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FOUNDATIONS OF CONDITIONAL LOGIC* 

l.FOUNDATIONALISSUES 

Conditional statements occupy a central place in reasoning, and hence their 
proper analysis is a principal task of logic. Now, ever since material impli- 
cation was proposed, and found wanting as an explication, new analyses of 
conditionality have been put forward by logicians and philosophers. The 
resulting variety of formal explications itself raises several background 
questions, and it is to this foundational theme that the present paper is 
devoted. 

General questions concerning existing semantic accounts of the meaning 
of conditionals are exemplified by the following. About the language of 
conditional statements, should conditionality be treated as an operation 
upon propositions, or rather as a relation between these? As for the semantic 
apparatus, how can one judge the need for, or the relative merits of the 
various types of model and truth definition proposed in the literature? 
Finally, with respect to the ‘logical evidence’, what is the status of the 
intuitions of validity, often invoked as a touch-stone for the conditional 
logic resulting from some particular analysis? 

These are issues which may give rise to lively, but also inconclusive 
philosophical debate. For instance, operational and relational views of 
conditionals both have their adherents, and some people even entertain 
both, to the point of confusing object-language and meta-language of their 
formalization. (This is the familiar criticism of C. I. Lewis’ account of 
entailment; mentioned, e.g., in Scott (1971).) To mention another example, 
the validity of a principle such as Conditional Excluded Middle (‘if X, then 
Y, or, if X, then not Y’) has strong intuitive support, but also provokes 
grave doubts . . . sometimes within the same observer. 

What we need, then, is a general unifying perspective, enabling us to 
arrive at more definite issues and results. Definite, not in the sense of a 
universal settling of old scores, but of establishing the true logical relations 
between various options. For instance, argument about the validity of some 
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specific inference will become pointless on the view to be developed here: 
the truly fruitful enterprise being a dispassionate exploration of the ranges 
of conditionals validating proposed patterns of deduction. 

In this paper, conditional statements ‘if X, then Y’ will be analyzed 
using the generalized quantifier perspective of contemporary formal 
semantics. (Cf. Barwise and Cooper (1981) for a general exposition - 
though one not concerned with conditionals.) More specifically, the 
conditional particle ifwill denote a generalized quantifier relation between 
sets of antecedent and consequent ‘occasions’(denoted by ‘X’, ‘Y’, 
respectively; cf. Section 2). Evidently, not all such relations qualify as 
relations of conditionality, and hence various intuitive constraints will be 
explored (Section 3); both more general properties of logical constants 
and more specific ones concerning conditionality. The range of conditionals 
remaining within these constraints is then investigated, for the most natural 
case of finite universes of occasions (Section 4). Only three candidates 
remain: consensus (‘all X are I”), democracy (‘half or more X are I”), 
and anarchy (‘some X is Y’). Three major escape routes out of this 
extremely restricted area are charted (Section S), viz. admission of infinite 
sets of occasions (explored in Section 6), introduction of probability 
measures on sets of occasions (Section 7), or postulating ‘hidden variables’, 
in the form of some relevant hierarchy among possible occasions (Section 8) 
- the latter being the preferred route in current conditional theories. Even 
so, many constraints remain, and the new range of admissible truth 
definitions for conditionals may be explored (Section 9). Finally, we turn 
from this perspective of a priori semantic options toward the logical 
evidence. Some major ‘conditional logics’ are analyzed in the above light 
(Section lo), an analysis which may be extended to arbitrary patterns of 
conditional inference (Section 11). 

One striking feature of the present perspective is its integrative power. 
As this research developed, apparently unrelated contributions by such 
diverse authors as De Finetti, Scott and D. Lewis all found their natural 
place in this scheme. Many further illustrations had to be omitted, for 
reasons of exposition - notably the existence of umnistakeable connections 
with traditional, pre-Fregean views of conditionality. Even so, it is not a 
claim of this paper that the generalized quantifier perspective is the 
uniquely correct one for the study of conditionals. One important 
limitation ought to be mentioned at the outset. Broadly speaking, there 
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are two major directions in logical studies of conditionality; one tertical’, 
having to do with iterations of conditionals and the resulting implicative 
relations, another ‘horizontal’, concerned with the interaction between 
single conditionals and the Boolean connectives and, or, not. The former 
direction is most prominent in the modal ‘entailment’ tradition (cf. Hughes 
and Creswell, 1968), the latter in the study of counterfactuals and related 
topics (cf. D. Lewis, 1973). Our approach is partial to the horizontal 
direction, for reasons explained in Section 2. Extensions to the vertical 
case are mentioned occasionally, without being developed in depth. 

In addition to the above perspective itself, this paper contains quite a 
few new results, mainly concentrated in Sections 4, 10 and 11. But its 
major intended contribution is a broadening of current logical horizons. 
If many of the themes in this paper look unfamiliar to the reader of the 
current literature in philosophical logic, then all the better. Logical 
semantics should generate technical issues of its own, in addition to 
importing traditional concerns from mainstream logic, such as the ubiqui- 
tous quest for completeness theorems. What we want eventually is a general 
logical understanding of possible formal semantics, and it is this foun- 
dational theme which pervades the following pages. 

2. CONDITIONALS AS GENERALIZED QUANTIFIERS 

Throughout the subject of logic, one finds two views of conditionals: 
sometimes implication is a mere connective, then again it is taken to express 
a relation between propositions. The tendency is of long standing. Thus for 
instance, Immanuel Kant listed ‘hypothetical propositions’under the 
heading of ‘Relation’ in his famous Table of Categories. Again, both points 
of view occur intermingled in C. I. Lewis’ account of his intended ‘strict 
implication’. If this is a confusion, as the canonical textbook exposition 
has it, it is a remarkably tenacious one - a phenomenon which itself 
requires explanation. 

In order to arrive at a logical perspective which does justice to both 
points of view, one can take a cue from ordinary language. Unlike coordi- 
nating connectives such as and, or, the conditional particle if functions in 
subordinate constructions 

w-m Y; 
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where, categorially, ‘if X’ operates as a sentence modifier. As is usual in 
such linguistic contexts, the full denotation of the expressions ‘X’, ‘Y’ may 
be involved - i.e., the ranges of occasions (‘worlds’, ‘situations’, ‘models’) 
where these are true, not just a truth value on some specific occasion. Thus, 
the force of a conditional particle may be compared with that of ordinary 
determiner expressions such as all, most (e.g., (all X) Y), which exhibit 
similar linguistic behaviour. (The precise nature and extent of this linguistic 
analogy need not be explored here, as no claims will be staked on it. To 
mention just one possibly fruitful parallel, the particle then seems to 
function very much like an anaphoric pronoun.) 

Now, determiners are being studied in contemporary linguistic semantics 
through the logical notion of a ‘generalized quantifier’ (cf. Barwise and 
Cooper, 1981; van Benthem, 1983 (a, b)), with various illuminating effects. 
For present purposes, the relevant point in these investigations is their 
methodological perspective. Logical determiners, such as all, most or some, 
correspond to functions mapping sets 1x1 (i.e., the denotation of ‘X’) 
to sets of sets of individuals, viz. the extensions of the predicates to which 
the relevant subject term (‘all X’, ‘most X’, ‘some X’) applies. Equivalently, 
yet more suggestively, determiners correspond to structural relations 
between extensions of predicates, such as inclusion or overlap. This leads 
to an easy visualization, in terms of the familiar Venn diagrams. Now 
conversely, not all relations between sets of individuals qualify as 
denotations for (logical) determiners; but there is a lot of interest to the 
study of just which ones do. 

We propose to apply the same perspective to conditional statements 

if X, (then) Y, 

regarded as expressing some semantic relation 

between the sets of antecedent and consequent occasions. (Henceforth, 
this relation will be written without denotation brackets; an innocent abuse 
of notation, with heuristic virtues.) Again, the principal task of a logical 
investigation will be to delimit a range of suitable conditional relations 
between sets of occasions. Further questions will then arise in due course. 

More precisely, on the structural, non-linguistic side, we shall be con- 
cerned with generalized quantifiers, viewed as functors F assigning, to each 
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universe of discourse E, some binary relation FE between subsets of E. Thus 
typically, for a universe E of ‘relevant’ occasions, and A, BE E, 

ifEA,B 

will mean that the conditional relation holds in E between A and B. (The 
letters ‘A’, ‘B’ will be used henceforth when referring to sets in models, 
without a specific formal language in mind.) Examples are inclusion (all A 
are B), majority (most A are B) or overlap (some A is B). For a context- 
dependent example, where the universe E is essential, consider ‘(relatively) 
many’, meaning that the proportion of B-worlds in A exceeds that of the 
B-worlds in the whole universe E. In Section 3, postulates will be introduced 
eliminating such a contextual dependence for our conditionals; but the 
above’scheme gives the general pattern for natural language determiners. 

In the following sections, the uses of the present approach will become 
clear. Here, we want to point at some of its peculiarities. First, the view of 
conditionals as relations between sets of occasions would seem to favour 
generic conditional statements over individual ones. The former refer to 
sets of events, as in 

‘If (i.e., whenever) she comes, she quarrels’. 

The latter are about particular events, however, as in 

‘If he came, he cried’. 

Our view is that both statements presuppose variety of occasions. The first 
is about several events in one world, the second about one event in several 
possible worlds. The present broad concept of ‘occasion’ is meant to include 
both, as well as combinations of the two. Against this general background, 
specific choices of relevant universes of occasions E may account for 
particular kinds of conditionals. For instance, the location of some 
distinguished ‘actual world’ in E may be important in the treatment of the 
contrast between indicative and subjunctive conditionals. (Indeed, E itself 
may consist of some set of world-lines connected with that actual world.) 
In this paper, however, the abstract common pattern is the central concern, 
while such further specifications are left to specific applications. 

