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A canonical formalism for the relativistic classical mechanics o f  many particles 
is proposed. The evolution equations for a eharged particIe in an electromagnetic 
field are obtained and the relativistic two-body problem with an invariant 
interaction is treated. Along the same line a quantum formalism for the spinless 
relativistic particle is obtained by means of  imprimRivity systems according 
to Mackey theory. A quantum formalism for the spin-½ particle is constructed 
and a new definition of  spin ½ in relativity is proposed. An evolution equation 
for the spin-½ particle in an external electromagnetic field is given. The Bargmann 
Michel, and Telegdi equation follows from this formalism as a quasielassical 
approximation. Finally, a new relativistic model for hydrogenlike atoms is 
proposed. The spectrum predicted is in agreement with Dirac's when radiative 
corrections have been added. 

1. CLASSICAL RELATIVISTIC MECHANICS 

The difficulties encountered in relativity in elaborating a canonical dynamics 
which is covariant and nontrivial are well known. Let us simply recall the 
no-go theorems of Currie. ~1) Under such conditions it is only possible to 
overcome these difficulties by accepting the need to radically change the 
point of view of Einstein's theory. 

The relativistic dynamics that we propose (previously introduced in 
Ref. 2) does not encounter these difficulties, and the present paper is devoted 
to a survey of  several of its developments. 

The essential differences between the usual point of view and the one 
adopted in Ref. 2 are the following: In the usual Einstein theory each (classi- 
cal) particle is identified with a trajectory in spacetime and the dynamics 
of  the system is simply reduced to a description of these trajectories. Accord- 
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ing to that point of view, nothing changes, since nothing moves over these 
trajectories, and we cannot properly speak of a system's evolution. Further, 
the concept of probability, one of the characteristics of quantum physics, 
is meaningless in such a scheme. 

The point of view presented here and adopted in Ref. 2 is simultane- 
ously based on both Einsteinian and Newtonian ideas of mechanics, ad- 
mitting the existence of a spacetime supplied with the geometry given by 
the Poincar6 group and identifying each particle with a single point of that 
spacetime (or an event according to Einstein). Moreover, to describe the 
true evolution of  the system, we postulate the existence of a new time 
(described by the parameter ~-) which passes "uniformly and inexorably" as 
Newton imagined. That time ~- is called "historical time" because it cor- 
responds to the ordering relation determined by successive measuring 
processes in quantum theory or given by the laws of thermodynamics. Such 
a parameter -r has been introduced by other authors, but (except for Aghassi 
et  al. (3)) in each case as a mathematical convenience without physical inter- 
pretation. 

In such a scheme the state of each particle is described by eight in- 
dependent numbers 

q~ = (q~, q2, qS, q4) = (q, t) 

p .  = ( p ~ ,  p ~ ,  p ~ ,  p~) = (p,  - E )  

where q" is identified with the position in spacetime and p ,  with the state 
of motion, i.e., the momentum-energy. The metric tensor is g,v = (1, 1, 1, 
--c 2) (where c is the velocity of light in vacuum). 

Then it is obvious that the "mass" 

m =~ ( - -g"~p,p~/c2)  t/2 

depends on the state of the particle. A well-known example is the bound 
proton in the nucleus whose mass is smaller than that of the free proton, 
the mass deficiency corresponding to the binding energy. Actually the de- 
scription of  an interacting system entails the consideration of states which 
are not confined to a "mass shell" condition. 

The dynamical principle that we invoke to obtain the evolution is a 
generalization of the Hamilton principle. Consider the differential 1-form 

N 

co = ~ pe .  d q d  - -  K ( p i ,  qi) d r  (1) 
i = 1  

where K denotes a function of the state (Pi,  qi) of each particle i = 1 .... , hr. 
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The dynamical principle is expressed as follows3: Given a closed curve C 
in /" = {p~, q~, z}, the integral .[c ~o is invariant for any (continuous) de- 
formations of C generated by arbitrary displacements of its points along the 
trajectories corresponding to the evolution of the system. This principle is 
equivalent to the canonical equations 

qi" ~ dq i " /d~  = a K / ~ p i ,  and h i .  =- dp~./d-r = - -  aK/aq~" (2) 

These equations are manifestly covariant when the differential 1-form 
is invariant (which is the case when K transforms like a scalar field under 

the Lorentz group), the historical time r being invariant. 
Let us now illustrate the previous considerations by some examples. 

