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Abstract. This study examines the statistical properties of the concentration derivative, X', for a 
dispersing plume in a near-neutrally stratified atmospheric surface layer. Towards this goal, the proba- 
bility density function (pdf) of ~(', and the conditional pdf of X' given a fixed concentration level, X, 
have been measured. These pdfs are found to be modeled well by a generalized q-Gaussian (gqG) 
distribution witb intermittency exponent, q, equal to 0,3 and 3/4, respectively. These results highlight 
the strong intermittcncy effect (patchiness) of the small-scale concentration eddy structures in the 
plume. The distribution of time intervals between successive high peaks in the squared derivative 
process, Z '2, is found to  he well approximated by a power-taw distribution, implying that occurrences 
of these high peaks are much more clustered than would be p~edicted by a Poisson or shot-noise 
process. The results are used to improve models for the joint pdf of X and X', and for the expected 
number of upcrossings per unit time interval of a fixed concentration level that have been proposed 
by Krislensen et aL (1989). The predictions of the improved models are in accord with observations, 
and suggest that the intercorrelation between X and X' must be explicitly incorporated if good estimates 
of the uperossing intensity are to be obtained. 

I. Introduction 

The statistical properties of scalars dispersing in a turbulent boundary layer have 
been the subject of numerous experimental investigations in recent years (e.g., 
Fackrell and Robins, 1982; Deardorff and Willis, 1984; Hanna, 1984; Sawford et 
al. ,  1985; Lewellen and Sykes, 1986; Sawford, 1987; Dinar et al . ,  1988; Mylne and 
Mason, 1991; Wilson et al. ,  1991; Bara et al . ,  1992; Yee et al . ,  1993). The results 
of these studies have provided conclusive evidence that the concentration fluctu- 
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ations in a dispersing plume are of the same order of magnitude as the mean 
concentration itself. Consequently, for risk assessment of the consequences of the 
release of a toxic and/or flammable material into the atmosphere, there has been 
an increased emphasis in recent years to predict higher-order moments of the 
instantaneous concentration field (e.g., relative fluctuation intensity, skewness, 
and kurtosis), and even the single-point probability density function (pdf) of 
concentration (Wilson et al., 1985; Kaplan and Dinar, 1988). 

A statistical framework for the prediction of the effects and consequences 
of accidental releases of hazardous materials, based on the single-point pdf of 
concentration, has been described by Chatwin (1982). Whilst a knowledge of the 
concentration pdf enables a prediction of the probability that a certain critical 
threshold concentration is exceeded at any given instant of time, it does not 
provide information that can be used to predict the likelihood of the fluctuating 
concentration crossing a particular concentration level at least once within a speci- 
fied time frame, or to predict the expected number of such level-crossings within 
this time frame (i.e., recurrence statistics). An understanding of recurrence statis- 
tics of concentration fluctuations is very beneficial to the assessment of the 
potential hazards from the release of toxic materials (both gases and aerosols) 
into the atmosphere. This is particularly so in the chemical and biological defence 
arena, where this information is required for the evaluation of the effectiveness of 
agent detectors and of protective equipment (e.g., respiratory protective devices, 
protective clothing, etc.). 

Despite its importance to hazard assessment, no measurements of recurrence 
statistics of concentration fluctuations have been reported. Nevertheless, a model 
of the functional dependence of recurrence statistics on the fluctuation intensity 
of the dispersing scalar, on the instrument averaging time, and on various atmo- 
spheric surface-layer variables has been developed recently by Kristensen et al. 
(1989). However, this model depends on certain assumptions that have not been 
verified because of the lack, afortiori ,  of measurements of recurrence statistics of 
concentration fluctuations. This study presents some observations of the pdf of 
concentration time derivative, and of the joint pdf of concentration and concentra- 
tion derivative for a plume dispersing under near-neutral conditions in the atmo- 
spheric surface layer. This work represents an extension of previous experimental 
investigations which have focussed exclusively on the concentration pdf (e.g., 
Hanna, 1984; Lewellen and Sykes, 1986; Sawford, 1987; Dinar et al., 1988; Mylne 
and Mason, 1991; Yee et al., 1993). The objective is to use the information on the 
observed statistical properties of the concentration and concentration derivative to 
provide some guidance on the modeling of recurrence statistics of concentration 
fluctuations. 

2. Rice's Theory and Recurrence Statistics 

Let X(t) denote the fluctuating concentration measured at a fixed point in a 
dispersing plume. We say that x(t) exhibits an upcrossing of the constant level, 
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Xz_, at time to if X(to) = XL and X' (to) > 0. Here, X' (t) denotes the concentration 
time derivative. Similarly, we say that a XL-dOwncrossing occurs at time to if 
X(to) = "XL and X' (to) < 0. An excursion above the constant level, Xz~, is defined 
as an upcrossing followed by the next downcrossing of the given concentration 
level. For simplicity of notation, we use the same symbol to denote the random 
variable and a value assumed by the random variable. 

