computer 
simulations of  the whole set of four equations exhibit similar trajectories. This example 
shows that a change in the average individual behaviour of the animals may strongly modify 
the stability and the structure of the dynamical solutions of the interacting species. It also 
shows that some stable configurations may appear during certain parts of the year. By 
selecting new activities better adapted to environment changes, a bifurcation in the (nl,n 2) 
plane may occur. This example is a typical case of what can be called an interaction 
between the individual and the population levels, i.e. the effect of a change at the individual 
level on the populations. 

It seems that the problem of the dynamics or of the stability of the ecosystem cannot 
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Fig. 5. Prey-predator models with activity sequences with a scaling factor R = 100. Simulation of the 
whole set of equations showing that the trajectories now evolve towards a stable steady state 
point S. 

be considered from a global point of view alone, but that interactions between the 
individual, population and ecosystem levels have to be taken into account. A change in each 
of these levels has an impact on the other levels. The whole dynamics is governed by these 
coupled dynamics. 

5. D I S C U S S I O N  A N D  C O N C L U S I O N  

In the future, we would like to apply these competition and prey-predator models to the 
case of  two sibling bird species, Hippolaispolyglotta and H. icterina, coexisting near Dijon 
(France) which are studied by the Laboratory of Ecology of our University. The two species 
are morphologically indistinguishable, there is only a difference in their songs and probably 
a slight one in their behaviours. One of the species occurs in northern Europe the other in 
southern Europe. There is a band-like area in Europe (passing over Burgundy) where the 
two species coexist. It was observed that one of the two species is gradually replaced by 
the other. We plan to use activity dependent competition or prey-predator models to answer 
the following questions: can the observed differences in the food sources of the two species 
explain the disappearance of one of them? Does a predator attack more often the young of 
one species than those of the other species, due to differences in the average individual 
behaviour? We hope that this class of hierarchical prey-predator and competition models 
coupling the activity sequences to the interspecific interactions will help in confirming or 
suppressing assumptions made to understand the extinction of one of these species. Right 
now, some of us are collecting data. 

The general method that we have mentioned in section i can be used to study complex 
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systems composed of a large number of elements and presenting a hierarchical structure. 
These systems cannot be studied very easily in another manner. Indeed, if the system 
contains many possible states, it asks for the description of a set of a very large number of 
coupled differential equations. The computer simulation of such a system will need very 
much computer time and the results (if obtained) will be very difficult to interpret due to 
the complexity of the information obtained. On the contrary, if the hierarchical partition 
corresponds to few groups with many states in each of them, one obtains a set of a few 
number of  differential equations and an important reduction in the number of variables. It 
also signifies that separating the levels, then the complexity of the system is much reduced. 

one  of  the aspects of  this article is to stress the point that multi-level systems evolve 
as a result of  coupled dynamical processes at the different levels of organization of  the 
hierarchical system. The dynamics must not be considered in one level alone but as a 
coordinated process of dynamics in each level of the hierarchically organized system (Jean, 
1982). More complete models should include interspecific interactions for animals of 
different ages, doing various activities and belonging to different phenotypes in interactions 
with the environment. Many problems are also linked to the spatial hierarchies and scales 
which have not been treated here. Our models concern hierarchical systems with successive 
clusters in population dynamics, i.e. populations subdivided into subpopulations, and again 
subdivided into sub-subpopulations and so on. All the equations are homogeneous and the 
spatial hierarchies are not taken into account. In this way, possibilities of migration at 
different spatial scales should also be considered. Here, we have limited our study to the 
limits of  this method in connection with classical ecological models before considering to 
investigate the method for multi-level and very large scale systems in space. 
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A P P E N D I X  1 

C a l c u l a t i o n  o f  the Cen t ra l  M a n i f o l d  

In order to simplify the calculations, assuming that the f/~ are linear, the equations (20) can 
be rewritten in the next form 

dn a -._ e n a N  a, 
d,  (Aq) 

d V  a -_ t~aV a + egP a, 
dr 

where AU and (b a are functions of  n = (nl,n2),Va, Vl~,va*,v [~* which can be easily 
explained. Va,~ a have values in ~ a - 1  and A a -- (P~) i and j • [1,Na-1]. Let us look 
for the central manifold according to the following form 

Va(n,e)  -- eWa(n ,~)  with Wa(n,e)  = W~+eW~z +o(t)" (A-2) 

The central manifold W(n,e )  is the solution of the next equation 

gctVa + e * a  -- E OVa dnf~ - e 2 E  'Owa nf~Nf~" (A-3) 
f~ Onf~ dx f~ Onf~ 

Substitute of (A-2) into (A-3). Then, identify term of order e 

At~W1 + ~Ct(n,v~',vl3*) --- 0. (a-4) 

where ~a(n,va*,vl~*) = *a(n,0,0,va*,vl~*). Finally, because A s is inversible, one 
obtains the result given in equation (21) 

--- (a-s)  

Identifying terms of different order e in (A-3), we have an iterative process which allows 
to obtain the functions Wi G for any i. 
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A P P E N D I X  2 

S t ruc tu ra l  S tab i l i ty :  T h e  A n d r o n o v - P o n t r y a g i n  T h e o r e m  

Definition: Let X be a vector field defined in a neighbourhood of a disk D of R 2. X is 
said structurally stable if on D there exists a neighbourhood N of X in the space of vector 
fields defined in a neighbourhood of D, in the Cl-topology on D, such that for each Y 
N, there exists~an homeomorphism hy on a neighbourhood o l d  (hy: V --~ W, V and W are 
neighbourhoods of D) sending orbits of X in V into orbits of Y in W. One says that h r. is 
a topological equivalence between X and Y on D. The structural stability of a system is 
characterized by the following Andronov-Pontryagin (Andronov & Pontryagin, 1937). 

Theorem: Let  X be a vector field defined on a neighbourhood of  D such that: 
1) All singular points and all periodic orbits of X are hyperbolic, (there is only a finite 

number of  such critical orbits). 
2) There are no connections between saddle points of X (i.e. there is no point q whose 

~t and oJ-limit are saddle points). 
Then, X is structurally stable. Moreover, one can find a map Y ~ N --* hy, continuous, 

such that h x = ld.  A vector field like X in the previous theorem is usually called a 
Morse-Smale vector field. Thus, if X, a one-parameter family of vector fields with X 0 = X, 
a Morse-Smale vector field, it follows that a continuous one-parameter family of  
homeomorphisms h~ exists on some neighbourhood V on D, such that h~(V) contains D 
for any value of s, ho(x ) ~ x and h c is a topological equivalence between X 0 and X~ for 
any ~ E [0,%], s o sufficiently small. 