1.1. Particle in External Electromagnetic Field 

In the absence of radiation phenomena, the evolution of a charged 
particle in an external electromagnetic field described by the 4-vector poten- 
tial A . ( x ) =  ( A ( x ) , -  V ( x ) )  is governed by canonical equations, where K 
is given by 

K = ( 1 / 2 M ) g " ~ [ p ,  - -  e A , ( q ) ] [ p ~  - -  eA~.(q)] (3) 

In this expression e denotes the charge of the particle and M its mass. 
Here M is a dynamical constant which is characteristic of the particle. 

In this particular case the canonical equations (2) imply 

(I" = ( 1 / M ) [ p "  - -  eA" (q ) ]  
(4) 

p ,  = ( e / M ) [ p  ~ - -  eA"(q)]  e , A , ( q )  

where O.A. denotes the partial derivative of A~ with respect to x". From 
these equations follows the well-known relation 

Moreover, 

M ~ .  = e [ ~ . A . ( q ) - -  a.A.(q)]0 v 

g.~O"O ~ = 2 K / M  

(5) 

is conserved, since K is a constant of motion. For 

K = - -  ½ M e  ~ we have g . ~ " ~  = --c 2 

3 Fo r  the  canonical  formalisrn see Ref.  4. 

8 2 5 / 9 / I I - I 2 -  5 
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and then the proper time takes the same values as the historical time. More- 
over, 

g"~[p. - -  eA.(q) l[p~ - eAr(q)] = - - M ~ c  2 

for any r. 

1.2. Two-Body Problem with Potential  Interaction (5) 

In this example the interaction between both particles is described by 
a scalar potential ~(Iql - -  q21), where Iql = (g..q.qv)X/2. 

We have 

1 1 
K - -  2341 g""Pl .P~ q- ~ g'*~P2.P2~ q- 4([ q, - -  qz [) (6) 

where M1 and M 2 are the masses of  particles 1 and 2. 
In that case, as in the corresponding Galilean case, it is possible to 

define some center-of-mass coordinates which are more convenient for the 
discussion. They are defined by 

P,~ = P l .  + P2. Q .  = Mlq l "  + M2q2" 
' M l q -  M~ 

M l P 2 .  - -  M 2 P l .  = , q" = q2" - -  ql" 
P" M1 q- M~ 

(7) 

This change of coordinates characterizes a canonical transformation which 
leaves K invariant. In terms of the new variables we have 

where 

K = K0 + k (8) 

Ko = ( 1 / 2 M ) g " v P . P ~ ,  M =  MI ÷ M2 

and 

.~ M1M2 
k = 2t, g p .pv + ¢(t  q 3, ~ - -  M1 + M~ 

The corresponding canonical equations then imply that 

O~= P./M, P~=O 

3" = p"/ t* ,  i , .  = - ~  f l ' ( l  q I) 

where ~. denotes the partial derivative with respect to q". 

(9) 
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Thus, the total momentum-energy P ,  = (P, - -E)  is a constant of motion 
and Q" = (Q, T) defines a spacetime point called the center of mass. The 
time 

T = ( E / M c g ,  0 0 )  

passes uniformly, and so Moller's condition on the time, used by Cook]  6~ 
is justified by our model. 

Now it is important to note from (9) that the antisymmetric tensor 

which is a generalization of the relative angular momentum, also is a constant 
of motion. As a consequence, the relative motion (in q" coordinates) takes 
place in a plane 3- containing the origin q = 0. Moreover, this plane .Y- 
is spacelike (i.e., g,~q"q~ > 0 for any q ,~ 0 in 3-) if and only i f j " ~ j , ~  > O. 