Another notable aspect of the generalized quantifier approach is that 
iterated conditionals become awkward to handle. This reflects the fact that 
natural language has no direct means of iterating determiner expressions. 
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Thus, this paper is almost exclusively (though not irrevokably) concerned 
with simple conditionals, in the earlier-mentioned ‘horizontal’ tradition. 
In itself, this restriction need not be a defect. There is a well-attested danger 
of facile logical formalisms leading us into iteration that just is not there in 
ordinary speech. For instance, on the causal reading of conditional relations 
between (sets of) events, iterated conditionals do not make sense; unless 
the second layer is interpreted in a different spirit. And in fact, the latter 
meaning shift is also present in standard examples of iteration, such as 

‘If this glass breaks if hit, it will break’. 

To stress all these points, the notation to be used here differs from the 
ordinary use of arrows. We study assertions of the form 

if XY; 

where ‘X’, ‘Y’ may be complex, but conditional-free Boolean terms involv- 
ing 1, A, v. Most of the (in our opinion) fundamental types of conditional 
inference are already statable at this level, witness the discussion in 
Sections 10 and 11. Thus, one can study schemata of the form 

ifX,Y, --- if X, J-L 
ifXY 

Examples are transitivity (from if XY and if YZ to if XZ) or monotonicity 
(from ifXY to if X(Y vZ)). A pattern like Conditional Excluded Middle 
however (if XY or if X 1 Y), would call for the addition of Boolean com- 
binations of conditional assertions themselves. Essentially, this would now 
also allow disjunctive conclusions in patterns of inference. 

From a more general logical point of view, the preceding patterns of 
inference may be viewed as universal statements in a first-order language 
with variables X, Y, Z, . . . , Boolean term operations and one binary 
relation symbol if. One further direction of enquiry, not usually pursued 
in logical semantics, would be to study the entire range of first-order 
assertions about conditionality. Another might consist in adding further 
binary relations between sets of occasions, such as inclusion, and studying 
their interplay with conditionality. This paper is devoted to the earlier 
simple case, however. 

It remains to be noted that iterations may be introduced after all, once 
the conditional relation is provided with an additional parameter: 
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ifE,d,B; 

i.e., if A, B as seen from the vantage point of some particular world w in E. 
Through lambda abstraction, conditional statements can then be made to 
correspond to sets of worlds, which may again be used as arguments A, B. 
Much of the following investigation can be transferred to this setting 
without any major changes -but the earlier more austere presentation has 
been preferred for its simplicity and elegance. 

3. INTUITIONS OF CONDITIONALITY 

What kind of generalized quantifier is a conditional? Before passing on to 
the usual display of paradigmatic (non-)-inferences, let us reflect more 
deeply. Our intuitions come in various kinds, and it is important to con- 
sider the more volatile ones first, concerning the kind of notion that we are 
after, before these are drowned in a list of very specific desiderata. Only 
in the light of such background intuitions, one can take a proper look at 
more concrete claims of validity or invalidity of conditional inferences. 

The difference may also be illustrated by an example from a different 
field of semantics. In the logical study of Time, attention is often restricted 
to the choice of specific axioms for the temporal precedence order matching 
certain desired validities in the tense logic. But, there as well, there exist 
preliminary global intuitions, such as ‘anisotropy’ or ‘homogeneity’, con- 
stituting the texture of our idea of Time, constraining rather than generating 
specific relational conditions. 

Indeed, the ill repute of the term ‘intuition’ may be partly due to a 
misapplication. It is highly unlikely that intuition would settle such specific 
issues as the validity of concrete inference schemata. An appeal to intuitions 
in discussions of the latter type often amounts to a refusal to argue about 
the evidence. On the other hand, the proper place for intuition would seem 
to be at the level of the general structure of our concepts - in the spirit of 
Kant’s philosophy. To paraphrase this great philosopher, we have certain 
a priori intuitions concerning the basic logical notions, and no human mind 
is entirely without them. 

Global intuitions themselves come in various kinds, having different 
levels of generality. The following principles wiIl illustrate this. The first 
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postulate is very specific for conditionals, the next holds for determiner 
expressions in general, and finally some constraints are imposed on logical 
constants as such. 

CONFIRMATION 

A conditional statement if XY claims that ‘significantly many’ (‘enough’) 
X-occasions are Y-occasions. As such, it is tied up closely with what might 
be called ‘positive’ or ‘negative’ evidence; i.e., cases where X and Y hold, 
or cases where X holds without Y, respectively (cf. Figure 1). Briefly, our 
intuition is that addition of positive evidence, or removal of negative 
evidence will not affect a true conditional assertion. 

Fig. 1. 

E 

Out of the various ways to make this idea more concrete, here is one 
suggestive formulation, which leads to several structural constraints upon 
conditional relations ifEA, B. Suppose that one decides that if X, Y is true 
in E on the basis of partial information about the extensions [Xl, I[Yjj, 
say [X ] = A, I[ Y ] = B. Now, further information may tell us that these 
estimates should be revised to A’ 2 A, B’ 2 B. Then the above intuition 
tells us that, if no counter-examples are added in this way, the conditional 
relation will continue to hold. Formally, for A C A’, B C B’, 

if ifEA, B and A’ -A L B’, then ifEA’, B’. 

In practice, it is more convenient to split this up into two cases: 

(1) fiied A, growth of B: 

if A, B implies if A, B U C, for any set C; 
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(2) simultaneous growth of A, B: 

ifA, B implies ifA U C, B U C. for any set C. 

The first of these principles is well-known as ‘weakening of the consequent’, 
or (upward right) ‘monotonicity’. 

Next, consider the case where there have been errors in judgments 
already made about [Xl, I[YJJ, and one retreats to A’C A, B’S B. At least, 
the above intuition tells us that mere removal of counter-examples will not 
affect the conditional assertion: 

ififEA,BandA-A’sA-B, thenifEA’B. 

In a more elegant form this may be stated as the implication 

(3) if A, B n C implies if A n B, C. 

What about a stronger principle, dual to the above (I), stating that 
‘strengthening the antecedent’ will not do any harm? 

(3)’ if A, C implies if A fl B, C. 

This would mean that possible removal of confirming instances does not 
affect the conditional either. Except for the extreme case where A is 
included in C to begin with, such a principle has little to recommend itself 
as a general constraint. 

A fourth and final aspect of Confirmation would seem to be that 
‘optimal’ evidence should verify a conditional: 

(4) if A, B, whenever A C B. 

This completes the exploration of what is perhaps the most distinctive 
feature of conditionality. The next intuition to be considered is a more 
general one, prescribing a special role for the left-hand argument in con- 
ditional statements - a phenomenon also observable with determiner 
expressions (cf. van Benthem, 1983(a)). 

ANTECEDENCE 
A conditional statement invites us to take a mental trip to the land of the 
antecedent. Thus, the assertion of the consequent is only relevant in as far 
as it holds among the antecedent occasions (cf. Figure 2): 

ifEA,BifandonlyififEA,Br\A. 
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Fig. 2. 

Most current accounts of conditionals obey this restriction; which also 
shows in equivalences such as ‘every dragon is greedy * every dragon is a 
greedy dragon’. 

A stronger version of this same intuition would be the claim that the 
whole context of E outside of the antecedent occasions is immaterial: 

ifEA,BifandonlyififAA,BnA. 

We shall derive this stronger equivalence from a more general principle to be 
adopted below. 

The following set of principles is of a yet more general logical flavour. 

EXTENSION 

Logical constants should be stable, in the sense that, once established, 
further growth of the universe will not affect decisions already taken. The- 
relevant cross-contextual constraint is found in WesterstSlhl(l982): 

ifA,BcECE’, then 

ifEA, B if and only if ifEtA, B. 

The effect of this principle is ‘context-neutrality’: logical statements about 
sets involve no more’ than (the union of) these sets themselves. In con- 
junction with Antecedence, the context may even be restricted to the 
antecedent domain. 

It is this principle that will allow us to drop the context parameter E 
in the remainder of this paper, whenever convenient. 

But, there are also more local requirements of a logical nature. 

ACTIVITY 
A logical constant should do some work, showing some variety of behaviour 
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within its proper field of action. Thus, in the light of the above, we state 
that 

for each non-empty set A, there exist B, B’S A such that 

if A, B and not if AB’. 

In conjunction with the earlier postulate of Confirmation, clause (1) 
(monotonicity), this is equivalent to requiring 

ifA,A 

if A, 0 for no A except the empty set. 

The former condition already appeared as clause (4) of Confirmation. The 
latter is new; and indeed,.it need not always be satisfied. (One may think 
of a probabilistic approach where A is a non-empty set of measure zero.) 
Nevertheless, we shall assume Activity henceforth; largely for convenience. 
Subsequent results can easily be modified so as to do without it; but this 
would bring in all kinds of border-line cases obscuring the main issues. 

A deeper, but also less fathomable logical intuition says that all 
phenomena previously noted should occur quite ‘regularly’. We are 
concerned with an arbitrary situation, not any specific semantic structure. 

UNIFORMITY 

There should be uniformity in the range of a conditional relation. 
Accidental features, such as the absolute size of the antecedent set, 
should not matter to its truth value behaviour. Typically, such an intuition 
invites us to make comparisons across different antecedent sets. 

To make this idea more concrete, consider the following thought- 
experiment. Start from sets A, B with if A, B (or not, as the case may be). 
Now, one adds a counter-example, noting what happens. (Le., one notes the 
truth value of if A U {a}, B; with a outside of A fl B.) Afterwards, removing 
the counter-example II, one adds a confirming instance, again noting what 
happens (to if A U (a}, B U {a>; with a outside of A). Finally, one notes 
what happens when both acts are performed at the same time. The out- 
comes may be pictured as ‘confirmation patterns’ of truth values, of the 
form 

old situation 
add counter-example 

add both 
add confirming instance. 
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A priori, sixteen possible truth value patterns can occur as the outcome of 
our thought-experiment. Of these, Confirmation allows only the six patterns 
displayed in Figure 3. 

+ + + - - - 

++-+-+-+-+-- 
+ + - - + - 

Fig. 3. 