The joint probability density function, f (x ,  X'), of the scalar concentration, X, 
and its time derivative, X', contains a great deal of information on the recurrence 
statistics of concentration fluctuations. Let N(XL, T) denote the number of XL-up- 
crossings of x(t) in the interval [0, T]. To simplify notation, we write 
N(XL)  ~ N(XL, 1) for the number of upcrossings of level XL in the unit interval 
[0, 1] (viz., T = 1). Rice (1945) demonstrated that the expected (mean) number 
of upcrossings of the level XL by X(t) per unit time, (N(XL)), is given by 

(N(XL)) = f o  x'f(xL, X') dx ' .  (1) 

Applying the law of conditional probabilities, the joint pdf f(x,  X') can be ex- 
pressed as the product f(x,  X' ) = f l  (x)f211 (X' ] X), where f ,  (X) is the (marginal) 
pdf of concentration and f2a(X'lX) is the conditional pdf of X' given X (viz., 
conditional on the concentration being fixed at some value X). In consequence, 
Equation (1) can be written as 

(N(XL))=fl(XL) x'fzIt(X'IXL)dX' 

-= Yl '+ I xL ) ,  (2) 

where X '+ -= max(0, X') and (X'+IXL) is the expected (mean) positive slope of X 
evaluated at the crossing level XL. Equation (2) implies that the mean upcrossing 
rate (or, equivalently, the mean excursion rate) of level XL can be calculated as 
the product of the concentration pdf evaluated at XL and the mean positive slope 
of X(t) at XL (viz., the mean positive slope of X(t) at the XL-upcrossings). 

The determination of the mean number of upcrossings per unit time of an 
arbitrary constant level XL permits the computation of a number of other ex- 
ceedance statistics of interest. For example, the return period, R(XL) , between 
consecutive occurrences of upcrossings of a fixed level XL is given by 

R(XL) = 1/(N(XL)). (3) 

Hence, R (XL) is simply the mean value of the random time between successive 
Xa-upcrossings of the fluctuating concentration. The characteristic largest concen- 
tration value, XT,, for a sampling period Ts, is defined as the (fixed) concentration 
level for which the mean number of exceedances of that level in the sampling 
period is unity. In consequence, the characteristic largest concentration value 
satisfies the equation 
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(N(Xrs)> Ts = 1. (4) 

A knowledge of the characteristic largest concentration value, XTs, as a function 
of the sampling (exposure) period, Ts, allows one to answer the question posed 
by Deardorff and Willis (1988): "How long must one wait in exposure to a 
pollutant before there is an even chance that a fluctuation in concentration ex- 
ceeding a particular value will actually occur?" The mean duration of excursions, 
rx/., above the fixed level XL is given by 

= 1 f~Lf  ~ (X) dx "rxL (N(XL)) 

1 -- F~ (XL) 
(N(xL)) (5) 

where F1 (X) is the cumulative distribution function (cdf) of concentration. 
Equation (2) can be simplified if the process x(t) is such that 

<X '+ t XL) = <X '+ )" (6) 

The latter relationship implies that the mean positive slope of X(t) is independent 
of the given fixed level XL" Assuming that X(t) is a stationary process, it is 
straightforward to demonstrate that X and X' are uncorrelated random variables. 
However, this condition is not sufficient in general to ensure that the simplification 
provided by Equation (6) will hold. A stronger condition is required, namely that 
the conditional pdf of X' given X = XL is identical to the pdf of X', f2 (X'), viz. 

f211(X'IXL) = fz(X' )  �9 (7) 

However, Equation (7) is equivalent to the statement that X and X' are statistically 
independent random variables, so that the joint pdf of X and X' factors according 
to 

f (x ,  X') -= f l (x.)f2(x') . . . .  (8) 

In consequence, the condition embodied in Equation (6) must be verified for at 
least one type of stationary process, namely a process in which X and X' are jointly 
Gaussian because, in this case, the fact that g and X' are uncorrelated is sufficient 
to guarantee the statistical independence of these two random variables. 

Kristensen et al. (1989) assumed that X and X' are statistically independent in 
their formulation of a simple model for the recurrence statistics of concentration 
fluctuations. In addition, they assumed that the pdf of X', f2 (X'), is Gaussian. At 
present, there are no observations which can be used either to support or to reject 
these assumptions. However, there is almost conclusive evidence to support the 
fact that the concentration pdf, f l  (X), is positively skewed (i.e., it is non-Gaussian 
with a mode less than the mean), although there is no consensus at present whether 
the exact form of f l  (X) for dispersing plumes is exponential, lognormal, gamma, 
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clipped normal, etc. (e.g., Hanna, 1984; Lewellen and Sykes, 1986; Sawford, 1987; 
Mylne and Mason, 1991; Yee et al., 1993). However, the strongly non-Gaussian 
form of the concentration pdf provides some circumstantial evidence that the 
conditional pdf of X' given X, is not independent of X (viz., the conditional pdf of 
X' given X does not reduce to the (unconditional) pdf of X'). With this motivation, 
we shall use some measurements of concentration fluctuations in a plume disper- 
sing in a near-neutral atmospheric surface layer to try to address the following 
questions: 

1. Is the pdf of the scalar derivative, X', Gaussian? If not, what is the form of 
the pdf of X'? 

2. Is the pdf of X' given the value of concentration X, independent of X? If not, 
what is the form of the conditional pdf of X' given X ? What is the form of 
the joint pdf of X and X'? 