In that case (which is the most important one for applications) there exists 
a family of reference frames for which ~" is a spaceplane, in other words, 
for which q" = (q, t = 0) for any ~-. Namely, in that case 

tl = t2 = T -= ( E / M c 2 ) r  02) 

and from (9), p ,  : (p, 0) since i = 0. Consequently, the relative motion 
is governed by the "Newtonian" equations 

it : P/U,  p = -v~( lqT  ) (13) 

which follow from (9) in this particular situation. 
Thus, in spite o f  the apparent difficulties due to the spacetime metric, 

the previous model describes in a satisfactory way what we expect for a 
relativistic two-body system, and, as we have seen, it is possible, for each 
Newtonian system with a potential q~(Iq[), to construct a completely covariant 
relativistic model describing the same type of motion. Nevertheless, it is 
important to note that rn12:--g~vpl ,p~/c2 and m22=--g"~'p2,p2~/c 2 are 
generally not constants of motion, nor even conserved quantities in a scat- 
tering process. 

2. QUANTUM RELATIVISTIC MECHANICS 

Most attempts to construct a relativistic quantum mechanics have led 
only to the case of the free particle. It was initially claimed that the reason 
for this impasse is the difficulty of controlling all the representations of the 
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Poincar6 group. However, when the same group-theoretical arguments were 
applied to the Galilean case, exactly the same result was found. The reason 
for the impasse is clear in this case. It is that the Galilean group has been 
interpreted as the group of motion from the active point of view, and one 
is therefore naturally led to a representation for a free particle which is 
given in the Heisenberg pictureY ~ 

For the Galilean case, an effort has therefore recently been made to 
develop a group-theoretical argument which avoids this difficulty. An 
effective procedure was found to be the following: First construct the set of  
observables which characterize the system, and build the dynamics only 
afterwards. With this procedure, one naturally obtains the observables in 
the SchrSdinger picture, which is specifically not dependent on the dynamics. 
This result is found by studying the action of the Galilean group on the 
measuring apparatus from the passive point of view, by defining each 
observable by an imprimitivity system according to Mackey's theory. C8,9~ 
In the Galilean case, this procedure leads to the most general solution 
compatible with the Galilei principle. 

The point of view adopted here in relativistic mechanics naturally leads 
us to generalize the previous procedure to the relativistic case. As an illustra- 
tive example, we construct a model of a relativistic, quantum spinless particle. 
Later we shall consider the spin-½ particle and briefly present some appli- 
cations. 

2.1. Quantum Spin-zero Particle 

The states of the (spinless) quantum particle are assumed to be described 
by the vectors (more precisely by the rays) of a Hilbert space H. According 
to our point of view, a relativistic particle is supposed to have: 

(a) A spacetime position observable q characterized by a spectral family 
q: B ( ~  4) --~ P(H) from B([~x4), the Borel sets of R~ ~, to P(H), the set 
of orthogonal projections in H. 

(b) A momentum-energy observable p characterized by a spectral family 
p: B(~k 4) --> P(H) from B(Nk4), the Bore1 sets of R~ 4, to P(H). 

Moreover, it is assumed that there is no other observable not depending 
on p and q. 

These observables p and q are completely characterized by the following 
group G acting on the corresponding measuring apparatus. The group G 
is generated by: 

(i) The spacetime translations a" 

x ~ F-> x ~ -[- a", k~ ~ k~ 
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(ii) The momentum-energy translations w, 

(iii) The Lorentz transformations A% 

x" ~-+ A"~x v, k .  ~ A jk~  

(for any x e Ex~ and k e Rk4). 
Considered from the passive point of view, the action of G allows us 

to write the following relations, called "imprimitivity systems," which 
characterize q and p, respectively. The imprimitivity system based on q 
imposes that for any g e G and any A e B(R~ ~) 

q(g.  A) = V(g)q(A)U-~(g) (14) 

where U denotes a unitary ray representation of G in H and g - A the action 
o f  g on A e B(Nx4) induced by the action of G on Rx 4. 

Similarly, the imprimitivity system based on p imposes that for any 
g ~ G and any A ~ B(IRk 4) 

p(g . A) = f (g)p(A) f - l (g )  (15) 

where U denotes the same ray representation as in (14) and g • A the action 
of g on A e B(lt~a) induced by the action of G on Rk 4. 