Now, Uniformity will typically constrain the occurrences of such out- 
comes. Our thought-experiment must at least exhibit certain regularities, 
independent from the particular location A, B where it is performed. 
One obvious requirement, given the nature of the above experiment is 
uniqueness of outcomes: the combined addition should always have its 
truth value uniquely determined by the results of the separate experiments. 
Thus, the second and the third (or fourth and fifth) patterns in the above 
sequence cannot occur together for the same conditional. 

There is room for a whole hierarchy of uniformity constraints here, 
depending on when the outcomes of a sequence of thought-experiments 
are to form stable, recurring patterns. But here, only the above minimal 
kind of regularity will be imposed. 

The final principle to be formulated here may be too technical to come 
to the untutored mind as an ‘intuition’. Still, it is one which, in one form 
or another, appears in virtually all discussions of logical constants. 

QUANTITY 
Logical constants should be ‘topic-neutral’, in the sense that there is no 
special role for any particular individual occasion. Formally, this is usually 
presented as invariance under permutations of the universe: 

for every bijection F between E, E’, and A, B ‘G E, 

ifEA, B if and only if ifEp F[A], F[B]. 

In plainer terms: if A, B only depends on the number of occasions in the 
relevantsetsAnB,A-B,B-A,(E-A)n(E-B). 

This principle of stark austerity may need some clarification. Quantity 
may be viewed as a form of Occam’s Razor: there should be no more to 
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conditionals than meets the eye. More specifically, no semantic constructs 
should be relevant but those sanctioned explicitly by the syntactic material 
in a conditional sentence. Now, as has been argued in Section 2, the proper 
denotations of the antecedent and consequent sentences are bare sets of 
occasions - and the particle if has to denote a relation between these. 
Violations of this principle must then always result in ‘hidden variable 
theories’, postulating additional semantic structure among occasions beyond 
what meets the eye. The latter procedure is quite respectable, of course: 
science introduces its theoretical terms often in just this way. But, in a 
foundational study such as the present one, we want to explore the limits 
of the former, more austere realm of conditionals - if only to see just 
where this is to be transcended, and what are the options. 

4.A TRILEMMA 

Even if all our general intuitions concerning conditionals are plausible by 
themselves, their combined effect may be surprising. After all, the problem 
with our intuitions is usually not their availability or vitality, but rather 
their consistency. In this section, it will be determined which generalized 
quantifiers are left by the combined postulates of Section 3. 

Now, in a first analysis, there are good reasons for restricting attention 
here to finite universes. It is in accord with the intuitive semantics of 
natural language, it is the area where proposed explications for conditionals 
usually work most smoothly (cf. Lewis, 1981), and the restriction also curbs 
the mathematical temptation to embark upon exotic infinite combinatorics 
irrelevant to the main issue. 

There exists a convenient geometric representation of our conditionals 
in the finite realm. In view of Antecedence and Extension, the truth of 
if A, B only depends on A, B n A - or equivalently, on A -B, A n B. 
Quantity entails that only the numbers of occasions in these two sets 
matter. Thus, any conditional on the finite universes is representable as a 
subset of the free of couples 

IA-El, lAnEI 

depicted in Figure 4. 
So, a conditional may be pictured as a tree pattern of truth values +, -; 

as used in the earlier statement of Uniformity. 
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IAl = 0 
1 
2 
3 
: 

o,o 
l,o 0,l 

2,0 1,l 0,2 
3,0 2,l 1,2 0,3 

etcetera 

Fig. 4. 

A simple combinatorial argument will now establish the range of con- 
ditionals left open by’our postulates: essentially, two ‘democratic’ cases 
and one ‘anarchistic’ one. 

4.1. THEOREM. On the finite sets, the only conditionals in the present 
sense are those defined by all, not least and some. 
Here, ‘not least’ is short for ‘half or more’, and”some’ stands for ‘some or all’. 

Boof. That these three conditionals satisfy all earlier postulates follows 
by geometric inspection of their tree patterns. The key observation here 
is that 

- Confirmation (l), (2), (3) amount to the requirement that, whenever 
(a, b) belongs to the conditional, then so does the area (0, -), (0, b), (a, b), 
(a, -) (cf. Figure 5). 

Fig. 5. 

- Activity (including Confirmation (4)) says that the right edge of the 
tree lies within the +-region, while the left edge (minus the top) lies out- 
side of it. 

Conversely, consider the pattern for any conditional satisfying our 
postulates. The top position gets +, by Activity. The next row gets -, +; 
again by Activity. The third row leaves a choice in the middle - its bound- 
aries being fmed by Activity. One possibility is - - +, in which case 
Uniformity produces a --diagonal alongside the right edge. By Confirmation 
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then, (in fact, by monotonicity in the rows), the tree becomes that of the 
conditional all (cf. Figure 6(i)). 

(i) (ii) (iii) 

+ + + 
-+ -+ -+ 

-- + -++ -++ 
-- -+ -+i-+ --++ 

-++++ --+++ 
--- +++ 

Fig. 6. 

The other possibility for the third row is - + +. This fures three 
positions in the fourth row, as before, while leaving the truth value at its 
second position open. 

CASE 1. The fourth row is - + i- +. 

In this case, the experiment - - + has produced the outcome +, and hence 
it will continue to do so (Uniformity). By Activity and Confirmation then, 
the tree pattern becomes that of some or all (cf. Figure 6(ii)). 

CASE2. Thefourthrowis--+++. 

This determines four positions in the fifth row as before. The remaining one 
(in the middle) is fmed by Uniformity: - ’ + will invariably produce the 
combined truth value outcome +. By a similar observation concerning 
- - +, the tree pattern becomes that of hulfor more (cf. Figure qiii)). Cl 

There is a Calvinist flavour to the above results: only a few ways of life 
are open to a righteous conditional, none of them very attractive. 

The logical escape routes will be charted in the course of this paper. 
Finally, the above tree of numbers has more uses than the one just 

demonstrated. It is particularly useful in picturing the effect of various 
intuitions; say, when trying to escape from the above trilemma. For 
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instance, it turns out that Uniformity played a decisive role in this extreme 
limitation. Without it, the full range of a priori possibilities is realized. 

4.2. THEOREM. On the finite sets, there are 2Ho conditionals satisfying 
Antecedence, Confirmation, Extension, Activity and Quantity. 

Boofi Any subset of the tree satisfying the geometrical equivalents of 
Confirmation and Activity will qualify. Such subsets are determined by a 
left-most positive boundary, as in Figure 7. Each such boundary is charac- 
terized by a ‘marching order’: nl steps south-east, n2 steps south-west, 
n3 steps south-east, etcetera. Obviously, there are 2no such marching 
orders. Cl 

Fig. 1. 

5. THREE WAYS OUT 

Up till this point, our study has been concerned with apurely numerical 
approach to conditionals, reaching its limits in the trilemma of Section 4. 
Now, we will explore options for transcending this approach, thus 
increasing our scope to encompass more actual examples of conditionals 
studied in the literature. Three lines of investigation may be discerned here, 
perhaps not the only ones, but certainly the most important ones. 

First, there is one option which violates none of the earlier intuitions, 
viz. lifting the restriction to finite sets. Essentially, we have been studying 
conditionals as binary relations on finite sets of natural numbers - and we 
may now pass on to the full power set 46(IN). One attraction of this 
infinitq approach is the following. In doing semantics on the finite 
models, one is typically concerned with an arbitrary, but usually ‘large’ 
number of occasions. The spirit of this view is sometimes better captured by 
mtinite sets, abstracting from all peculiarities of particular finite numbers. 
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On the other hand, one wants to exclude irrelevant concerns about higher 
cardinal arithmetic, and hence Section 6 will be devoted to the numbers 

0,1,2,.. .,= 

The predominant tendency in conditional logic seems to be, not to 
exploit possible additional resources of infinity, but to enrich the old 
(finite) models by .irnposing additional semantic structure. The intuition 
to go then is not a typical conditional principle such as Confirmation or 
Antecedence, but rather one of the general logical ones, viz. Quantity. 
(Quantitative violations of, say, Extension or Uniformity will be left 
unexplored here.) 

In principle, there are many ways of proceeding here. One is to assign 
‘weights’ to different possible occasions, by introducing some probability 
measure P on subsets of E. Conditionals then arise which essentially exploit 
this additional structure, such as the following principle of ‘likelihood’: 

ifA,BifqA flB)>P(A -B). 

Notice that this inductive approach reduces to the earlier numerical one 
when Pis the equiprobability measure. 

The inductive approach will be considered in more detail in Section 7, 
for its suggestive value - and a connection is found with earlier work in 
the foundations of statistics. Nevertheless, the main thrust of this paper 
lies in a different direction. For, the usual procedure in possible worlds 
semantics for conditional logic has been rather to differentiate between 
individual occasions through accessibility and similarity patterns. For 
instance, Quantity is violated in the counterfactual semantics of Lewis 
(1973); witness the models of Figure 8. (Comparative similarity here is 
just relative distance, and truths are as indicated. The two situations 
depicted are numerically indistinguishable - yet the true conditional 

yg) py 
1. / l \ flXY lif-XY 

Fig. 8. 
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statements are affected by the interchange of worlds 2 and 3 .) This hier- 
archical or intensional approach will be studied systematically in Section 8. 

Further connections between these three ways out of the austerity of 
Section 4 will not be pursued here, nor any alternatives to them. 

6. INFINITY 

Adding the infinite case to the previous finite realm may be pictured as the 
addition of one final row to the number tree of Section 4 (cf. Figure 9). 
More concretely, conditionals may now be viewed as binary relations 
between sets of natural numbers, finite or infinite. 

0 0 0 . ..D .a... 0 0 0 
00.0 QJ,l =,2 -noo 2,= I,= o,- 

Fig. 9. 

One typical example of the greater freedom in this perspective is the 
following idea of a conditional connection. 

6.1. EXAMPLE. Let ifA, B hold when the number of exceptions 
(i.e., IA - Bl) is ‘negligible’ as compared to the total size of A. What this 
amounts to is 

AC B, 

1 

when A is finite 
ifA,Bif 

A -B is fmite, when A is ihfinite. 

