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Abstract. This paper is concerned with the science of turbulent diffusion and not, except incidentally, 
with its numerous practical applications. It discusses some recent research, particularly that by the 
authors and their collaborators. Among the topics considered are (i) the intermittency factor, (ii) the 
relationship between the mean of the concentration and its variance, and (iii) the intelpretation of 
data. The principal aim of the paper is to draw attention to some outstanding basic auestions which 
would seem promising targets for future research. Without progress on these questions (and others), 
regulatory models of air quality will continue - inevitably - to be unreliable and hardly worth using. 

1. Introduction 

The increased importance accorded by the public worldwide, and their govern- 
ments, to air quality, and to the assessment of hazards associated with the acciden- 
tal release of dangerous gases into the atmosphere, is resulting in a larger demand 
for mathematical models for regulatory (and associated) purposes, The number 
of such models - and their developers - is increasing; so moreover, are quasi- 
political pressures for the international "harmonisation" of such models. Although 
less advanced, a similar process is taking place in respect of water pollution. 

From this point of view, it is unfortunate that the science of turbulent diffusion, 
which underpins these important practical problems, is still not understood to 
enough depth to allow (in general) such models to be well founded and reliable, as 
well as practically useful. While undeniable, this fact is undoubtedly surprising to 
most non-experts; nor, regrettably, has it inhibited many people from producing and 
selling software which, however attractively packaged, cannot fulfil the purposes 
for which it was purchased since it is based on inadequate, often wrong, science. 

Therefore it continues to be importmat and timely, to conduct research into 
turbulent diffusion. (Indeed, proper recognition of the real situation ought to Iead 
to vastly increased financial support for such work, but that is another sto~!) In 
this paper we summarise some of our recent results on the fundamental science, 
and consider what we believe to be promising developments. Throughout, the 
emphasis is on a better understanding of the underlying physics and mathematics. 
We have given complementary, more practical viewpoints elsewhere (e.g., Chatwin 
and Sullivan, 1990b; Chatwin, 1991). 
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2. Basic Background 

We denote by P = F(x, t) the concentration (in arbitrary units) of a dispersing 
contaminanL and we shall suppose throughout this paper that the dependence of 
P on x and t is determined by advection by the ambient fluid, with velocity fluid 
Y = Y ( x ,  t), and by molecular diffusion, with diffusivity ~. In particular we ignore 
chemical changes. The equation governing F is 

0P 
0---t + y "  V P  = ~ V 2 P .  (1) 

Since the ambient flow is turbulent, Y is a random vector field (satisfying the 
Navier-Stokes equations); so therefore is P. The correct mathematical description 
of P (and Y) must therefore be a statistical one. (This simple truth is largely ignored 
by the present generation of model developers.) A statistical description requires a 
defmition of the underlying ensemble (Chatwin & Sullivan, 1979; Sullivan, 1990). 
Since I' is a random variable it has, in any ensemble, a probability density function 
p(O; x, t) defined in the normal way by 

p(O; x, t) = ~--~[prob{P(x, t) <_ 0}]. (2) 

The equation governing the evolution of p can be derived from (1) (Chatwin, 
1990) and is 

o ;  + v .  E{v [r(x, 1) - 0]} = v 2 p - E{vr)2 [r(x, - 0]} (3) 
Ot 

where the symbol E denotes "expected value" in the technical statistical sense. 
Equations for some of the simplest and most commonly used statistical proper- 

ties of P can be derived from (3). The mean concentration #(x,  t), where 

/0 ~(x, t) = Op(O; x, t)dO = m { r ( x ,  t},  (4) 

satisfies 

0# 
0--[ + U.  V ~  + V E{uc} = ~ V 2 ~, (5) 

in (5), U = U(x,  t) = E { Y ( x ,  t)} is the mean velocity field, and u = u(x ,  t), 
c = c(x, t) are the "fluctuations" defined by 

u = Y - U, c = P -  # .  (6) 

The variance ~2 (x, t) of the concentration, often termed the mean-square fluc- 
tuation, satisfies 

cr2(x, t) = (0 - #)2p(0; x, t)dO = E{F2(x,  t)} - #2(x, t), (7) 
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and its goveming equation is: 

0r72 
o-T + w 2  + v .  2} + 2 V : V 2 _ 

Details of the derivation of the standard equations (5) and (8) from (3) are given 
in Chatwin (1989). Justification for the use of the standard statistical notations ~ and 
cr z (rather than symbols using overbars and dashes that are still more conventional 
in turbulence and turbulent diffusion research) is given by Chatwin (1990). 