The solution for the imprimitivity systems (14) and (15) is obtained by 
taking for the Hilbert space H 

H = L2(~x  4, d4x) 

and for U the unitary ray representation in H defined by 

(U(a)~b)(x)  = ~b(x - -  a) 
(U(w)~b)(x)  = e x p ( i w . x " / h )  ~ ( x )  

( U(A)4~)(x)  = 4 , ( A - i x )  

(16) 

for any ~b e H. The solution depends on a parameter which turns out to be 
identified with the Planck constant h. The previous representation is a 
nontrivial ray representation, since it is easy to verify that we have the 
following generalized Weyl commutation rules: 

U(w) U(a) = exp(iw.a"/h) U(a) U(w) (17) 



872 Reuse 

The observable q is defined by the spectral family q: B(R~ ~) -~ P ( H )  
whose projections are given by 

(q(A)¢)(x)  = X,J(x)¢(x), ¢ ~ H (1 S) 

where X,J denotes the characteristic function associated to the Borel set A. 
The spectral family p: B(Rk 4) -+ P ( H )  associated to p is given by 

(p(A)¢)(k) = X,~(k)¢(k) (19) 

where ~(k) is obtained by the unitary Fourier transformation, defined on 
a dense subset by 

¢(x) ~ ~(k) = (2rrh) -z f~2 d4x exp( - - i k . x" /h )  ¢(x) (20) 

Thus, the self-adjoint operators p .  and q" corresponding to p and q 
are respectively given by 

(p.¢)(x) = -- ih ~.¢(x), (q"¢)(x) = x"¢(x) (21) 

and these operators satisfy the Heisenberg commutation relations 

i [ p . ,  q~] = h ~. ~ (22) 

The evolution of such a relativistic particle is parametrized by the 
historical time r and governed by a SchrSdinger equation 

ih d~-¢. = K@ (23) 

where K is a self-adjoint operator, which is, moreover, of scalar type to 
guarantee covariance. 

We have thus obtained a description of the particle in the Schr6dinger 
picture (relative to ~-), and dynamical considerations are related to the choice 
of K. 

As an illustrative example, we consider a charged particle in an external 
electromagnetic field described by the 4-vector potential A,(x ) .  By neglecting 
radiation phenomena we have 

K = (1/2M)g"~[p~ --  eA.(q)][p~ --  eA~(q)] (24) 

where e and M denote the charge and the mass of the particle. We easily 
verify that 

q" =-- (i/h)[K, q"] = (1/M)[p" - -  eA"(q)] 

]). ~ ( i /h)[K,p.]  (25) 

= (e/2M)[~.A~(q),p" - -  eA"(q)]+ 
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In the case of a free particle where 

K = (1/2M)g""p,p,  = (--h~/2M) [] (26) 

more comments can be made. First, the usual relativistic theory for spinless 
particles, more precisely the Klein-Gordon equation, is interpreted here as 
an eigenstate equation 

K¢(x) = -- ½Mc2¢(x) (27) 

This fact suggests a change of representation: the four-dimensional 
Fourier transform (20) followed by a change of variables given by 

I m [1/Zca/Z 
~(k) ~+f(k, m) = (k 2 + mZeZ)l/a q~(k, --c sign(m) (k 2 + m2cZ)l/~) (28) 

the corresponding scalar product being 

f? fo ( g ,  f )  = dm dZk g*(k, r e ) f  (k, m) -= (¢,  ¢)  (29) 
cQ 

Let us now consider the observable 

q ~ : q - - ~  t + t (30) 

It is easy to verify the following commutation rules: 

i[q~ i, qv k] = O, i[p i, qr z~] : h 3ik ~ (31) 

Moreover, q~ is a constant of motion 

[X, qr] = 0 (32) 

Decomposed in the previous new representation, qr turns out to be 
just ih~/~k, i.e., the Newton-Wigner position operator. 