We shall return to this example presently. 
Of the earlier intuitions concerning conditionals, Antecedence, Contir- 

mation and Activity remain equally plausible in the full power set g(IN). 
Uniformity becomes less attractive, however; as one does not expect 
infinite sets to behave like finite ones in all respects. And indeed, the above 
conditional fails to satisfy this postulate: adding single counter-examples 
destroys validity for finite antecedent sets, but not for infinite-ones. 

A more relevant question within the present context would seem to be 
which view-point connects behaviour in the infinite case with, possibly 
uniform, behaviour in the finite realm. This will then constrain the 
admissible extrapolations to g(IN) of those conditional relations on the 
finite sets that were allowed by the earlier intuitions. 



FOUNDATIONS OF CONDITIONAL LOGIC 321 

Regardless of the precise reasoning employed, the only really interesting 
conditionals on the infinite row are those represented in Figure 10. Two of 
these are straightforward extrapolations of the main conditions in Section 4, 
the one in the middle is the above Example 6.1. 

- - - . . . - . . . - - + (a//) 

- - - . . . - . . . + + + (most) 

- - - . . . + . . . + + + (not lest) 

Fig. 10. 

An obvious question is if the new conditionals arising in this way 
distinguish themselves significantly from the earlier three; in particular, 
in terms of valid inferences. Let us consider the three most prominent cases. 
All (inclusion) has precisely the same logic as it had on the finite domains 
only, as is easy to verify. Our conjecture is that the same holds for not least. 
The logic of Example 6.1 is more intriguing, however. It validates the 
Conjunction principle (from if XY and if X2 to if X( Y A Z)), which sets 
it apart from the not least logic. But, it also fails to validate transitivity; 
which distinguishes it from the logic of all. (To see this, consider an infinite 
A with finite A’C A outside of B: if A, B, if A’, A, yet not if A’, B.) Indeed, 
in an earlier version of this paper, it was conjectured that this new logic 
coincides with the basic counterfactual logic of Burgess 1981 - which 
would have provided aipurely quantitative modelling of the basic logic in 
the tradition of D. Le)tis. But actually, John Burgess (personal communi- 
cation) provided a counter-example. Here is a simple inference, adapted 
from Burgess’ example, which is valid in the logic of Example 6.1, though 
not in the basic Lewis logic: 

if(Yv 7Y)7 Y ifXY if YZ 
ifXZ ’ 

To see this, notice that the first premise forces f Y] to be finite, and the 
remaining one extends this to 1x1 and [Z]l. A Lewis-semantic counter- 
example occurs in the marked world of Figure 11, however. 

The problem seems to be that the logic of Example 6.1 encodes part of 
the peculiarities of finite (and infinite) sets in this particular structure. 
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-h 0 a 

1X 1X X 
1Y Y Y 

Z 1z 

Fig. 11. 

QUESTION. What is the logic of Example 6.1? 

QUERY. Which of the common conditional logics in the literature may be 
modelled as the logic of some suitable conditional relation on subsets of IN? 

Actually, one may also restrict attention here to suitable parts of the full 
power set of IN. Various Boolean subalgebras are relevant - e.g., that of 
just the finite and co-finite sets of natural numbers. * 

Also, one need not stop at mere conditional inference schemata. For 
instance, what is the full first-order theory of the structure (IN, if, E), with 
if as defined in Example 6.1? There is room for applications of ordinary 
logical model theory here. 

Finally, the interplay between finite and infinite sets of occasions, 
though interesting, may be beside the point. After all, if infinite sets are to 
model ‘arbitrary’ finite ones, then one may want to consider just the 
former. Accordingly, one may restrict attention to the last ‘infinite’ row 
in the number tree. Then, again the question arises which logics are gener- 
ated by the above three choices. Our conjecture is that the only difference 
occurs in the middle case; where the earlier Burgess example is now 
blocked - as finite sets are no longer available. Hans Kamp has conjettured 
that the resulting logic will now indeed become the basic counterfactual 
one. But again, there arises a new principle beyond the latter logic. For 
infinite sets A, B, if A U B, B implies if A, B: a form of strengthening the 
antecedent which is invalid in counterfactual reasoning. 

7. INDUCTION 

One possible additional structure upon our universes is provided by a 
probability measure P assigning real numbers P(A) to sets of occasions A, 
subject to the following conditions: 
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O<P(A)< 1; P(9) = 0, P(E) = 1 (normality) 

for disjoint A, B, P(A U B) = p(A) + P(B) (additivity). 

In this section, only finite universes will be considered. 
Several ‘inductive’ conditionals may be defined employing the above 

measure. 

7.1. EXAMPLE. Set if A, B if P(A r? B) = P(A). 

This conditional says that B n A fails to cover A by a zero-set. 
Despite the similarity with Example 6.1, the logic of this conditional is 

just the classical one of entailment. For instance, the strong principle of 
strengthening the antecedent (cf. Section 3) is established thus: 

Suppose that ifA, B. Then P(A n B) = P(A), and hence P(A -B) = 0. 
ForanyCthen,P((AnC)-B)<E(A-B)=O;i.e,P(AnCnB)= 
P(A n q. 

When P is the equiprobability measure on E, this conditional reduces to 
the earlier all. At the other extreme lies the merest tip of the balance: 

7.2. EXAMPLE. Set ifA, B if P(A n B) > P(A -B). 

This stipulation is closely related to an idea in Lenzen (1980), reading 
A-conditional belief of B in terms of ‘more Likely than not, within the 
A-realm’. 

In fact, the present section is an illustration, inspired by Lenzen’s book, 
of how existing ideas in the-foundations of statistics and epistemic logic 
fit in quite naturally with the generalized quantifier framework - thus 
providing some independent confirmation of the latter’s value. 

Again, when P is the equiprobability measure on B, the conditional of 
Example 7.2 collapses to an earlier one, viz. not least. As was observed 
in Section 5, the earlier numerical approach is a limiting case of the 
inductive one. 

In the spirit of the preceding investigation, what is at issue are not so 
much particular examples as general constraints upon admissible probability 
measures, and conditionals based upon them - within and across various 
universes. Such a probabilistic picture suggests intuitions of its own that 
would not come to the fore in the purely numerical setting of Section 3. 
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For instance, conditionals ifE,P, now viewed as functions from z%‘(E) x.P’(E) 
to (0, 11, may be required to satisfy various smoothness properties involving 
P. (E.g., conditionals should be in ‘equilibrium’, in the sense that truth 
values assigned ought to be stable under small shifts in arguments; with 
‘small’ as measured by P.) This idea even invites a generalization to ‘fuzzy 
conditionals’ assuming truth values in the real interval [0, l] (a suggestion 
due to Lotii Zadeh); where ifthen becomes continuous in the usual sense. 

These themes are not developed here; the main point of the present 
section being to draw attention to a parallel between the present generalized 
quantifier prespective and an earlier historical one. 

In his foundational studies of probability, Bruno de Finetti introduced 
a notion of ‘relative probability’ between sets of outcomes: 

A=GB 

meaning that ‘A is at most as plausible as B’, (Cf. Lenzen, 1980, Chapter 4, 
p. 85.) He then produced a list of intuitive desiderata (in the spirit of 
Section 3), including the following: 

(1) @<AGE 

(2) Q&E 

(3) ifA<B<C,thenA<C (transitivity) 

(4) A<BorB<A (connectedness) 

(5) if A f~ B =G A n C, then A - C < A - B (contraposition). 

The guiding hope was that these would provide necessary and sufficient 
conditions for this primitive relation to be represented through some 
probability measure P on E: 

A < B if and only if P(A) Q P(B). 

Later investigations have revealed that further, less intuitive combinatorial 
postulates are required for this purpose (cf. Lenzen, o.c., p. 87). 

There is an intimate connection between de Finetti’s notion and the 
earlier inductive conditional if of Example 7 -2. 

7.3.THEOREM. ZfA,BiffA-BGAnB, 

A <B iff if AAB, B. 
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Here ‘A’ denotes symmetric difference. 
Roof. The first equivalence is obvious. The second equivalence follows 

from additivity: 

IfP(A)<P(B), then&4 -B) +P(A frB)<P(B-A)+ 

+ P(f3 n A); whence P(A -Z3) <P(B -A): 

i.e.,P((A AZ?)nB)>P((A AB)-B). 

A check upon these equivalences is found in the following calculations: 

(i) ZfA,B(iffA -B<A nB)iffif(A -E)A(A nB),A nB 

iff if A, A n B. (Antecedence) 

(ii) AGB(iffifAAZ?,B)iff(AAB)-BB(AAB)nB 

iffA-BGB-A. 

Through the above observation, the De Finetti axioms (l), . . . , (5) 
generate a conditional logic. Amongst others, one finds that contraposition 
becomes universally valid, connectedness is Conditional Excluded Middle, 
while transitivity becomes the following ‘A-principle’: 

if A A B, B, if B A C, C imply if A A C, C. 

(Cf. also Example 103 below.) 

QUERY. To axiomatize the De Finetti logic. 

All principles of this logic discovered up till now also hold for the earlier 
conditional not least. This is obvious for Conditional Excluded Middle; but 
there is also a less obvious check. 

7.4. EXAMPLE. The A-principle holds for not least. 

For, consider the Venn diagram of Figure 12. ‘Not least A A B are B’ means 
that 1+2~3+4,‘rwtleastBACareC’meansthat3+5~2+6.It 
followsthat1+2+3+5<3+4+2+6,andhencethat1+5<4+6: 
i.e.,notleustAACareC. q 
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E 

Fig. 12. 

We conclude with a 

QUESTION. Do the De Finetti logic and the not least logic coincide? 