3. Experimental Results 

To test the hypotheses that X and X' are statistically independent and that the pdf 
of X' is Gaussian, we use some data of concentration fluctuations in a dispersing 
plume obtained from a concentration fluctuation field test of chemical hazards 
(Biltoft, 1991; Yee et al., 1993). This field test is part of an extensive program of 
field trials planned under the Tripartite Concentration Fluctuation Field Trials 
(TCFFT) project that involves the participation of a number of defence and 
industrial research organizations from the United States, Great Britain, and Can- 
ada. The test was conducted near Tower Grid on U.S. Army Dugway Proving 
Ground in September 1991, and involved the continuous release of a tracer gas 
(e.g., propylene (C3H6)) into the atmosphere from an elevated point source at a 
height, h = 2.5 m. 

In all our experiments, propylene was released at a steady rate from a specially 
designed gas dissemination system, which consisted of 2 propylene cylinders con- 
nected in parallel and immersed in a hot water bath. A Matheson 1L-510 regulator 
was connected to the outlet of the cylinders to ensure a constant downstream 
pressure, and a flexible hose was used to connect the regulator to the inlet fitting 
of the mass flow controller (Teledyne Hastings-Raydist). This controller, which 
consisted of a sensor, electronic circuitry, a shunt, and a valve, was used to set, 
control, and measure the flow rate of gas through the dissemination system. The 
controller allowed a steady gas flow rate to be maintained at a user-selected 
reference level (between 1.67 x 10 -4 and 1.67 x 10 -3 m 3 s -1) to within about 2%. 
Finally, a quick-release connector mated the outlet fitting of the mass flow con- 
troller to the dissemination hose, the latter of which was connected to the base 
of the disseminator, a section of schedule 40 PVC pipe 1 m in length and 0.05 m 
in diameter. These dimensions were chosen to ensure an approximate parabolic 
velocity profile at the exit of the dissemination system, with a mean velocity less 
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than about i ms -1 at the maximum flow rate of 1.67 x 10 -3 m 3 s -1. This allowed 
the tracer gas to be released isotropically from the source without forming a jet. 

In this study, we use time series of fluctuating concentrations measured in 
dispersing plumes with a crosswind array of modified fast-response photoionization 
detectors (designed and constructed by S & J Engineering, Inc.; see, Chandler 
(1991)). The frequency response ( - 6  dB point) of the detectors is approximately 
100 Hz. It can be shown that this response is sufficient to resolve the fluctuation 
variance contributed by the energetic subrange and most of the inertial-convective 
subrange, with a reduction in the fluctuation variance due to instrument smoothing 
of the finest scales (e.g., scales in the dissipation subrange at which molecular 
diffusion becomes important) of at most 4% (Yee et al.,  1993). However, our 
detectors are not sufficiently responsive to resolve the fine-scale structure in the 
dissipation subrange (i.e., Kolmogorov microscale-size concentration eddies). 
Consequently, some of the small-scale plume statistics to be presented may be 
specific to our instrument which possesses the following low-pass frequency re- 
sponse function: 

1 
H ( n )  - (1 + 27rjn/3) ~'  (9) 

where n is frequency (Hz), j - - - ~ - ~ ,  /3 is a scale parameter whose value is 
approximately 0.00109 s, and a is a shape parameter whose value is approximately 
3.85. The analog signals from the detectors were fed into a computer interface 
containing a fast sample-and-hold A/D converter with 16-bit resolution (Keithley 
Metrabyte, DAS-HRES) operating at a sampling rate of 1000 Hz. 

The data for the present study were carefully selected according to two criteria. 
Firstly, we selected data from field experiments that were conducted under near- 
neutral stratification only. Secondly, we searched for long uninterrupted high 
signal-to-noise ratio (SNR) time series with a sampling time of 16 minutes or 
greater that were statistically stationary over the sampling period. We found a 
number of time series that satisfied these two criteria. These time series corre- 
sponded to measurements at various positions in a crosswind cross-section through 
the dispersing plume at three downwind distances (e.g., at x = 25, 50, and 100 m, 
or, equivalently, at x / h  = 10.0, 20.0, and 40.0) at a height of 3 m above the ground. 
Each of these time series Was corrected for any discernible baseline drift, the DC 
offset was removed, and the resulting sequence was clipped to a concentration 
threshold. The latter was determined from a visual inspection of all the background 
noise segments in the time series. 