2.2. Quantum Spin-½ Particle (~) 

As previously for the spinless particle, a particle with spin is supposed 
to have a spacetime position observable q and a momentum-energy ob- 
servable p. Moreover, it is assumed to possess some new observables com- 
patible (commuting) with p and q. 
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According to the Mackey theory, this situation is obtained by describing 
the states of the particle with N-component wave functions ~ e CN@ L 2 
(R~ 4, dax), the scalar product being written 

N 

(~' ~) = f~ d4x i=12 ~*(x)q~(x)  = fe~ d~x ~b+(x)d?(x) (33) 

The Lorentz group acts on the states by unitary operators U(A) of the 
following form: 

(U(A)~b)(x) = D(A)~(A- l x )  (34) 

where D is a nontrivial, irreducible, unitary ray representation of the Lorentz 
group (acting in the space components of $). Such a representation is 
necessarily infinite-dimensional and consequently implies the existence of an 
infinity of compatible internal states for the particle (infinite spin). This 
fact is in disagreement with experiments and the well-established double 
degeneracy for electrons in atoms or metals. 

This difficulty disappears when one introduces a (continuous) super- 
selection rule for the spin-½ particle, i.e., a family of Hilbert spaces. (~) 

Let us consider the Stern-Gerlach apparatus defining the spin ob- 
servable and more precisely the symmetry of the magnetic field of this 
apparatus. Such a magnetic field is characterized by a strong gradient. It 
defines not only the space direction of the spin, but also a unique timelike 
direction, the direction of the time given by the frame where the field is 
purely magnetic. Then the spin state of the particle is characterized by a 
direction in space (the spin) and a timelike 4-vector n" such that n 4 > 0 
and g,,vn"n ~ = --c  2. 

We postulate that this 4-vector n" is a superselection rule and we intro- 
duce a family of Hilbert spaces Hn indexed by n. To every timelike unit 
4-vector n" we associate a Hilbert space H~ of two-component wave functions 
which is identical to C a × L2(R~ ~, d4x). In other words, each spin-½ particle 
state is characterized by a given n and a given ~b,~ ~ Hn.  

The Lorentz group acts on the states in the following way(13): 

(U(A)~)~(x) = D(L-~(n)AL(A-~n))$A-~(A-Xx) (35) 

where L(n) are boosts such that L(n)%n~o = n" with n~ = (0, 0, 0, 1) and D 
is the usual 2 × 2 unitary ray representation of the rotation group cor- 
responding to a spin-½. Thus a Lorentz transformation A maps every H~ 
onto HA~ by (35). 

As in the spinless case, the self-adjoint operators corresponding to p 
and q are respectively given by 

( p . # ( x )  = --ih a.~b(x), ( q "# (x )  = x"~(x)  (36) 
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for any ~b in any H . .  Obviously the corresponding spectral families verify 
the imprimitivity relations (14) and (15) (extended to the case of a super- 
selection rule n) for the representation U of G given by (35) and 

( u ( a ) i ~ ) . ( x )  = 4 , . ( x  - a )  

(U(w)~b).(x) = exp(iw.x./li) ~b~(x) 
(37) 

The spin observable, for n -= n o , is given by the four matrices 

~,7i I i % = , ~ ,  i =  1 , 2 , 3  and W~o = 0  (38) 

where cr ~ are the Pauli matrices. For any n we can define 

WnU u . = L(n) ~W;~ o (39) 

and consequently n.W~ = 0. This definition is justified by the following 
physical considerations: Let us consider a unit spacelike 4-vector s", 

guvs"s v = 1 

such that g . . s "n"=  0 and let us consider the observable defined by the 
operator 

s .W~ 

The corresponding two eigenstates are associated with a measurement 
of  the spin with a Stern-Gerlach apparatus whose (i) time direction is given 
by n" and (ii) direction of the magnetic field gradient is given by s", i.e., 
(so, 0 ) =  L-l(n)s in the reference frame of  the apparatus. This follows 
immediately from the relation 

s .W~ = s.L(n) ~W; o = ½So a 

As regards the covariance, it is easy to verify from (35) and from the 
definition (39) that 

u-~(A) W~. U(A) = A"~ W~ (4o) 

as expected. Finally, the W~ satisfy the following commutation rules: 

[W"~, W~] = ie"~aW°~n a (41) 

where e..oa = zkl for t~vpA an even or odd permutation of  1, 2, 3, 4, respec- 
tively, and E.~oa = 0 otherwise. 
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Because of the existence of a superselection rule n, the evolution in r 
is governed by a SchrSdinger equation 

ih d~@ = K~(~)~b~ (42) 

connected with an equation of the form 

h"~ = f " ( n ~ ,  ~ , )  (43) 

where the f "  fulfil the condition n , f " ( n ,  ¢) = 0. 
Due to the dependence on ¢ , ,  Eq. (43) involves irreversible processes. 