8. INTENSION 

The usual approach in conditional semantics has been the hierarchical one 
Possible worlds can be more or less close to some vantage world, and the 
conditional is only concerned with ‘closest’ antecedent worlds. In the 
perspective of this paper, where the universe itself may already be derived 
from some vantage point, a hierarchy is just some binary relation. Thus, 
one now considers finite structured universes (E, R), say; in which the 
generalized quantifier if assigns a binary relation between subsets of E. 
The earlier numerical perspective was a democratic one, so to speak, with 
an empty (or universal) relation R -but in the general case, certain 
individual occasions may possess greater influence than others. 

8.1. EXAMPLE. Top-ranking decisions. 

One typical hierarchical conditional considers top-ranking occasions only: 

all R-maximal occasions in A are in B. 

We shall review the intuitions of Section 3 for this example. First, 
obviously, Quantity has been given up -but there remains a related 
principle. 

QUALITY 
Conditional relations are invariant under the action of R-isomorphisms 
between universes (E, R). 
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For, such R-isomorphisms preserve the relevant hierarchical structure. 
(For instance, if F is an R-isomorphism of (E, R), and w was R-maximal 
in A, then F(w) will be R-maximal in F[A]; and vice-versa.) 

Within a single universe, the force of this postulate depends on the 
hierarchy. If R is empty (or universal), i.e., all individuals are equal, then 
every permutation of E is an R-automorphism, and Quality reduces to 
Quantity. Thus, the present approach subsumes the earlier numerical one. 
If, on the other hand, every individual is uniquely distinguished by its 
position in the hierarchy, then the only R-automorphism is the identity 
map, and the constraint becomes empty. 

We may view the situation as one of postulating ‘hidden variables’. The 
conditional relations need no longer be invariants of the full permutation 
group of E, but only of some subgroup - and we postulate additional 
structure of E in order to characterize the latter. 

Now, continuing with the other intuitive constraints, Antecedence 
remains equally plausible, in the form 

The case of Confirmation is more interesting. Evidently, this principle 
should remain valid - but this may impose certain (mild) conditions upon 
the hierarchy, notably transitivity and itreflexivity of R. 

8.2. EXAMPLE. The conditional of Example 8.1 satisfies clauses (l), (2) 
and (4) of Confirmation, but not necessarily clause (3). 

PLoof of (2). Suppose that if A, B. Consider any top-ranking w in A U C. 
Either w E C, and hence w E B U C; or w E A - whence it is R-maximal 
in A, and therefore, by the assumption, w E B, w E B U C. 

The case of (3). Suppose again that if A, B. Now remove a counter- 
example from A -B. R-maximal worlds in the remaining set A- ought to 
have been R-maximal in A (and hence belong to B): otherwise, the desired 
principle may break down. But, in general, this will require the above two 
conditions, as well as finiteness of the universe: 

Suppose that w1 is not R-maximal in A. Then, for some w2 E A, wr R ~2. 
Continuing, by finiteness, transitivity and irreflexivity, we must arrive at 
some w E A, w1 R w which is R-maximal in A, and hence belongs to B as 
well. So, this w has not been removed - and wr is still not R-maximal 
inA: Cl 



328 JOHANVANBENTHEM 

The example shows an interplay of three ‘degrees of freedom’ concerning 
a particular conditional: general constraints, a particular choice of truth 
definition, and requirements upon hidden variables occurring in the latter. 
This theme will be discussed at greater length in Section 9 below. 

Activity remains as plausible as before. Notice that its validity for our 
paradigm conditional depends on the existence of R-maximal occasions in 
non-empty sets A : which again depends on the assumption of finiteness. 

Indeed, in infinite universes, the conditional of Example 8.1 would not 
necessarily satisfy either Activity of Confirmation. This reflects a familiar 
problem with the well-known approach of D. Lewis. On finite models, the 
preferred truth definition reads as in Example 8.1, but the infinite case 
forces one to consider the less intuitive clause (in our terms): 

‘some A n B-world is R-closer than every (A - @-world’. 

To mention just one problem, it is not obvious that this clause is equivalent 
with that of Example 8.1 on finite universes. And in fact,‘it is stronger; 
unless one assumes yet another condition on the hierarchy, viz. some form 
of connectedness (cf. Lewis, 1973). The latter requirement was dropped in 
Burgess (198 l), who axiomatizes the resulting basic conditional logic. 
By way of illustration, here is the relevant connection. 

8.3. THEOREM. The conditional of Example 8.1 validates precisely the 
Burgess logic. 

Proof It is easy to verify that all Burgess axioms (presented in Section 
10 below) are valid for the top-ranking conditional. Conversely, a Burgess 
counter-example, which can always be assumed to be finite, may be 
regarded as a hierarchy in the above sense. (Actually, there is a small prob- 
lem here, as Burgess: truth definition differs from the above. But, modulo 
finiteness, transitivity and reflexivity, the two formulations turn out to 
coincide.) Cl 

After this digression, we consider the remaining intuitions of Section 3. 
Extension remains valid, in the form appropriate to the present context: 

If E is an R-submodel of E’, then, for all A, B C E, 
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Finally, there was the logical idea of Uniformity. Again, this principle 
acquires a new flavour in the present perspective. 

The characteristic thought-experiment of Section 3 now consists in 
adding individual worlds to a hierarchy. More than before, the uniformity 
principles postulating regularity of outcomes will be influenced by the form 
of description chosen for the latter. There is a plethora of possibilities here, 
in terms of preserving or destroying certain desired R-patterns. 

For purposes of illustration, here is a very limited view of the matter. 
By Confirmation, confirming instances can always be added, at each 
position in the hierarchy. For counter-examples, let us distinguish three 
possible actions: 

(1) insert in top position (without A fr B-superiors), 
(2) insert below some A n B-world (not necessarily immediately below), 
(3) insert below some (A -B&world (not necessarily immediately below). 
Uniformity now says that allowing such an action once means allowing 

it always. The strength of this principle will be gauged in the proof of 
Theorem 8.4 below. 

A richer perspective such as the hierarchical one suggests new intuitions 
as well. One simple example is the following. 

RELEVANCE 
At each individual occasion, the hierarchy is only relevant in as far as it is 
‘accessible’. Formally, call a substructure of (E, R) a ‘sub-hierarchy’ if each 
of its occasions retains all its R-superiors and R-inferiors from E. (In tense 
logic, a sub-hierarchy would be called a ‘generated substructure’.) Then the 
principle is this: 

Conditional statements are preserved in passing from a hierarchy to its 
sub-hierarchies. Or, formally, 

if (Et R’) is a sub-hierarchy of (E, R), then 

if{E,,)A, Bimphes if(E;.l)A n E’, B n E’. 

As in the classification theorem of Section 3, the effects of the combined 
hierarchical intuitions may be investigated for the finite transitive irreflexive 
hierarchies of this section. 

8.4. THEOREM. The only two conditionals satisfying Quality, Anteced- 
ence, Confirmation, Activity, Extension, as well as Uniformity, Relevance 
are all X are Y, all top-ranking X are Y. 
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&oof: A simple calculation establishes that these two conditionals satisfy 
all mentioned principles. 

Conversely, consider any conditional ifsubject to these constraints. 

CLAIM 1. Relevance rules out action (1) of Uniformity. 

By Confirmation, one single A ft B-occasion verities ifA, B. Action (1) 
would allow the addition of a single R-isolated (A - B)occasion, while 
if A, B remains true: But then, by Relevance, the latter alone would verify 
the conditional: which contradicts Activity. 

CLAIM 2. Either if is inclusion, or it allows both action (2) and (3) of 
Uniformity. 

For, if there exists any situation ifiE,R)A, B with A not included in B, 
then that hierarchy contains some (A - B)-occasion. Now, this occasion w1 
cannot occur in top position. For, otherwise, removing this occasion leaves 
the conditional true (by Confirmation); and hence, in retrospect, action (1) 
was allowed after all. So, by an earlier argument, there must be some other 
R-maximal occasion w2 above wr - and, evidently, it must be in A ~7 B. 
But then, the same reasoning of removal/reversal (applied to wr, ws) shows 
that action (2) is admissible. Thus, (A - B)-occasions may be inserted below 
w2, in particular also below wl. And that again means that action (3) is 
admissible as well. 

Finally, the third observation completes the argument. 

CLAIM 3. When actions (2), (3) of Uniformity are admitted, the con- 
ditional must be that of top-ranking occasions. 

Here, in one direction, each situation where all top-ranking A and B can 
be created from single A n B-occasions (where the conditional holds, by 
Confirmation) through judicious addition of confirming instances inter- 
mingled with (2), (3)~insertions. 

Conversely, suppose that at least one situation is admitted with some 
top-ranking (A -B)-occasion. Omit this occasion (by Confirmation): in 
reverse, action (1) has been allowed, in contradiction to the first claim. Cl 
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Thus, upon one particular analysis of our broad intuitions, the hier- 
archical perspective allows just ordinary modal entailment, as in the purely 
numerical case, while adding one new basic possibility (‘top-ranking’), 
which has turned out to generate precisely the basic subjunctive logic in the 
Lewis-Stalnaker tradition. 

9. THE RANGE OF CONDITIONAL TRUTH DEFINITIONS 

Even though conditionals were treated as abstract generalized quantifiers in 
the above, the presentation of specific examples, or the statement of 
classification theorems usually proceeds by definition in some standard 
logical language. Indeed, such descriptions may be viewed as possible ?ruth 
dejinifions for abstract conditionals, satisfying certain intuitive constraints, 
with respect to some background class of universes of occasions. 

First, let us consider the logically simplest case. Call a conditional if 
first-order definable if there exists some formula cp = cp(X Y) in the 
monadic first-order language with identity and unary X, Y such that, 

forallEandA,BSE, 

ifxA,Bifandonlyif(E,A,B)l=cp. 

For instance, two of the conditionals in Section 3 were first-order definable: 

Vx(Xx + Yx) (a 

3x(Xx A Yx) vVx(Xx + Yx) (some or all). 

Other examples are : in at least f3e (at most six, all but at most seven) 
occasions. 

Because of the preservation of first-order statements under isomorphism, 
all these conditionals satisfy Quantity. 