Concentration time derivatives were obtained from the samples of X.(t) by a 
two-step procedure: (1) least-squares fitting a polynomial of degree M, using nL 
and nR points in the data sequence to the left and right, respectively, of the given 
time instant at which the derivative is required; and, (2) differentiating the result- 
ing fitted polynomial to give the estimated time derivative of concentration at the 
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An example of 10 s of a concentration derivative time series of in-plume fluctuations illustrating 
the strong intermittency of the small-scale concentration eddies in the plume. 

given time instant. We note that the first step of this procedure serves to smooth 
the time series in order to reduce the effects of measurement noise. The two-step 
procedure for obtaining the concentration time derivative was implemented in the 
form of a Savitzky-Golay least-squares filter (Press and Teukolsky, 1990). This 
filter provides a local least-squares polynomial fit within a moving window that is 
sequentially centered around each data point at which a derivative is required. 

Figure 1 shows a 10 s segment of the time derivative of a conditionally sampled 
(in-plume) concentration time series (i.e., zeros ignored) computed with nL = 

nn = 2 and M = 2. The intervals of zero concentration arise primarily from meand- 
ering of the plume and, as such, contribute only zero to the concentration deriva- 
tive time series. In consequence, the intervals of zero concentration represent 
superfluous information once the intermittency factor, 3', defined as the total time 
that non-zero concentrations are observed, is known. Unless otherwise indicated, 
all the statistics in the present study are determined from the conditionally sampled 
concentration time series. One interesting feature of the concentration derivative 
time series (cf. Figure 1) is the conspicuous intermittent nature of the process that 
occurs on a time scale of fractions of a second. Note the occurrence of bursts of 
high-frequency fluctuations in the concentration derivative. These bursts provide 
strong visual evidence of the small-scale intermittency of the in-plume fluctuations. 
We note that peak values of X( t )  are about 10 times the conditional mean concen- 
tration, Cp, whereas peak values of IX' (t)[ are about 1000 times the conditional 
mean value of ix' (t)[. This is not surprising because the concentration derivative 
emphasizes the information associated with the smallest scales of the dispersing 
plume. 
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The concentration derivative is a two-point statistic of the dispersing plume that 
reflects the information on the dynamics of the small-scale mixing processes in the 
plume. This can be seen by noting that 

OX _ 1 0 X  _ lim X(X + 6x) - X ( X ) ,  (10) 
Ox U Ot ~x~o 6x 

where we have used Taylor's frozen flow hypothesis to interpret time intervals 6t 
as space separations, fix -~ - U6t, in the alongwind direction x (U is the mean 
windspeed). Hence, the concentration derivative emphasizes the information on 
the nature of the small-scale structures in the dispersing plume. An examination 
of the concentration-difference (increment) time series, X(x + 6x) - X(x) ,  shows 
that the intermittency becomes increasingly stronger at the smaller scales (viz., as 
the separation distance, ax, which is indicative of the scale of concentration eddies 
considered, is reduced). This is reflected in the tendency of the concentration- 
difference statistics to become increasingly non-Gaussian with decreasing scale, 
6x. 

The derivative, X', of concentration fluctuations exhibited in Equation (10) is 
easy enough to write down, but this formulation raises a basic problem - namely, 
what do we mean by the derivative of X(t)? The derivative makes sense only if 
X(t) is assumed to vary continuously in time (or, equivalently, in space if we apply 
Taylor's frozen field hypothesis). The latter requires the dispersing scalar field to 
be regarded as a continuum (viz., the limit 6x ~- ~ V  113 ---> O, where 6 V  represents 
an incremental volume of the scalar field, is interpreted as a macroscopic limiting 
value, and the derivative associated with this limiting operation involves taking 
differences of the instantaneous concentration as ~x (or, 6 0 becomes infinitesimally 
small compared to the field dimensions, but not so small as to be influenced by 
the individual gas molecules themselves). In other words, the limiting value in 
Equation (10) is confined to scales that are macroscopically small (i.e., much less 
than distances characteristic of the fine-scale and high-frequency structure of the 
scalar field in the continuum, the latter of which is determined by the Batchelor 
length, AB (~10 -3 m)), but microscopically large (i.e., much greater than distances 
characteristic of the mean free path, Ae, between gas molecules (~10-gm)).  
Hence, the limit as gx-~ 0 is interpreted as an outer region (continuum) limit 
meaning 6x/AB --* O. However, the spatial and/or temporal resolution achieved by 
our concentration sensors with frequency response characteristics described by 
Equation (9), is not sufficiently responsive to resolve the smallest scales (e.g., 
those responsible for smearing by molecular action) present in the plume. Since 
it is these small scales that contribute most to the concentration derivative, it is 
expected that the derivative statistics are strongly dependent on instrument resol- 
ution. In this regard, all concentration fluctuation statistics (e.g., pdf of concentra- 
tion derivative, recurrence statistics, etc.) should strictly be described in terms of 
the temporal (or frequency) resolution of the instrument with which X(t)  is mea- 
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Fig. 2. Probability density function of normalized concentration derivative, X'/~x,, measured at a 
number of crosswind positions, y/~y, and downwind distances, x/h, in the dispersing plume under near- 

neutral stability conditions. 