In other respects, physically, the comparison of this model with the Dirac 
theory m) suggests that the evolution is such that n~ tends to be parallel to 
(p" )o , ,  the mean value of the momentum-energy. In many cases and various 
applications, both directions can be assumed to be effectively parallel during 
the evolution. 

2.3. Spin-½ Particle Interacting with an External Electromagnetic Field 

Let us consider the case of the spin-½ particle in an external electro- 
magnetic field A , ( x ) ,  neglecting radiation phenomena. The operator Kn is 
given by the corresponding one for the spin-0 case, modified by the terms 
due to the interaction of the spin with the electromagnetic field. Especially 
for the electron (or positron) we propose 

K,~ = ( 1 / 2 M ) g " " [ p .  - -  eA.(q) l[p~ - -  eA~(q)] 

- -  ( gd~o/Mc~")[p" - -  eA"(q)l l#.~(q)W~ 

+ (g221Xo2/SMc4)F..(q)n"F"o(q)n ~ -  (g31~o/c2)n"~'.v(q)W~ (44) 

where F , ,  = ~,A, -- ~,A,,  F . . . .  lc%"~paFoa. The charge and the mass 
of the particle are e and M; /x 0 = e h / 2 M  denotes the Bohr magneton; and 
g l ,  ge, and g3 are dimensionless phenomenological constants. 

As a first application we consider the evolution of the spin in an electro- 
magnetic field that is not necessarily homogeneous. More precisely, from 
the expression (44) for K,  and from the definition of W~, we can write an 
expression for the derivative W~" (for more details see Ref. 11). We have 

W." =_ (i/h)[K.~, m~] + n"(c, .W~)/c ~ (45) 
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where the last term corresponds to the contribution of the evolution of n. 
A straightforward calculation of  the commutator  in (45) leads to the fol- 
lowing expression: 

W,~ = ( gatzo/h Mc2){nOF.a(q) Wa~[p" --  eA"(q) ] 

- -  g"~(q) W~no[p ° - -  eA°(q)] 

+- F"a(q)naW, j p "  - -  eA°(q)]} 

- )  (g3tzo/hcZ){nOFoa(q)W~n" 4: - c2F~(q)W2} -k n"(it .W;)/c 2 (46) 

F rom this general expression of I?/~, we justify the BMT equation (t4~ 
as a semiclassical approximation. 

Let us consider a state corresponding to a wave packet around the 
mass shell, sharply defined in spacetime and momentum-energy and a given 
direction of spin. For such a state we can approximate (F.~(q)> by F.~ = 
F.~((q>). For the time derivative of  q" we have 

i 1 [ g~/~0 .~. . . . . . .  l 
O~ z= ~ [K,~ q"] = ~ [ p"  - -  eA"(q) - -  

and we can suppose that 

d.<q") : (q~") ~ (1 /M)(p"  - -  eA"(q)) _~_ t7" (47) 

for any % according to the previous considerations about the evolution of n ". 
Moreover,  

fi" ~ d.(0~> ~ Kn,  M ~ (48) 

Performing these approximations in (46) and reordering terms, we 
finally find the following equation, which is the BMT equation for the 
precession of the polarization of a particle moving in an electromagnetic 
field: 

W~ = (l~o/h){(gl @ g3)f"~W; ÷ (gl  + g3 --  2)n"n"Fo~W~} (49) 

In view of this result, g~ -k g~ = g is interpreted as the g-factor including 
the anomalous magnetic moment.  

As a second application, we consider the hydrogen a tom (or hydrogenlike 
atom) considered as an electron interacting with the electromagnetic field 
of  a nucleus, given by c151 

A. (x )  =- (0, O, O, Z ( - - e )  1) 
4~e o r ' r = [x  ~, (50) 
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where c 0 denotes the vacuum dielectric constant. Z ( - - e )  denotes the charge 
of the nucleus, e being the electron charge. 