Except in very rare cases (e.g., Chatwin & Sullivan, 1979), exact results cannot 
be obtained from (5) and (8), let alone from (3). This is because of the "closure 
problem" which, in (3) is evident in the last (i.e., second) terms on each side of 
the equation. The expected values in these terms are defined by equations like 
(4) and (7), but with the crucial difference that the relevant probability density 
functions are in neither case p(O; z, t), but are more complicated. For example, the 
last term on the left-hand side of (3) involves the joint probability density function 
of velocity and concentration. Therefore equation (3) for p is not "closed", and 
neither, consequently, are the equations for # and cr z. 

Many attempts have been made to solve, or avoid, the closure problem among 
the earliest of which are Gaussian plume models, and models using the long- 
discredited concept of eddy diffusivity. These models, and later ones, such as 
most of those considered in the papers by Hanna and Klug in this volume, are 
usually of the mean concentration #. They do not (except in very rare instances) 
consider the statistics of the deviations between/~ and what is observed, that is 
of the concentration fluctuations; indeed they are not capable of doing so. This is 
despite the fact that the magnitude of these deviations is known to be at least of the 
order of # itself and sometimes much larger. An interesting development in recent 
years which does account for the fluctuations is the use of random walk models 
(see Sullivan, 1971; Allen, 1982). Latest work in this technique is described in 
papers in this volume by van Dop, by Kaplan & Dinar, and by Sawford. It is now 
known that such models, as currently structured, have inevitable inconsistencies 
(Thomson, 1990). While the consequences of these appear to be numerically small, 
the inconsistencies are fundamental and cannot be removed without a radical 
change in model structure. Real mastery of the closure problem will probably 
occur only when a future generation of computers is large enough and fast enough 
to allow full 3D and unsteady solutions of (1) to be directly calculated to adequate 
accuracy, which requires, in particular, a satisfactory resolution of all length scales 
down to the conduction cut-off length (~ 10-4m), and of all time scales. In 
addition, enough solutions must be generated for each ensemble of velocity fields 
to permit direct estimation of the statistical properties o f f  (:c, t) to within acceptable 
limits which will, of course, require a large enough sample size. What evidence 
there is (Thomson, 1990) suggests that the number of solutions will need to be at 
least 104 (and perhaps larger than 105 ) for the estimation of statistical properties 
as simple as o-2(z, t). Such power is unlikely to be available soon. 
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In a series of papers (Chatwin & Sullivan, 1979, 1980, 1989a, 1990a) we have 
adopted a different approach, using physical reasoning to extend simple results for 
idealised cases to real situations. One success of this approach (Chatwin & Sullivan, 
1979) was the demonstration that the magnitude of a 2 depends significantly on 
source size and geometry, and much more so than #. Small sources generate large 
fluctuations. In the present paper we focus on our later results and some of their 
implications. 

3. The Intermittency Factor 

A statistical property of P (z, ~) that has not yet been considered but which is promi- 
nent in many research papers is the intermittency factor 7 = 7(z, t), conventionally 
defined by 

~/(x, t) = p r o b { r ( x ,  t) > 0}.  (9) 

(Some workers - and not without linguistic justification - use a complementary 
definition in which the right-hand side of (9) is 1-~.) But, because of molecular 
diffusivity, solutions of the basic equation (1) for P have F(x, t) > 0 everywhere 
for all times after release of the contaminant. It then follows from (9) that 7(x,t)= 1 
everywhere after release and, therefore, that the defmition (9) is theoretically mean- 
ingless. 

The only logical way in which (9) can be made meaningful is to reject (1) 
and, in particular, to insist that its replacement does not permit instantaneous 
diffusion of matter, i.e. diffusion with "infinite velocity". Since molecular velocities 
are not infinite, such amendments to (1) are physically reasonable (and were, 
indeed, considered by Russian scientists over 35 years ago). However, there is no 
experimental evidence whatsoever that (1) is not an entirely satisfactory description 
of the evolution of P(x, t) on the continuum scale. (It is pertinent to note that 
if (1) is to be rejected because it predicts the instantaneous diffusion of matter 
then so, logically, should be the Navier-Stokes equations because they predict the 
instantaneous diffusion of vorticity). Rejecting (1) would therefore be too drastic 
a resolution of the dilemma on present evidence, and this possibility will not be 
considered further here. 