sured. In what follows, the concentration fluctuation statistics presented are appro- 
priate for the frequency resolution of our concentration sensors. The effect of 
instrument smoothing on recurrence statistics is explored further in Appendix A. 

Figure 2 shows the pdfs of the concentration time derivative, X', normalized by 
the corresponding standard deviation of the derivative, o-x,. The pdfs have been 
measured at various positions in the lateral cross-section of a dispersing plume at 
three downwind distances. These pdfs exhibit a remarkable degree of universality 
in their form over a wide range of positions in the dispersing plume. We note that 
the pdfs of concentration derivative appear to exhibit a higher degree of self- 
similarity (universality) in their form than do the corresponding pdfs of concentra- 
tion (e.g., cf. with concentration pdfs in Yee et al., 1993). Because the concentra- 
tion derivative pdf emphasizes the information on the distribution of the small 
concentration eddies in the plume, the latter observation suggests that the dynam- 
ics important in determining the distribution (i.e., statistics) of the small-scale 
structures in the plume approach self-similarity much sooner than the plume as 
a whole. Indeed, the plume evolves toward a self-similar state only when the 
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Fig. 3, Probability density function of normalized concentration derivative, X'/~x,, compared with 
the standard Gaussian distribution and the generalized q-Gaussian (gqG) distribution (q = 0.3). 

instantaneous plume has grown to fill the mean-plume width (turbulent-diffusive 
regime), but the self-similarity of the small scales in the plume appear to be 
established well before this stage of plume development. 

In contrast to the concentration pdfs which are strongly positively skewed, the 
pdfs of concentration derivative are remarkably symmetric. Figure 2 demonstrates 
clearly the remarkable symmetry in the concentration derivative probability distri- 
bution, a result that is consistent with a visual inspection of the time trace of X' 
shown in Figure 1. Furthermore, the concentration derivative probability distribu- 
tion possesses heavy lower and upper tails. In this regard, we see that values of 
the concentration derivative greater than 10 times the standard deviation are 
observed with a probability of about 7 x 10 -4,  which is about 7 and 10 2o times 
larger than what would have been predicted by the Laplacian (i.e., two-sided 
exponential) and Gaussian distributions, respectively. 

The strong departure of the concentration derivative from Gaussian behavior is 
clearly illustrated in Figure 3 which compares the sample pdf, f(x'/crx,), of the 
normalized derivative with the standard Gaussian distribution. The probability of 
very small values of Ix'l or of values of tx'] greater than about 3.5 standard 
deviations is larger than what would be expected from a Gaussian distribution, 
whereas the probability of occurrence of the intermediate values is smaller. The 
mode of the concentration derivative pdf occurs at zero, implying that the deriva- 
tive series is dominated by small values of the derivative near zero. This fact is 
consistent with a visual inspection of the concentration derivative time series 
exhibited in Figure 1. The concentration derivative pdf exhibits wider and more 
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flared out "skirts" than a Gaussian pdf, emphasizing the dominant effect of the 
intermittency of small-scale structures in the plume. 

We have fitted a "stretched" Gaussian, f(x'/~rx,)~ exp(-AIx'/O'x, lq), to the 
sample pdf of the normalized concentration derivative. The normalization for the 
"stretched" Gaussian was chosen so that the functional form reduces to that 
of the standard Gaussian when the "stretching" exponent, q, is equal to 2. In 
consequence, the following ansatz was chosen as a model for the "stretched" 
Gaussian pdf: 

= d e x p ~ - X  X '  q~, f ( x ' /o -~ ,  ) (11) 
L O" x,  O" x,  J 

where 

d q 
c~ -= - -  = (12) 

o-~, 2 F ( l / q ) [ F ( 1 / q ) / F ( 3 / q ) ]  v= cr~, ' 

[r(31q)] q/= 
a ~ kF(~q) j , (13) 

and F(x) is the gamma function. We refer to the "stretched" Gaussian pdf exhib- 
ited in Equations (11) to (13) as the generalized q-Gaussian (gqG) pdf. Clearly, 
the gqG pdf is symmetric, and reduces to the standard Gaussian and Laplacian 
(i.e., two-sided exponential) pdfs when q = 2 and 1, respectively. 