Definitely outside of this class is the third conditional in the trilemma 
of Section 3. Not least is not even definable on the finite sets alone, even 
if an infinite defining set of first-order formulas were allowed. A simple 
model-theoretic proof of this fact employs compactness of the first-order 
language, in combination with the observation that any two models 
(E,A,B),(E:A:B’)withE=A,E’=A’andAnB,A-B,A’nB:A’--B’ 
all infinite, validate the same fust-order sentences in the above language. 

A useful semantic characterization of first-order definability may be 
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derived from the well-known general result of Frai’sse, characterizing first- 
order formulas in terms of invariance under back-and-forth morphisms up 
to some finite threshold. More precisely, in the presemsimple case, set 

U-, Yif IV1 = IVl<nor IUI>n, lVl>n. 

By extension, set W, A, B) -n (Et A: B’) if all four relevant ‘slots’ 
Af1B,A-I3,B--A,(E--A)n(E-B)in(E,A,B)standinthe 
-,-relation to their primed counterparts. 

9.1. THEOREM. A conditional ifis firstorder definable if and only if, 
for some fixed natural number n, 

(E,A,B)--,&,A:B)h~pliesif~A,Biffif~~A’,B, 

for all models (E, A, B), Ul?, A’, B’). 

As an immediate application, it is seen that the earlier restriction to 
finite models is immaterial for first-order definable conditionals. For, if 
a principle of inference is refuted for such a conditional on an infinite 
model, then it can already be refuted in some suitably large finite model. 

The behaviour of these conditionals is easily pictured in the earlier tree 
of numbers. After an initial period of ‘childhood diseases’, a first-order 
definable conditional reaches the level IAl = 2n (n as in Theorem 9.1) 
where the following happens (cf. Figure 13). The truth value at (n, n) is 
repeated in the whole downward generated triangle ((k, 1)lk > n, 1 > a}. 
The truth value of (n + k, n - k) is repeated along the south-west diagonal 
((n + k, 1) 1’1 > n -k}, and likewise that of (n -k, n + k) along its south- 
east diagonal. 

IAI. 2n 

Fig. 13. 
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Given this pattern, it is immediate why nor least could not be first-order 
definable: it lacks a homogeneous triangle (of + or -) in its tree. 

The limitations of the present firstorder language also become apparent 
in the following illustration, drawn from the Introduction to Suppe (1974) 
(Sections IIA, IIC, especially pp. 22, 37). 

INTERMEZZO: THE LOGIC OF DISPOSITIONS 
The only well-known alternative to material implication known in the 
thirties was modal entailment: all Xare Y (‘X is a sufficient condition 
for Y’). Now, when philosophers of science started considering conditional 
statements in scientific contexts, they ran into the problem that entailment 
does not work for dispositional statements. E.g., the sentence 

‘This lump of sugar is soluble’, 

which means presumably 

‘If this lump of sugar is put into water, it dissolves’, 

canoot be transcribed as 

‘All watering occasions for this lump are dissolution 
occasions’. 

One kind of problem is that continuously dry objects would have to be 
called soluble then, for trivial reasons. This could be remedied by enlarging 
the setting to all possible occasions (whether actualized in this world or 
not). But even so, there remains another problem, viz. that the conditional 
is too strong in another sense. One is only referring to all watering occasions 
‘under normal circumstances’. Typically, this means that dispositional 
conditionals will not admit of strengthening their antecedents, as this may 
bring in non-normal circumstances. (Ifthis lump of sugar is put into water 
and withdrawn at once, then . . . ) 

These problems led Carnap to formulate an amendment to the ‘Received 
View’ of scientific theories. In addition to ordinary firstorder predicate 
logic, one would have to allow intensional (notably, counterfactual) logic, 
even in the observational base of the theory. (Cf. Suppe, o.c., p. 42, 
referring to Camap, 1956.) 

There is a curious weakness to the argument for such a move. One 
considers a certain kind of natural language statement (dispositional, in 
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this case), one tries a simple-minded predicate-logical transcription: this 
then turns out to fail - and one concludes that no predicate-logical tran- 
scription whatsoever will be adequate. This pattern of reasoning is also quite 
current in defense of the thesis that ‘predicate logic is insufficient for 
semantics’. 

Can we settle the problem in a more definite manner? To do that, some 
more clarity is needed as to what logic of dispositionals is to be explicated. 
One obvious candidate here is the basic subjunctive logic for counterfactuals 
mentioned in Sections 8 and 10. Assuming our earlier broad constraint of 
Activity, we can now obtain a definite answer. 

9.2. THEOREM. No firstorder definable conditional cp(X, Y, =) generates 
precisely the basic subjunctive conditional logic. 

boc$. Let up be any first-order sentence in X, Y, = validating at least 
the axioms of Burgess (1981). We show that cp defines inclusion, and hence 
that it validates undesirable principles beyond subjunctive logic, such as 
strengthening of the antecedent. 

First, consider (E, A, B) with A C B. As the Burgess logic has if XX as an 
axiom and if XY +f if X( Y A X) for a derived principle, if follows that cp 
holds for (A, A and hence for) A, B. 

Conversely, suppose, for the sake of reductio ad absurdum, that in some 
model, p holds for A, B without A C_ B. I.e., the model verifies the monadic 
sentence cp A 7Vx(Xx + Yx). As was observed earlier, this sentence must 
then already be true in some finite model. But then, since 9 satisfies 
Quantity and Antecedence, the proof of Theorem 11.4 below (concerning 
the principle of Conjunction, which also belongs to the Burgess logic), 
shows that 9 holds for A, 8. By Activity then, A equals 8, whence A C B 
after all: a contradiction. 0 

This result also provides the justification for the break with monadic 
first-order definability in current counterfactual semantics. 

It might be objected that, perhaps, dispositional statements have a logic 
different from the above subjective one. But, our impossibility result can 
be generalized, using earlier insights. The dispositional logic (or logics) will 
lie somewhere in the spectrum between the minimal constraints of Section 3 
and the full power of modal entailment. In any case, it will lack mono- 
tonicity for antecedents, whether downward or upward. But then, 
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Theorem 9.1 already provides a refutation. For, any firstarder definable 
conditional satisfying both Antecedence and Confirmation will eventually 
settle down to either a left-upward monotone type or to a left-downward 
monotone type. 

9.3. THEOREM (Antecedence, Confirmation): A conditional is first-order 
definable if and only if, above a certain threshold value n for IA I, it is 
expressed by one of the following types: at least k X are Y, all but at most 
kXare Y(k=0,1,2,.. .). 

hoof. By the earlier geometrical observations on the tree of numbers, 
the existence of a homogeneous ‘characteristic triangle’ induces the first 
type (if +) or the second (if -). q 

One curious feeling remains. As with many other instances of definability 
questions, laborious formal analysis has eventually confirmed the earlier 
heuristics: ‘it cannot be done simply. So, it cannot be done at a@‘. 
Could it be that a profound Principle of Perfection governs our world: 

The truth is always simple? 

END OF INTERMEZZO 

From the present austere monadic first-order language, one may ascend in 
at least two directions. One is to increase logical power, passing on to 
higher-order notions; the other is to increase power of perception, enriching 
the vocabulary. Actually, there is an argument for a preference here. A truth 
definition ought to be as simple as possible, not presupposing any higher- 
order entities in the semantic models. If the latter are thought important, 
they should be incorporated into these models explicitly. Thus, e.g., the 
probabilistic approach of Section 7 shifted the higher-order complexity of 
the truth definition not least to the models, which now contained probabil- 
ity measures P: whence the definition for the conditional could become 
first-order again in terms of P. We will return to this issue of general con- 
straints on truth definitions below, at the end of this section. 

Now, it may be ascertained, for the specific case of conditionals, which 
constraints on possible first-order truth definitions (with any number of 
‘hidden variables’) are induced by the intuitive postulates of Section 3. 
Essentially these amount to ‘preservation properties’ - and the latter have 
been studied extensively in logical model theory. 
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First, Quantity will give way to a suitable version of Quality, as in 
Section 8. 

Next, Antecedence requires that each quantifier be restricted to A, or, in 
our linguistic formulation, to the antecedent predicate X. As a consequence, 
subformulas Xz not accompanying quantifiers receive the constant truth 
value ‘true’, and may therefore be eliminated. 

Confirmation requires at least monotonicity (clause (1)) and hence each 
occurrence of an atomic subformula Yz in the truth definition may be taken 
to be positive in the usual syntactic sense. The other parts of Confirmation 
constrain this even further. 

QUERY. To find a preservation theorem (in the usual model-theoretic 
sense) for those first-order sentences that satisfy Antecedence and 
Confirmation. 

On the basis of these constraints, further restrictions’may decrease the 
possible range of truth definitions. For instance, strengthening of the 
antecedent essentially removes occurrences of the existential quantifier. 
It is shown in van Benthem (1983b) that, for the earlier X, Y,=-language, 
this leaves only the type 

there are at most k X, or all but at most n X are Y. 

To conclude, here is a more general look at our enterprise. Here, andin 
logical semantics in general, there are several ‘degrees of freedom’ (cf. the 
discussion following Example 8.2). Once a language has been fixed, there 
are still choices to be made of semantic models, a truth definition and also 
a (conditional) logic to be arrived at. Our intuitions place certain broad 
constraints upon these choices, as we have seen. But basically, one can 
study all kinds of variation in this scheme. Thus, even within the constraints 
of Section 3 (or those of Section 8), possibly combined with others, such as 
the requirement of first-order definability, or ‘non-creativity’ (to be intro- 
duced below), there remain whole ranges of ‘triple choices’ that fit. 

Here are the main two possibilities of variation. First, fling some desired 
conditional logic, there may be various mixtures of truth definition and 
model class that generate precisely this logic. In fact, even fixing both the 
logic and the truth definition may still leave widely diverging model classes 
that ‘fit’ - a phenomenon well-documented in the area of modal logic 
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(cf. Hughes and Creswell, 1968). Less orthodox, but equally feasible, is the 
fixing of both logic and model class, determining the range of fitting truth 
definitions - essentially, the topic of the following two sections. (The 
remaining third case, fixing model class and truth definition already 
determines the logic uniquely.) 