Roughly speaking, the states of the electron corresponding to the 
spectrum are those states described by wave packets moving in spacctime 
with the nucleus: i.e., moving along the time axis and staying close to it. 
Then, according to the previous considerations in Section 2.2 about the 
evolution, we must consider states such that n = no. More precisely, the 
spectrum of the atom is all the values of E -- Mc  2 corresponding to solutions 
of the eigenvalue equations 

K,o~b(x) = -- ½Mc2~(x) and n~p,~b(x) = - -E ~(x )  (51) 

which are "localized" around the time axis. For the given electromagnetic 
field in (50) we have 

K .  ° _ 1 e V(q) 2M p2 __ c 2 p~ __ 

gl/z° g22/x°2 E2(q) (52) 
-t- ~ [p ^ E(q)]a + 8Mc~ 

In this expression E denotes the electric field 

E ( x )  - Z ( - e )  x 
4zre o r 3 

Obviously K% does not depend on q~ and thus it commutes with 
n~p, = p ~  = - - i h  ~ .  Consequently, the solutions of (51) are of the form 

~(x) = exp(-- iEt /h)  ~(x) (53) 

where q~(x) is a solution of 

(E) 
K~o q~(x) = --  ½Mc2~(x) (54) 

the restriction of (51) to the spectral subspace of P4 corresponding to E. 
Taking into account the explicit form of V(x) and E(x)  we have 

K(E) _ 
0 

Z e  2 1 2 ] 
2--M-fi 4rr% 

g~lzo Z e  ( x )  g221~o~ Z2e~ 1 
2McZ 4~eo p ^ ~g-  o -q- 8Mc~ (47r%) ~ r-- ~ 

(55) 

Finally the spectrum is identified with the values of E -- Mc ~ such that 
there exist solutions of (53) in C 2 @ L2(E 3, d3x). Since K% and p~ are in- 
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variant under rotations, they commute with the total angular momentum 
operators J = L + hal2, where L = q ^ p are the orbital angular momentum 
operators. Moreover, the operator L ~ also commutes with K% and P4- 
Consequently we can determine solutions of  (53) of  the form (in spherical 
coordinates r, 0, ¢) 

~v(r, 0, ¢) = R(r)Y3~(O, d?) (56) 

where Y~,~(O, ¢) denotes the usual angular eigenfunctions of  J~, L z, J , ,  and 
R(r)  ~ L2(~+, r 2 dr). Thus, in contradistinction to the Dirac model, the 
orbital angular momentum l is here a good quantum number. We also point 
out that  according to the symmetries of  the solutions we have 

f d3x ~v+(x)pq~(x) = 0 
3 

This means that the corresponding wave packet around the mass shell, 
built up f rom the solutions of  (51), represents a particle moving in spacetime 
along the time axis, as expected. 

The corresponding radial equation for R(r)  in (56) is obtained f rom 
(54) and (55) to be 

h a l ( l +  1) • - - h  ~ 1 d r r Z d ~ +  ~2 E a o _  °~ 4 M e  2 ao 2 
2 M  r 2 2 M  r 2 r 2 r 2 

+ o~ ~ gl Mce  ,~ 2Mc2 E 2 _ MSc 4 
c(j ,  I) a°~ a°4 ] R(r)  - ~  -+- a6 ~s2 ~2 r 4 2 M e  ~ ==0 

(57) 

Here ~ = eZ/4rrEohc denotes the fine structure constant, a 0 = 4rr%h2/Me 2 the 
Bohr radius, and c(j ,  l) = l - -  1 or l according to whether l : j + ½ o r j  - -  ½. 
Formally, this radial equation looks like the corresponding one in the 
nonrelativistic case where the particle interacts with the singular potential 

_ ~ 2 E  a0 _ c~ 4 
r 

M e  ~ ao 2 gljl~rc ~ g~2Mc2 
2 r ~ + ~4 ~ c(j,  1) a°~ a°~ - ~ -  -b- c~ 6 32 1.4 

and one can show that the exact solutions of (57) in L2(N+, r 2 dr) behave 
near the origin as 