Figure 3 compares the sample concentration derivative pdf and the fitted gqG 
pdf with q determined to be 0.3. Although this gqG pdf (q = 0.3) overestimates 
the sample pdf for concentration derivatives near zero, it, nevertheless, provides 
a very good fit to an extensive region of the pdf corresponding to the lower and 
upper tails (viz., for regions of the pdf extending up to about 30 times the standard 
deviation of the concentration derivative). The "stretching" exponent, q, can be 
interpreted as a measure of the degree of intermittency of the fluctuations (viz., 
the smaller the value of q, the more intermittent are the underlying fluctuations). 
Clearly, Figure 3 provides quantitative evidence in support of a substantial in- 
termittency effect of the small-scale structures in the dispersing plume. This result 
must be a consequence of the intermittency of the multiplicative process associated 
with the eddy cascade of both the turbulent energy and the concentration fluctu- 
ation variance. Hence, the concentration derivative pdf, which depends strongly 
on the characteristics of the smaller scales (i.e., smaller concentration eddies), is 
found to deviate considerably from both a Gaussian and an exponential taw. 

Next, we investigate the conditional statistics of concentration derivative, X', 
given the value of the concentration, X. Towards this objective, we determine the 
rms of the normalized concentration derivative, ~ -= X'/o'x., conditioned on a given 
normalized concentration value, x/Cp (viz., we determine the functional form of 
O"l~(,u ~ ( ( ~ / ' 2 1 0 " 2 '  [X/Cp)) 1/2, which provides an important indicator of the 
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interdependence between X' and X). Figure 4 displays the conditional standard 
deviation, o'e(X/Cp), as a function of the normalized concentration, x/Cp. The 
data in Figure 4 were measured near the mean-plume centerline at x/h = 20.0. 
Measurements at other lateral and/or downwind positions in the plume, not dis- 
played here, show similar behavior (viz., there were no systematic differences 
between the various measurements, only a dissimilarity in the degree of scatter, 
which appears to be larger for points measured near the plume fringes). 

Figure 4 demonstrates that the statistical independence assumption between X 
and Y' is too strong - this assumption would imply that o-e (X/Cp) - 1 for all values 
of the normalized concentration, X/Cp. However, we see that cre(X/Cp) is not 
a constant function of X/Cp, implying that X' is statistically dependent on the 
concentration, X. To account for the correlation between these two variables, we 
use a power-law relationship of the form cre ( ) ( / C p )  = a(x/Cp) b, where a and b are 
undetermined parameters. Accordingly, the solid line in Figure 4 represents the 
power-law form a(x/Ce) b, which has been least-squares fitted to the measured 
conditional standard deviation, ae (X/Cp). We find that o-e (x/Cp) exhibits a power- 
law dependence that can be described well with a = 1/V2 and b = 17/20 (at least 
over the range of the values of normalized concentration observed). The number 
of X/Cp-upcrossing and downcrossing events decreases roughly exponentially with 
the normalized concentration level. In consequence, it is difficult to estimate 
accurately the conditional standard deviation, o-~ (x/Cp), for large values of x/C~,, 
where the upcrossing and downcrossing events of such levels become increasingly 
rare. We expect o-~ (X/Cp ) =- (X'a/~r~ ' I x/Cp} to vanish at the extremal points (i.e., 
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minimum and maximum values) of the concentration because the concentration 
derivative must always be zero there. The power-law form for o- e (x/Cp) verifies 
this constraint at the lower bound for concentration (viz., at zero concentration). 
However,  the power-law form increases monotonically and, in consequence, we 
expect the power-law form for 0% (x/Cp) to break down eventually as the maximum 
in the normalized concentration is approached. Physically, X/Cp has an upper 
bound, and we expect o- 5 (x/Cp) to decrease to zero again as this upper bound is 
approached because the derivative of X/Cp evaluated at its maximum value is 
always identically zero. 

Figure 5 displays the pdf of the normalized derivative, 4> =- ~/o" 5 (X/Cp), con- 
ditioned on a fixed normalized concentration value, x/Cp. Note that 05 is the non- 
dimensional derivative, ~: -= X'/crx,, evaluated at the X/Cp-upcrossings and scaled 
by the conditional standard deviation of ~:, o- 4 (X/Cp). We see that the conditional 
pdfs, f(05]x/Cp), at each of the given values of X/Cp are symmetric. Fur thermore,  
these pdfs are seen to collapse remarkably well onto one universal form, indicating 
that the normalized derivative, ~:, scaled by the conditional standard deviation of 
~, o5 (x/Cp), is a proper  similarity variable. The functional dependence of the 
conditional standard deviation on the normalized concentration value is displayed 
in Figure 4. Although the data used to construct Figure 5 were measured at the 
mean-plume centerline at x/h = 20.0, we found that data measured at other  lo- 
cations in the plume (viz., at different lateral positions and/or  different downwind 
distances) show similar behavior. The high degree of universality exhibited by the 
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Fig. 6. Conditional probability density function of normalized concentration derivative, 
0 =- ~/o-e(X/Cp), where ~--- X'/~rx,, compared with the generalized q-Gaussian (gqG) distribution (q = 