It follows that it is the definition (9) that must be discarded. Before considering 
replacements, it is important to note that reported values of ~y less than 1 (but 
greater than 0) must occur because of instrumentation characteristics (almost all 
inevitable) or because of signal processing strategy such as thresholding. In other 
words, reported values of ~ between 0 and 1 have no relevance at all to turbulent 
diffusion. 

However the concept of intermittency of the velocity field is so useful that it is 
important to seek a new definition of "~(x, t) that 
(i) represents all relevant properties of the velocity field Y, and 
(ii) is meangingful. 
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In particular, (ii) implies that a new definition of 7 should be one that can, in 
principle at least, be a legitimate goal of mathematical modellers. 

Such a definition was proposed by Chatwin & Sullivan (1989a), in a paper on 
which this section is largely based. It is convenient in what follows to use a zero 
subscript, e.g. %,/to .... to denote properties in a hypothetical ensemble of releases 
in which the velocity field and geometry are identical to those in the real situation, 
but in which there is no molecular diffusion i.e. ~ = O. Suppose that, at t = O, 
there is a release of contaminant of uniform concentration O1. In the hypothetical 
ensemble of releases there is no molecular diffusion; it follows that po(O; x, t), the 
probability density function of concentration in this hypothetical ensemble, must 
have the form 

po(O; x, t) = 7o(x ,  t )5(o  - o l )  + {1 - 7 o ( x , t )  }6(o)  . (lO) 

Equation (10) indicates that in this hypothetical ensemble the only values of 
Fo that occur are 01 and 0; moreover, without molecular diffusion, the logical 
objection to (9) disappears, so that 7O = 7o(z, t) in (10) is defined by (9) but with 
Po replacing P. Use of (4) and (10) gives 

/to(z, t) = o~7o(x, t) -~ 7o(z, 1) - / t o ( Z ,  t) (11) 
01 

In (10) and (11), the properties 7o and/ to  are determined by the velocity field 
and geometry in the real situation. It is very likely, and commonly supposed, 
that #(x,  t), the real mean concentration, is insensitively dependent on ~, i.e. that 
#(z,  t) ~ ~to(z, t). We therefore propose that the definition (9) be replaced by 
7(x, 1) = %(x,  t), where %(x, t) is as in (11), and that, in practice, 7 be estimated 
from data by 

~(x, t) ~ / t ( z ,  t) 01 (12) 

One of the merits of (12) is that # and 01 are two properties of the real concentration 
field that are most straightforward to measure reliably. 

Because measurements of "7 between 0 and 1 that are claimed to be obtained 
using the conventional definition (9) cannot satisfy (9), and, instead, reflect only 
characteristics of the instrumentation and signal processing strategy, little, if any, 
support is provided for the proposed new definition (12) by the fact that most 
graphs of ~ reported in the research literature are at least qualitatively similar to the 
corresponding graphs of# ,  and sometimes very close. Similar remarks apply to the 
agreement between profiles of 3' and # obtained by numerical simulation - see, for 
example, Figure 3 of Kaplan and Dinar (1988). Nevertheless the new definition of 
-y does appear to have the required properties. Further developments are discussed 
in our cited paper and also in Chatwin & Sullivan (1989b). 
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4. Relat ionship  Between  # And 

The hypothetical ensemble, identical to the real one except that ~;=0 has been 
successfully exploited in another way by Chatwin & Sullivan (1990a). Use of (7) 
and (10) gives 

= - o i % ( x ,  (13) 

and elimination of 01 from (11) and (13) gives 

2 #o(01 /~o), (14)  O- ~ ___ 

for all z and t. As in the previous section, this relationship incorporates the real 
velocity field completely (except insofar as this enhances the effects of  e; in the 
real case by, for example, stretching). 

Because molecular diffusion is a "weak" process compared with advection, we 
thought that (14) could be adapted to the real case by relatively simple changes. 
In particular we proposed that for dispersion in self-similar situations, such as jets 
and wakes (in which all data available to us had been measured), we allowed for 
molecular diffusion by 
- (i) replacing the source (and maximum) concentration 01 by c~#., where # .  

is the maximum value o f / ,  at any cross section (and so depends on position 
downstream of the source) and, in view of the application to self-similar flows, 
c~ is a constant; 

- (ii) introducing a constant of  proportionality/3. 
We therefore proposed the following relationship between o- and # for the real 

situation: 

o-2 _ ( 1 5 )  

In brief, our reasoning was that the term involving o~ allowed for the reduction 
of the maximum concentration by ~;, and that the constant fl represented the effects 
of dissipation of o -2 . We also had in mind that instrument smoothing could cause 
measured values of 0 -2 tO be less than the real values, and we recognised that this 
could affect the value of/3. 