The existence of a variety of solutions does not imply that some solutions 
are not better than others. Even in the general logical case, there are global 
constraints already. Notably, one would wish the truth definition to be as 
simple as possible, implying nothing whatsoever about the semantic models. 
First-order definability was one aspect of this matter; another might be 
called non-crearivity: the truth of iflE,,p4, B (to take the setting of 
Section 8) ought to imply no particular conditions upon the relational 
structure of the hierarchy (E, RX This requirement explains the preference, 
in Section 8, for implementing Confirmation through additional constraints 
on the hierarchy, rather than through some complex truth definition. 
(In this light, the above preservation question concerning Confirmation, 
though interesting as such, is not absolutely vital.) The issue of various 
possible ‘tradeoffs’ between truth definition and model conditions remains 
outside the scope of this paper (cf. van Benthem, 1983(c)). 

As this discussion will have indicated, our present study of conditionals 
eventually raises some very general issues as to the structure of semantic 
theory, and the fitting locations for the burden of explanation. 

10. CONDITIONAL LOGICS 

In addition to the abstract view of possible conditionals pursued in the 
preceding sections, there is the more familiar and concrete topic of specific 
conditional inferences, and privileged conditional logics. 

Besides global intuitions, there exist also convictions concerning the 
validity, or desirability of particular inference patterns for conditionals. 
Now, proposals for ‘conditional logics’ have varied widely. Moreover, their 
background motivation is sometimes unclear - especially in those cases 
where merely some suspect ‘classical’ laws are removed from the usual 
corpus. Therefore, let us take stock of the natural conditional logics that 
have appeared in the course of the preceding study. 

Recall the restricted language of Section 2, with statements if XY, where 
X, Y may be Boolean compounds of unary predicate expressions. 
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Several privileged logics have occurred in the earlier sections. First and 
foremost, the basic intuitions of Section 3 give rise to a 

minimal conditional logic M, 

whose principles may be read off as follows. 

Antecedence : 

(1) 

(21 

(3) 

ifXY 
ifX(YhX) 

ifX(YhX) 
ifXY 

Confirmation : 

ifXY 
ifX(YvZ) 

(4) ifXY 

if (X vZ)(Y vZ) 

(5) ifX(YhZ) 
if (X A Y)Z 

(6) ifXX 

Actually, axiom (3) is redundant here (although it will be retained in 
what follows) : 

if XY, VX(YA X) (by (l)), 

if@ v tz A x)) t( y A x) v (z A x)) 0-v (4))s 

if X(( Y vZ) A X) (by Boolean identities), 

if X(Y A Z) (by (2)). 

Alternatively, iorn (2) already follows from (3). 
The next important logics arise in connection with the trilemma of 

Section 4. First, there was (S5-) modal entailment, axiomatizable as the 

classical conditional logk C, 

which consists of M together with the following additions: 
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(7) ifXY if YZ 

ifXZ 
(Transitivity) 

(8) ifXY 
if (X A Z) Y 

(Left-monotonicity) 

(9) ifXY ifXZ 
ifX(YhZ) 

(Conjunction) 

(10) ifXY ifZY 
if (X vZ) Y 

(Disjunction). 

There is some redundancy here, and in fact C can also be axiomatized by 
the familiar set of principles 

(i) reflexivity and transitivity 
(ii) the infimum laws for c and the supremum laws for v. 
In all these cases, it is assumed that Boolean identities may be used 

freely inside the antecedent and consequent expressions. Cl 

The second major conditional to come out of Section 4 was that of 
not least. Here the precept is to call Y a consequence of X if the number of 
confirming instances is no less than that of the counter-examples. For 
obvious reasons then, let us call this the 

preferential conditional logic P. 

This logic lacks classical laws such as transitivity or left-monotonicity. 
(But then, such non-validities have been reported by many students of 
conditionals.) On the other hand, although this observation falls outside 
of the present language, the not least conditional validates Conditional 
Excluded Middle, an inference normally associated with the case of just 
one single relevant world. One final reason for interest in this logic con- 
sists in the possible coincidence with the De Finetti logic of Section 7. 

Our conjecture is that P can be recursively axiomatized. But in practice, 
its principles are difticult to locate. Recall that P did contain the A-principle 
of Example 7.4, an axiom also valid for all (and hence in c). 

In fact, the relations between the three logics introduced up till now 
are as follows. 

10.1. THEOREM. MC PE C, and all inclusions are proper. 
Boof. The only two assertions which are not immediate follow here. 
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- M #P: the A-principle of Example 7.4 does not hold for all con- 
ditionals satisfying the minimal logic. A counter-example is provided by 
all but at most one. 

- PE C: Let the inference from ifX, Y,, . . . , if X,, Y, to if XY be 
refuted by inclusion in some model. Notice that not least Xi are Y, 
(1 < i< n), because all are. On the other band, there exists at least one 
object in X - Y. Now, add a number of copies of this object, behaving 
exactly the same as far as (non-) membership of the relevant sets is con- 
cerned, such that the cardinality of X - Y exceeds that of X n Y. Such 
an addition changes hone of the previous relationships if XiYr. But then, 
we now have a counter-example for the same inference with respect to 
not zazst. cl 

The final logic to arise from Section 4 reflects mere overlap (some or aZl). 
This exemplary conditional logic E validates the two inference patterns of 
reflexivity and symmetry: 

(11) ifXY 
if YX’ 

In van Benthem (1983b) it is shown how this implies upward monotonicity 
in both arguments, and all possibilities are classified. 

Evidently, this is not a serious competitor. As a matter of some interest, 
we mention a 

CONJECTURE. M = C n E. 

Of greater interest are some intermediate logics immediately suggested 
by the earlier ones. For instance, notice how the classical logic Cadds two 
kinds of principle to the minimal M, There are straightforward axioms of 
‘transmission’, such as transitivity and left-monotonicity ; but there is also 
‘combination’, as in Conjunction and Disjunction. The latter principles are 
of interest by themselves, and we define the 

subjunctive conditional logic S 

as the result of adding Conjunction and Disjunction to M. The motivation 
for this name lies in the following result. 
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10.2. THEOREM. S is precisely the basic subjunctive conditional logic of 
Burgess 198 1. 

I3oof. The principles of Burgess’ presentation are 

(9 ifXX 

(ii) ifXY,ifXZimplyifX(YhZ) 

(iii) if X( Y A Z) implies if XY 

(iv) if XY, if XZ imply if (Xh Y)Z 

(VI ifXY,ifZYimplyif(XvZ)Y. 

All derivations involved are straightforward, both ways. 0 

As a result of this proof, the Burgess principle (iv), appearing rather 
ad hoc, receives a natural motivation through clause (3) of Confirmation. 

Thus, the remaining basic logic of this paper, that of top-ranking 
(Section 8) has been introduced as well. It remains to establish the natural 
place of S in the above scheme. 

First, obviously, MC S E C, where all inclusions are proper. There is a 
deeper connection between M and S, however. Notice that M contained 
only one-premise inferences, while C, P, S all added two-premise ones. 

10.3. THEOREM. M coincides with the one-premise fragment of S. 

The following argument will make it clear that the above axiomatization 
for M (and S) is rather perspicuous and useful. 

fioof Consider any invalid inference from if XY to if ZU in M. We shall 
find a Lewis-model which is an S-counter-example. First, some transfor- 
mations are useful, into M-equivalent assertions: 

-ifXYto ifX(YhX) to if(XIvXz)X2, where XI, Xs are disjoint 
disjunctions of complete state descriptions (composed out of the 
proposition letters occurring in X, Y, Z, v) such that X +) XI v Xa, 
YAX”&; 

-ifZUlikewise toif(ZIvZz)Z2. 
Now, as if ZU is non-derivable, Z, cannot be empty. By itself, a single 

world verifying some state description from Zr would already falsify the 
conclusion - being a closest Zr vZa-world to itself which is not Za. But, 
the premise imposes the condition that closest XI v Xa-worlds must be 
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&-worlds; i.e., for every Xl-world, there must be some closer X2-world. 
This condition is only operative when 

Z,EXl. 

And even then, the obvious dodge is to pick a Zi-world, with respect to 
some vantage world in X2 -&. This will fail to falsify the conclusion only if 

X,C&. 

But then, putting together these two assertions in M, we have 

(3 if& vJf2F2 

(ii> if(Z, vX2)X2 (from (i) and (5); removal of counter- 
examples) 

(iii) if(Z, v (X2 v (Z, A ,X,)))(Xa v(Z2 A 1x2))) (from (ii) and 
(4): addition of confirming instances) 

By suitable Boolean identities, then, the conclusion if(Zr v &)Z, follows 
after all: a contradiction. Cl 

The counter-examples obtained in the above argument are even con- 
nected in the sense of Lewis (1973); whence M is also the one-premise 
fragment of the full original Lewis logic. Moreover, our conjecture is that, 
by a similar kind of argument, S equals the (meta-)disiunction-free fragment 
of that same Lewis logic. 

As for the connection between S and the preferential logic, again, we 
have a 

CONJECTURE. P E S. 

By way of evidence, observe that the A-principle of Section 7 is indeed 
valid in Lewis models. 

APPENDIX: ‘BASIC CONDITIONAL LOGIC’ 
In contrast with the above presentation, here are some salient points from 
the analysis of conditionals given in Chellas (1975). The basic semantic 
framework in that paper has possible worlds models 

(W,f); 
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where fis a function assigning sets of subsets of W to couples (w, X) 
(w E W, XC IV). The explication of the conditional then becomes 

ifXY is true at w iff [Y] Eflw, [XJJ). 

The corresponding minimal logic Lr has only one principle, viz. Replace- 
ment of Equivalents. A next plausible constraint, in Chellas’ analysis, is that 
fbe representable through some function f * assigning subsets of W to 
couples (w, X), with 

ifXYis true at w ifff*(w, l[X])C I[YJJ. 