3/4). 

conditional pdf, f(4,1x/C,,), is rather remarkable. As in the case for the pdf of 
(cf. Figure 3), the conditional pdf of q~ is seen to exhibit considerably longer tails 
than the bell-shaped curve of a Gaussian pdf. We found that the conditional pdf 
of 4~ can be approximated well by a gqG distribution (cf. Equations (11) to (13)) 
with intermittency exponent, q = 3/4, as is shown in Figure 6, implying that the 
tails of the pdf fall off more slowly than even the exponential form. 

As noted earlier, the concentration derivative emphasizes the relevant smaller 
eddy sizes (scales) in the dispersing plume. The pdf (both unconditional and 
conditional) of the concentration derivative provides information on the non- 
uniformity of the spatial structure of the concentration field on the smaller scales 
and, in consequence, reflects the distribution and structure of these smaller concen- 
tration eddies. This small-scale eddy structure is seen to exhibit a strong tendency 
towards universality, as reflected in the self-similarity of the unconditional concen- 
tration derivative pdfs across the mean-plume lateral cross-section, and in the 
collapse of the conditional concentration derivative pdfs onto a universal curve. 
Both the unconditional and conditional concentration derivative pdfs correspond 
to rather peaked intermittent distributions with intermittency exponents q less 
than unity (viz., the tails of these distributions are heavier than those of the 
exponential distribution). This is indicative of the strongly intermittent nature of 
the small concentration eddies (viz., the eddies at smaller and smaller scales 
become less and less space-filling), and this physical effect is manifested in the 
strong small-scale intermittency exhibited by the concentration derivative. To 
investigate this small-scale concentration eddy structure in greater detail, we deter- 
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mine the probability distributions of the time interval, tp, between high peak 
values in the normalized squared concentration derivative, X'2/(X'2), and the tem- 
poral width, tw, of these high peaks. 

The pdf, f ( tp ) ,  of the time interval between the occurrence of high peak values 
in the normalized squared concentration derivative signal, is displayed in Figure 
7. Here, we define high peak values to have an amplitude, X '2, that is 25 times 
the mean value, (X'2). In consequence, a stretch of data corresponding to the high 
peak values is a set of ordered numbers rl < ~2 < �9 �9 �9 < rK associated with the 
times of upcrossing events of the fixed level 25 in the X'2/(X '2 ) process measured 
over the sampling time, Ts. The pdf, f ( tp) ,  was constructed by histogramming the 
elapsed time between these upcrossing events and normalizing the resulting bin 
counts by bin interval and sample size. The expected time between high peak 
values in X '2 is about 0.266 s, which corresponds to a mean occurrence rate of 
about 3.75 s -1. The mode of the pdf of the time interval between the occurrences 
of high peak values is seen to be at about 0.01 s. For time intervals between high 
peaks greater than about 0.01 s, f ( tp)  appears to follow a power-law distribution 
with f ( tp)  ~ t7 r, where the exponent r is 3/2. In the turbulent-convective regime 
of plume development, the exponent r maintains an almost constant value across 
the mean-plume lateral cross-section. 

Figure 7 illustrates clearly that the time intervals between the high peaks in the 
squared derivative process, X '2, are not Poisson distributed in time (viz., the 
stochastic point process corresponding to the times of high peak events in X '2 is 
not a shot-noise process). To see this, we note that if the times of occurrence of 
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the high peak events are distributed uniformly in time such that the probability 
of occurrence of a peak is independent of the preceding one, then the probability 
of occurrence of peaks is described by the well-known Poisson distribution, 

PT~(n) (ATs) n exp(-AT~) = , n E N,  (14) 
n! 

where PT,(n) is the probability of observing n high peaks in sampling time Ts and 
A > 0 is the mean number of occurrences of peaks per unit time (viz., the mean 
rate of peak occurrence). The mean and variance of the distribution, PT, (n), are 
equal to ATs. For Poisson-distributed events, the time intervals between events 
are distributed exponentially: 

.+  f ( t p ) = A e x p  - A  ' tp~ . (15) 

However, the distribution of the time intervals between high peaks is poorly 
approximated by an exponential (cf. Equation (15)) with parameter A set to the 
observed mean occurrence rate for high peaks. The exponential distribution greatly 
underestimates the pdf of the interval, tp, between successive high peaks for tp 
less than about 0.5 s, and overestimates the pdf for tp greater than about 0.5 s. 
This implies that the probability of occurrence of high peaks in X'= cannot be 
considered to be statistically independent - rather, the high peaks tend to occur 
in localized clusters (cf. Figure 1). This implies that small-scale eddy structures in 
the concentration field are not space-filling. 