R(r )  = exp(--c~2g~ao/4r) O(r (gl/g"-)~(j'~)) (58) 

for r --+ 0. 
The spectrum, i.e., the values of  E - -  M c  2 such that there exist solutions 

of  (57) in L2(N+,  r 2 dr), has been calculated in terms of the power expansion 
in c~ 2 up to terms in ~4. The following results have been obtained. 
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For l = 0 

Z2c~2 Z%~4 [n 3 O(a6)} E - -  M e  2 = - - M c  2 ( - ~  @ ~ - -  ~ - -  n(g~ - -  1)] + 

where n, the principal quantum number, takes positive integer values. 
For l = j 4- ½ ~ 0 we respectively have 

I Z2c~2 Z~a4 
E - -  M c  ~ = - - M c  2 { ~  + 2n ~ 

n 3 n ( g l  - -  1) } 
× ( j  _V_ ½ 4 4- (2j 4- 1)(j + ½ :~ ½)) + O(~6) 

(59) 

(60) 

where n takes integer values strictly greater than I. 
The previous results need some comments. First, for gl = g~ = 1 the 

spectrum coincides (at least up to terms in ~)  with the corresponding 
spectrum of the Dirac model and exhibits the well-known degeneracy in l. 

For gl and g~ not equal to one, expansions (59) and (60) differ (up 
to terms in c~ 4) from the Dirac spectrum by energy shifts of the form 

and 

Mc2Z4o~ 4 
2n z ( g z - -  1) for l = 0  (61) 

M c2Z%~4 g l -  1 
T 2n ~ (2j4- 1)(j4- ½ 4-½) for l - - - - - j~½ =/=0 (62) 

Such terms remove the degeneracy relative to l and then contribute 
to the Lamb shifts. Usually the Lamb shifts are obtained as radiative 
corrections to the Dirac results. The correcting energy shift terms obtained 
by such a procedure (1~) may be compared with the above energy shifts (61) 
and (62). Expressions of both types are rather similar, particularly in what 
concerns their n and Z dependence. 

Actually for g~ = g -  1 = 1.0023 and g2 : 1.048, our spectrum ex- 
hibits Lamb shifts with good numerical agreement. 

For the ~S~ -- ~P~ energy separations we have the expression 

2 n 3 g2 -- 1 + n / > 2  

which corresponds to the frequency 8 .464Z4/n  3 [GHz]. The predicted nume- 
rical values for different n and Z are compared with the experimental results 
in Table I. 
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Table I ~ 

Theory 

n Z - : I  Z = 2  Z = 3  

881 

Experiment 

1H ~He + .Li2+ 

2 1.058 16.92 85.7 1.058 at) 14.04 (17) 63.0 (17~ 

3 0.314 5.04 -- 0.315 (ls~ 4.18 (~9~ -- 

4 0.132 2.11 -- 0.133 (Is) 1.76 (2°~ -- 

5 0.068 1.08 - -  0.065 tls) 0.90 (21~ - -  

Results in GHz. 

F o r  the above  cases ( j  = ½) the l inewidth is always smaller  than  the 
L a m b  shift, bu t  f o r j  > / 3 / 2  it is larger  than  the energy spli t t ing in our  spec- 
trum. Nevertheless,  we can compare  our  results for  j > ½ with very accurate  
exper imenta l  results for  the ~P~ - -  ~P~ energy separa t ions  in the  hydrogen  
a tom.  

F r o m  (60) it is given by  

(~ :Me~ /4nZ)g  a 

which cor responds  to the f requency 87.786/n 3 [GHz].  We have in [GHz]  

n Theory  Exper iment  

2 10.973 10.969 (2~) 

3 3.251 3.248 (~2) 

F ina l ly  it is impor t an t  to note  tha t  the exper imenta l  de te rmina t ion  o f  
the L a m b  shift  is somet imes  ex t rapo la ted  f rom the Zeeman  spli t t ing o f  the 
energy levels for  different magnet ic  fields. In  our  model ,  the domina t ing  
terms for  the Zeeman  effect are the usual  relativistic ones (with gl  + g3 = g). 

Hence ,  we are led to the same in te rpre ta t ion  of  tha t  exper iment  as the usual  
one. 
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