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We analyze the quantum mechanical measuring process from the standpoint 
o f  information theory. Statistical inference is used in order to define the most 
likely state o f  the measured system that is compatible with the readings o f  the 
measuring instrument and the a priori information about the correlations 
between the system and the instrument. This approach has the advantage that 
no reference to the time evolution of  the combined system need be made. It 
must, however, be emphasized that the resu# is to be interpreted as the statistic- 
ally inferred state o f  the original system rather than the state o f  the system 
after measurement. The phenomenon of  "reduction of  states" appears in this 
light as  a consequence of  incomplete information rather than the physical 
interaction between measured system and measuring instrument. 

1. INTRODUCTION 

Statistical inference is concerned with the problem of determining the most 
likely distribution of a probabilistic system about which partial information 
is available. This concept has recently been formulated in the context of  
quantum mechanics, m In the case of quantum mechanics the probabilistic 
system is represented by a von Neumann algebra 6~, which contains the 
observables, and the partial information consists of (a) an a priori state v 
on O, and (b) an expectation functional on a subalgebra ~ of 6~. 

In this paper we use this formalism in order to analyze the quantum 
mechanical measuring process. The significance of O, ~ ,  and v is as follows: 
Let S, .4, and S + A be, respectively, the systems of the measured object, the 
measuring apparatus, and the combination of both; then 6~ contains the 
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observables of S ÷ A; ,~, the observables of A; and v, the correlations 
between S and A. The formalism then permits us to determine the most 
likely state w of S + A and, by restriction, the most likely state Ws of the 
measured system S. 

The remarkable feature of this formulation is that the standard results 
of the theory of  measurement (see, e.g., Refs. 2 and 3) are obtained without 
making any assumptions about the time evolution o f  the system S + A. In 
particular, the so-called "reduction of states" in perfect measurements 
appears in this light as a natural consequence of the incompleteness of our 
information about the system rather than its interaction with the measuring 
instrument. 

As pointed out in Ref. 4, this view does not conflict with the fundamental 
assumptions of quantum mechanics. By interpreting Ws as the inferred state 
of S before the measurement rather than the state of S after the measurement 
(whatever that means), we avoid the controversy concerning unitarity and 
continuity of the Schr6dinger time evolution. 

2. STATISTICAL INFERENCE 

We describe in this section the general mathematical formalism of 
statistical inference on which our analysis of the measuring process will be 
based. For the details the reader is referred to Ref. 1. 

Let 6g be a v o n  Neumann algebra on a separable Hilbert space H, 
_C ~ a yon Neumann subalgebra, and v a faithful normal state on O. Let 

ve be the restriction of v to ~ .  We interpret the self-adjoint elements of ~ as 
the observables of the system, the self-adjoint elements of N' as the measured 
observables, and v as the a priori state reflecting the information about the 
system prior to the measurement. The partial information gained frorn the 
measurement of  N is represented by a normal state w2 on ~ .  

According to a theorem by Takesaki, (5) there exists uniquely a positive 
T ~ ,  0 < T <~ A1/2L such that 

w~(B) = v~(TBT); VB ~ 

provided that w~ is majorized by Av~ with 1 ~< A. Using this operator T, we 
define on 6~ the state 

w(A) = v(TAT); VA ~ ~ (1) 

and call it the statistical inference from w~ relative to the subalgebra ~ and 
the a priori state v. 
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The interpretation of w as a statistical inference is based on the following 
properties: 

(a) w is an extension of w~.  

(b) I f  w~ = v~ ,  then w = v. 

(c) I f  ~ = {M}, then w =: v. 

(d) I f ~  = ~ : B(H),  then w = wo~. 

Property (a) tells us that the inferred state is compatible with the partial 
information; (b) that no information can be gained from a measurement that 
agrees with the a priori information; (c) that no information is obtained if 
the measurement is trivial; and (d) that a complete measurement determines 
the state on 6g completely. Furthermore, it can be shown m that the definition 
(1) is a generalization of the classical definition of statistical inference, and that 
the state w maximalizes the entropy within the equivalence class of  states that 
are compatible with w~. (~) 

In view of our application, we now consider the special case where 
= B(H)  is the yon Neumann algebra of  all bounded operators in H and 
= {E~}" is the Abelian subalgebra generated by the partition of the identity 

{E~-}. As shown in Ref. 1, the inference w of w~ relative to ~ and v then 
assumes the explicit form 

( w*(EOA ~/~ 
w(A) = Tr(WA); W ..... TVT;  T = \ v , (E i )  ) E~ (2) 

where W is the density operator of  w and V the density operator of  v defined 
by Tr(VA) = v(A), VA ~ 0[. 

3. T H E  MEASURING PROCESS 

Let us apply the concept of  inference described in Section 2 to the 
analysis of  the quantum mechanical measuring process. 

We denote by H s  and HA the Hilbert spaces of  the measured system S 
and the apparatus A, and by the tensor product H s  @ HA the Hilbert space 
of the combined system S + A. The algebra 6g = B ( H s  @ HA) contains the 
observables of  S + A. The measurement consists in reading, say, n positions 
of  the measuring instrument. Since the apparatus is classical, (2) we assume 
that these positions correspond to n orthogonal vector states ~i ~ HA • The 
projectors Q~ onto ~b~ form a partition of  the identity in HA, and the measured 
subalgebra in ~ = {I @ Qi}". I f  w~ are the probabilities of the instrument 
readings i = 1, 2,..., n as obtained from a sequence of identical experiments, 
then the state w~ on ¢~ is uniquely defined by w e ( I  @ Q~) = w~. 
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The a priori state v on (7/contains the information about the system 
S + A before the measurement, which consists of our knowledge of (a) the 
observables of S that A is supposed to measure, and (b) the accuracy with 
which A measures these observables. Mathematically, this amounts to the 
specification (a) of n orthogonat states ~ e Hs and the corresponding projec- 
tors Pi in Hs ,  and (b) of a correlation matrix ~iJ = E(Qj ] Pi), where E(Q~ [ Pi) 
is the conditional probability that if S is in the state (pc, then A is in the state 
@.  Since the projections Pi @ I and I @ Q3 commute, we have 

eij = E(Q~ I Pi) = v(Pi @ Qj)/v(Pi @ 1) 