The corresponding logic L2 now becomes L1 plus (upward right) Mono- 
tonicity (principle (3) above) and Conjunction (principle (9)). Finally, on 
this basis, Chellas considers various extensions, notably a logic L3 having 
the additional principles 

(4 

(b) 

(4 

if IX (1 is any contradiction) 

if (X v Y)Z if(Xv Y)z 
ifXZ if YZ 

ifXZ if YZ 
if (X v Y)Z 

Evidently, this perspective is at an oblique angle to the above. Now, as 
was stressed in Section 1, there is no need to make a choice here: both 
approaches may be illuminating. Therefore, we only mention some points 
of comparison. 

The first, most general perspective is technically equivalent to the 
relational setup in Section 2. (Possible iterations, involving the parameter w, 
are not taken into account here. Indeed, significantly, not a single iterated 
conditional axiom occurs in Chellas’ paper.) L r is what would have been 
obtained here as well, if no further constraints had been formulated in 
Section 3. 

The intuitive constraints leading to the minimal logic M do not arise on 
Chellas’ approach. For instance, even such a weak principle as reflexivity 
(if XX) remains beyond L3 ; while a pervasive principle (in the present paper) 
such as Antecedence is only mentioned marginally. On the other hand, the 
f *-representation illustrates an interesting line of thought not pursued in 
this paper, viz. the investigation of various simpler representations for the 
most general conditional relation. 
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The specific principle of Conjunction has not been postulated on our 
approach because of its great strength (cf. Theorem 11.4 below). Moreover, 
there is also a-plausible philosophical critique of Conjunction as a principle 
of conditional reasoning: witness the discussion of ‘Aggregation’ in Jennings 
and Schotch (1980). 

Finally, L3 is an interesting logic in that it has both disjunction (c) and 
strengthening of antecedents (b), though lacking transitivity as a postulate. 
Analogously, in our earlier set-up, one could consider M together with LJ, 
forming a ‘classical’ conditional logic without transitivity. It is easy to see 
that this logic is a proper extension of S. In our framework, however, the 
extension even collapses into the earlier classical logic. For, from ifXY, 
if YZ, one may infer if XY, if (X A Y)Z (strengthening of antecedents), 
and thence if XZ, by a familiar derived rule of S. Thus, transitivity is forth- 
coming after all. 

11. GENERAL PATTERNS OF CONDITIONAL INFERENCE 

The preceding section ended on an all too familiar track in intensional 
semantics: a proliferation of logics. The main virtue of the perspective 
taken in this paper is the following, however. Not only does.it generate 
specific privileged logics, but it also provides the means for investigating 
possible conditional inference patterns, without being tied to exclusive 
‘natural’ clusters. Thus, one may look at arbitrary inferential theories, 
asking for the range of conditionals validating at least, or just these. This 
is not just the common question of modelling some given ‘logic’: we are 
after the entire range of possible modellings, so to speak. 

First, consider pure if-patterns without Boolean operators (cf. Section 2). 
These may be thought of as expressing familiar conditions on the binary 
conditional relation. A quick survey of n-premise schemata (n = 0, 1,2, . . .) 
yields only reflexivity and trunsifivify as serious candidates for conditional 
principles. (For propositional operators in general, the situation is much 
more diverse; cf. van Benthem (1983b).) Let us explore the latter com- 
bination. 

11 .l. THEOREM (Antecedence). Every reflexive, transitive conditional is 
transmitting, in the sense of validating both strengthening of antecedents 
and weakening of consequents. 
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Roof Here is the second case (the first is analogous). Assume that 
if A, B, while B C C. Then if B, B (reflexivity), if B, B n C, if B, C 
(Antecedence), and hence ifA, C (transitivity). 0 

Modulo one more constraint, these two requirements determine even 
just one single conditional. 

11.2. THEOREM (Antecedence, Activity). The only reflexive, transitive 
conditional is all. 

Roof: Let if be any reflexive transitive conditional. We show that 
ifA, B iff A E B. 

‘If’: this direction goes as in the preceding argument, by reflexivity and 
Antecedence. ‘Only if’: as before, since A - BC A, we have ifA -B, A. 
So, by transitivity, if A -B, B, and hence if A - B, 0 by Antecedence. 
Activity then implies that A - B = 8; i.e., A C B. 0 

Actually, this argument would also go through with a weaker condition: 

11.3. COROLLARY (Antecedence, Activity). All is the only conditional 
allowing strengthening of antecedents. 

hoof. The step to be replaced in the above is this: ‘from if A, B directly 
to ifA -B, B”. q 

This result explains why failure of ‘left-monotonicity’ is the hall-mark 
of all current non-classical conditional logics. 

AN APPLICATION: THE SCOTT PRINCIPLES 

The above cluster of requirements appears in the paper by Scott (1971). 
In the present terminology, Scott presents the following fundamental 
properties of conditionals: Reflexivity, Transitivity, Left- and Right- 
Monotonicity. Assuming Antecedence, Theorem 11.1 tells us that these 
postulates are not independent: monotonicity already follows from the 
first two requirements. Moreover, assuming also Activity, Theorem 11.2 
adds the insight that the only conditional to satisfy these three principles 
is modal entailment. Accordingly, we understand why most current 
conditional logics violate the Scott principles: they have to. 

In addition to pure patterns, there are also ‘mixed’ patterns of 
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conditional inference, involving the conditional together with some other 
logical constants, whose meanings are fured beforehand. (Even the latter 
could be treated as variables eventually, of course.) For instance, the above 
monotonicity principles are of this mixed variety, involving A, v with their 
standard meanings. 

By way of illustration, Conjunction may be investigated in the above 
manner. 

11.4. THEOREM (Antecedence, Activity, Quantity). On the finite models, 
all is the only conditional satisfying Conjunction. 

fioof. The idea is this. If if satisfies Conjunction, and if A, B holds 
without A E B, then B n A 2 A and also if A, B n A. But then, by inter- 
secting B n A with equally large distinct sets C Ti A (for which if A, C - by 
Quantity), one obtains if A, D for ever smaller sets DE A, and in the end 
if A, 8. Therefore, A = $4 (Activity), and hence A E B after all: a contra- 
diction. 0 

Another result in this connection again relates Conjunction to the 
earlier pure relational conditions. 

11 S. THEOREM (Antecedence, Quantity, Extension). Every reflexive 
transitive conditional satisfies Conjunction. 

hoof. Let if be reflexive and transitive. Consider a situation with 
if A, B, ifA, C, as in Figure 14(i). By Antecedence, it suffices to consider 
A,AnB,AnC. 

Ii) (ii 1 

Fig. 14. 
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CASEl. 2<1+4. 

Then, consider a new set A’ consisting of A n B with 1 + 4 new worlds 
added. So,A’nA = Bn A, and hence ifA,A’(a). Moreover, by Quantity, 
the symmetry in numbers implies that if A: B Tr A. Now, pick any subset 
D of A’ -(B fl A) of cardinality 2, as in Figure 14(ii). Again by Quantity, 
if A’, (B fr A n C) U D (b). Transitivity then yields, from (a), (b), that 
ifA,(BnAnC)UD;andhenceifA,BnAnC,ifA,BnC,by 
Antecedence. 

CASE2. 2> 1+4. 

In this case, 4 < 1 f 2 - and the argument of Case 1 may be repeated 
with respect to C. Cl 

A direct syntactic deduction of Theorem 11 S exists as well. 
Other mixed patterns arise when negation is introduced. The ubiquity 

of modal entailment shows again in the behaviour of the best-known 
inference of this kind. 

11.6. THEOREM (Antecedence, Activity, Extension). The only reflexive 
conditional satisfying contraposition is all. 

Proof. As always, A C B implies if A, B (reflexivity, Antecedence). 
Conversely, suppose that if A, B. As negation involves complements with 
respect to the universe, the context might be important in general. But 
here, thanks to Extension, strong Antecedence holds, allowing a complete 
retreat into A. And thus, if A, B, if A -B, A -A (Contraposition), 
ifA--,@,A-B=@(Activity):AcB. Cl 

From these sample results, the flavour of the present study will have 
become clear. 

One important variation upon the above theme is the completeness 
issue of, given a set of inference patterns, which conditionals validate 
precisely these, and no more. For instance, in the preceding, no specific 
conditional relation has been found yet validating precisely the minimal 
conditional logic. 
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QUERY. To find the range of conditionals validating M, or M together with 
the non-inferential constraints of Section 3, and no more. 

Clearly, the systematic study of conditional inference has only just begun. 

12. PROSPECTS 

This has been a foundational paper, asking perhaps untimely questions 
about the nature of conditional logic. Even so, there is a potential here for 
further research, and some relevant possibilities will be mentioned. 

Within the bounds of our first intuitions (Section 3), there remain many 
questions concerning conditional logics (Section 10) or conditional infer- 
ence in general (Section 11); questions which may be pursued both in the 
finite and the infinite realm (Section 6). 

As various intuitions are relaxed or modified (notably Quantity), the 
above questions can again be studied in intensional or inductive settings 
(Sections 7 and 8). But also, these frameworks themselves could be analyzed 
in more depth, perhaps in terms of new intuitions. 

Then there is the limitation, explained in Section 2, to non-iterated 
conditionals. A good starting-point for lifting this restriction would be the 
study of world-indexed conditional relations ifE, w, again on the pattern of 
the previous investigation. Especially, in this way, one would hope to 
bridge the gap between the earlier-mentioned ‘horizontal’ and ‘vertical’ 
directions in conditional logic, 

But, even within the present bounds, the illumination provided by the 
generalized quantifier perspective of this paper seems real enough to 
warrant further investigation. 

NOTE 

* I would Iike to thank the Center for Advanced Study in the Behavioral Sciences at 
Stanford for its support. Many people at Stanford have contributed suggestions for 
successive versions of this paper, notably Hans Kamp. 
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