The agreement between (15) and the data available to us was remarkably good; 
full details are given in Chatwin and Sullivan (1990a). In all cases examined, data 
from the self-similar dispersion region obeyed (15) to within normal experimental 
errors, bearing in mind also the uncertainty in the measurements of 0 -2 due to 
statistical noise. With one exception, the value of the constant o~ was between 1 and 
2 (but depended on the particular flow), and it can be shown easily that such values 
ensure that the maximum of O-2 Occurs  at an off-axis location, different from that 
at which # = #. .  This phenomenon is of  course well-known. In the one exception 
(Nakamura, et al., 1987), the maxima of # and cra coincided and the value of o~ 
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was 3; nevertheless these measurements also satisfied (15). We discuss further 
measurements from this group later. The values of the constant ~3 also varied from 
flow to flow but satisfied 0 < /3  _< 1 in all cases. 

We also discussed extensions of the ideas to other statistical properties (higher 
moments and the probability density function). Although there were substantially 
fewer measurements of such properties available to us, the comparisons that were 
made were reasonably encouraging given, especially, the greatly enhanced stafis- 
ticai noise. 

Many workers have been interested in the asymptotic (far downstream of the 
source) value of or/#, the concentrations intensity. Although we are not convinced 
that this is an important measure from the point of view of basic understanding, it 
is interesting to record that (15) gives, on the axis, 

- V/{/3(cv 1)}, 
# 

(16) 

which is a constant whose value varied from 0.1 to (approximate) 1 for the data 
that we examined. 

The success of the comparison of (15) with data from self-similar regimes nat- 
urally led to attempts to apply it more generally. Preliminary ideas were discussed 
in Chatwin et al., (1990), and led to a model (Moseley, 1991; Moseley and Sulli- 
van, 1991) which showed good agreement with data from grid turbulence for all 
distances dowstream of the grid including those prior to the establishment of the 
self-similar dispersion regime. Figure 1, taken from Moseley and Sullivan (1991), 
is typical; further comparisons are given in Moseley (1991). 

In brief, the extended model retains (15) but recognizes that c~ and/3 cannot 
be constant throughout the dispersion regime. On the basis of a simple hypothesis 
- in essence a closure hypothesis - evolution equations for c~ and/3 as functions, 
for example, of downstream distance are obtained and solved. These equations 
(coupled ordinary differential equations) incorporate source size and geometry (not 
explicity included in our first model for the self-similar regime) and involve the 
growth rate of the dispersing contaminant plume. The solutions of these evolution 
equations tend to the constant values in the first version as downstream distance 
tends to infinity. 

The generic problem in turbulent diffusion is arguably the one arising from 
instantaneous release of a finite quantity of contaminant, and therefore intrinsically 
both (statistically) non-stationary and inhomogeneous. In view of the success of 
the model based on (15), it seems likely that further extensions to these more diffi- 
cult (but more realistic-in practice at least) situations would be worth attempting. 
Unfortunately, but understandably, very few measurements are available. 
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Fig. 1. Comparison of extension of (15) from Moseley & Sullivan (1991) with data of Warhaft 
(1984) from grid turbulence. The ordinate y is the centre-line value of o 2 normalized by its absolute 
maximum, z is downstream distance and M is the grid mesh length. The solid circles and crosses are 
data from the 0.025mm and 0.127mm sources respectively, and the solid and dashed curves are the 
corresponding predictions from the extended theory. 

5.  S o m e  U n a n s w e r e d  P r o b l e m s  

Research in turbulent diffusion is so difficult that any success in achieving increased 
understanding requires the intimate interplay of  theory with experiment; that is 
one of  its most attractive features. But recent developments seem to us to have 
consequences for research and future research priorities that are more important 
than seems to have been generally realized. 

The three most  important such developments are perhaps: 
(i) Increasing power and availability of  computers. 
(ii) Improved measurements techniques. 
(iii) Growing public demand for the control and monitoring of  air and water 

quality, including the assessment of  potential dangerous accidents involving the 
release of  harmful substances into the atmosphere or natural water bodies. 

In themselves these developments are welcome, but that is not necessarily true 
of  their immediate consequences. 