Next we require that the a priori probability v(Pi @ I) = ~ is independent of 
i. (If this were not so, the a priori state v would yield some information about 
the state of S before any measurement is performed !) It  then follows from 
the normalization of  v that ~ = 1/n. Hence 

v(Pi @ Q~) = (l/n) ei~ (3) 

The constraints (3) do not define the state v uniquely. We therefore 
invoke the "principle of sufficient reason" by defining v as the maximum 
entropy state under the constraints (3). 

Lemmao 
defined by 

Within the equivalence class of states satisfying (3), the state 

has maximum entropy. 

Proof. The state v defined by (4) satisfies the constraints (3): 

1 Tr(PkPi @ QzQs) v(Pi @ Q~) = Tr[V(Pi @ Q~)] = n ~ %t 
le,t  

I 1 
= n- ei jTr(Pi  @O5)_ ==n eij 

That v is the maximum entropy state can be seen'as follows: In the basis 
~o~ @ ~b~ of  Hs @ HA the constraints read Vi~,ij = ( I /n)e i j .  Within the 
equivalence class of density matrices with these diagonal elements the yon 
Neumann entropy - -Tr(V log V)has a maximum for the matrix V whose off- 
diagonal elements vanish. (7) It  is therefore sufficient to verify that (4) is 
diagonal in the basis 5o~ @ @.  But this follows immediately from the fact 
that (4) is a function of Pk @ Q~ • 

v(A) = Tr(VA); V = _1 ~ %~(p~ @ Qz) (4) 
//k,~ 
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With 6[, ~ ,  v, and we specified, we now apply the results of  Section 2 in 
order to compute the inferred state w on the algebra 6g of  the combined 
system. Using (2), we obtain 

w(A) = Tr(WA); W =- TVT; 

where w~ = we(I @ Qi) and 

W i  ] : / 2  
T = ~i ~--v~-: (I @ Qi) 

t 
V~ = r~(I @ Qi) : Tr[V(I  @ Qi)] ..... n ~ eT,~ Tr[(PT~ @ Q~)(I @ Qi)] 

1 ~ Tr(Pk ® Q0 : i ~ "~ = 1 ~ %~ Tr(Pk @ QzQi) == n el~i 
n t ; , 1  n k 

Putting these results together, we find that the density operator W of the 
combined system becomes 

Skew!_ .. eo  W == ~ E ~  "~.~ ~ k  @ O~) (5) 
7c, t 

The state Ws of the measured system S can be derived from the state w 
of the system S + A as follows: Let (Ys = B(Hs) be the algebra of  observables 
in Hs • Then the restriction of  w to ffs is defined by 

w~(A) = w(A @ I); VA e C~ 

In terms of density operators, this can be written 

Trs(WsA) = Tr[W(A @ / ) ]  (6) 

where Trs is the trace over Hs,  and a simple argument shows that (6) has the 
unique solution His = TrA W, with TrA the trace over HA • Hence the density 
operator of  the measured system is 

S ~ %Y~ w~ = ~ ~ - T , ,  P'~ (7) 
l;,I Z..,m "o l 

The infen'ed state of  the apparatus can be derived in a similar fashion by 
setting I'VA = Trs W. The result is, as expected, 

Wa == Z wzQz 

We conclude this section with a direct verification of  (7) for the special 
case where the system S has been prepared in the maximum entropy state 
W0 = (l/n) L Since the prepared state contains all the information about  the 
system, the entropy of  the inferred state Ws should not be less than the 
entropy of W0 • We therefore expect Ws == Wo. 

825/7/II/I2-4 
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Observe now that the probability w~ for the instrument reading I in the 
prepared state W0 is 

1 
w~ = ~ E(Q~ [ P~) E(P~) : n ~ e,,,z (S) 

/?b m 

where E(P~) = Tr(WoP,~) = 1/n is the a priori expectation of the event P,~, in 
state W0 • If (8) is inserted into (7), we obtain, as expected, 

1 ~  1 1 =  

4. REDUCTION OF STATES 

In Section 3 we have derived the inferred state Ws of the measured 
system S for arbitrary correlations E~j. Let us now consider the "perfect 
measurement." We show that in this case inference corresponds mathemati- 
cally to reduction. 

In a perfect measurement the states 50~ of S and ~hj of A are totally 
correlated. The conditional expectations are therefore 

eij = E(Qj l Pi) = 3ij 

If (9) is inserted into (7), we obtain 

(9) 

W s  = ~ wtoPk (10) 
le 

Suppose now that the system S has initially been prepared in the pure 
state, 

Wo = P~ ; 50 = ~ o~i50i 
i 

where P~ is the projection onto 50. Since the events P~ and Qj are totally 
correlated, we have w~ = Tr(WoP~) = ! ~k [3 and (10) reads 

w ~  = Z I ~,~ I ~ e~  (11) 

The state (1 1) has been called the "reduction" of W0. Reduction has 
sometimes been attributed to a "collapse" of the prepared state under an 
acausal physical interference of the observer with the system. As our analysis 
shows, the collapse of the state can also be understood as a consequence of 
incomplete information about the system. 
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