The sophistication of  present data collection and acquisition system has led to the 
generation of  enormous quantities of data, orders of  magnitude greater than some 
data analysts and theoreticians (including at least one of  us!) have been accustomed 
to. Consequently much data are not being examined or analysed or interpreted to 
the extent which is merited, or which the experimenter would wish. For us, the 
implication is not only that data analysts should show more foresight but that, given 
the inevitable resource limitations, all experiments must now be planned with the 
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data analysis regarded as an integral part. Otherwise much data will continue to 
be ignored. It is obvious that the experiments should be designed with a clear 
purpose in mind, particularly the use(s) to which the data analysis will be put by 
the theoreticians on the project. Less obvious perhaps is the need to be clear about 
the underlying ensemble; many potential valuable experimental projects have been 
corrupted, sometimes beyond redemption, by arbitrary changes in the ensemble. 
One example is provided by investigations on the effects of buildings, where the 
demands of sponsors have often led to so many (apparently random) changes in 
the building(s) configuration during the experimental series being made that no 
quantitative results of value can be obtained for any ensemble. Even when this 
problem does not arise, it is necessary to assess in advance whether the uncertainty 
in the estimated statistical properties, due to limited sample size or length of record, 
will be acceptably small. In many cases of importance, the cost of obtaining such 
acceptably small uncertainty in full-scale (or field) trials will be too great. It will 
therefore be necessary to continue to use wind or water tunnels, and the demands 
of sponsors for "answers" to increasingly more sophisticated questions (such as 
effects of atmospheric stability or buildings) then require increased research into 
the capability of these facilities to model full-scale conditions. 

Associated with the points above is the treatment of raw data before it is 
"validated" for transmission to the analysts. Such points as the signal noise and 
its deconvolution, thresholding strategy (if any), and baseline drift, are so crucial 
to the interpretation of experiments that they need more attention than has been 
customary (Mole, 1989, 1990a,b). 

One of the key theoretical problems which such experimental phenomena in- 
fluence is the behaviour of p(O; z, t) as 0 ~0+ .  The theoretical arguments used 
earlier to discredit the conventional definition (9) of the intermittency factor would 
seem to suggestp(0; x, t) should tend to zero as 0 ~0+ ,  but this is not observed in 
experiments. An obvious explanation is that noise and the other factors mentioned 
in the previous paragraph make it extremely difficult, if not impossible, to measure 
very small concentrations with reliability or discrimination. 

An associated, but different, problem connected with instrumentation is that, 
even with vastly improved modem measurement techniques, it is not likely that 
the small-scale dynamics of the fluctuating concentration field can be accurately 
resolved in all three space dimensions and in time. (It was noted earlier that sig- 
nificant dynamics occurs at length scales down to  O(10-4m) in the atmosphere). 
Instrument smoothing is therefore inevitable, but its degree and type will depend 
on the characteristics of the instrumentation system. Figure 2, due to Sakai et 
al.,(1990), appears categorically to show that instrument smoothing can be signifi- 
cant. The measured value of the constant/3 in the relationship (15), but not that of 
o~, is shown to depend strongly on probe size do. Details are given in Table I. It will 
be noted that (15) describes the data well in all four cases but that as do decreases 
(increased resolution), the measured value of/3, i.e. of cr 2, increases. 
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Fig. 2. The influence of probe size on the constants a and/3 in (15). Data from Sakai et al. (1990). 
The ordinate y is (#2 + cr2)(/z#.) and rearrangement of (15) gives y = a/3 + 1(1 - /3 ) (# /# . ) .  
Numerical values of a and/3 are given in Table 1. 

Probe no. do/mm 
1 0.54 

2 0.30 

3 0.13 

4 0.10 

9 
1.31 0.16 

1.25 0.22 

1.33 0.25 

1.25 0.33 

Although some theoretical investigations of instrument effects have been un- 
dertaken by Mole (loc.cit.) and others, we believe that increased understanding of 
turbulent diffusion in general, and concentration fluctuations in particular, is being 
severely inhibited because insufficient attention is being placed on them by the 
research community. As examples, we record our opinion that there is a strong 
case (supported by data like that in Figure 2) for measurements of concentration 
fluctuations to be carried out by two (or more) transducer systems operating simul- 
taneously, and that attempts should be made to see whether calibration procedures 
are valid for the actual experimental conditions. 

Except indirectly, we have deliberately not discussed purely theoretical prob- 
lems in this section. 
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