The sample pdf, f(tw), of peak width, tw, is displayed in Figure 8. Here, the 
peak width, tw, is defined as the time interval between an upcrossing and the next 
downcrossing of the threshold value used to define high peaks in X'= (e.g., 
X'2/(X '2 ) = 25). We found an expected peak width of about 0.006 s. It is interesting 
to note that the expected peak width is comparable to the Taylor microscale, tx, 
of concentration fluctuations. Here, t x was found to be about 0.015 s, which we 
determined from the definition ~-= 2 2 O'x/O" x, with the zero periods included (viz., 
all points in the total time series were used to determine ~). Imerestingly, the 
definition of tx coincides with the inverse of the mean frequency, v, of the concen- 
tration fluctuations: v -= {foo)2S(o)) dw/fo S(oJ) do)} 1/2 = I'O'x'/O'X)l 2 , 2 ' , 1 / 2 ,  where o) is 
angular frequency and S(w) is the power spectral density function for concentration 
fluctuations. This suggests that the width of the high peaks in the squared concen- 
tration derivative field determines the Taylor concentration microscale (or, equiva- 
lently, the mean frequency of the process). These high peaks are probably the 
result of the turbulent stretching effect of the velocity field (which operates on the 
time scale Zs - o-i/U, where o-i is the instantaneous plume width and U is the 
wind speed), which progressively draws out the plume material into contorted 
sheets and strands (Chatwin and Sullivan, 1979). This serves to break the concen- 
tration eddies into smaller and smaller sizes resulting in the development of large 
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concentration gradients in the plume that enhance the action of molecular mixing. 
The distribution of peak widths, f ( tw) ,  is indicative of the range of different speeds 
and orientations of small-scale concentration eddy structures in the dispersing 
plume that are advected past the detector. The intervals corresponding to the 
peak widths are associated with those time periods where large scalar dissipations 
are occurring in the dispersing plume - these periods probably coincide with the 
passage of the high-gradient shear zone regions between the small-scale concentra- 
tion eddy structures. The intervals between successive high peaks correspond to 
periods of inactivity in X '2 and, as such, coincide with the passage of concentration 
eddy structures of varying sizes. 

4. Applications 

Our measurements of the statistics of the concentration derivative can be used to 
refine the model for recurrence statistics of concentration fluctuations developed 
by Kristensen et al. (1989). The important result is that the conditional pdf of the 
concentration derivative, X', conditioned on a fixed value of the concentration, X, 
exhibits a strong dependence on X. It is unclear how the dependence of X' on X 
arises, but it seems plausible to identify two causes: (1) the correlation introduced 
by the turbulent (random) velocity field that is responsible for the turbulent 
stretching and diffusion of the scalar; and, (2) the correlation between the scalar 
and its gradient that is imposed by the source (release) conditions. The intercorre- 
lation between X and X' implies that the (marginal) pdf of concentration derivative 
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cannot be used in Rice's formula for the expected number of upcrossings of a 
fixed level. 

Rice's formula for the expected number of upcrossings in a fixed time interval 
requires a knowledge of the joint probability density function of the concentration, 
X, and its derivative, X' (cf. Equation (1)). The joint pdf of X and X', f (x ,  X'), 
provides information on the probability that X and X' jointly lie in a given interval, 
and can be determined in terms of the marginal pdf of X, f l  (X), and the conditional 
pdf of X' given X, fall(X' IX), as follows: 

f (x ,  X') = f l  (x)f211 (X' 1X). (16) 

Equation (16) requires that we model both f~ (X) and f21x (X' I X) if we are to 
determine the upcrossing intensity in accordance with Equation (1). 

Although there is no agreement on the "correct" form of the pdf of X, it was 
found in Yee et al. (1993) that under near-neutral conditions, the lognormal and 
gamma distributions provide good approximations to the in-plume concentration 
pdfs in the turbulent-convective and turbulent-diffusive regimes of plume develop- 
ment, respectively. To provide a concrete example, we consider points in the 
plume measured in the turbulent-convective regime of plume development. In 
consequence, we use the lognormal distribution as the model pdf for the in-plume 
concentration fluctuations. Hence, we choose the marginal pdf of X to have the 
following form: 

1 ( ln2 (x/m)~ (17) 
f l (x)  - ~ o . x e X p  20.2 ] ,  

where 

G (is) m - -  p . ~  

and 

0-2 = ln(i2 _ 1). (19) 

Here, Cp and ip are the conditional (in-plume) mean and fluctuation intensity of 
concentration fluctuations, respectively. As a model for the conditional pdf of 
X'/0-x' given X/Cp, the measurements presented in the previous section suggest 
that we could use a gqG distribution with the following form: 

{ q} f 2 1 1 ( @ l x / c p )  - exp - h  (20) o-e(x/G) 0- (7e/ c , , )  ' 

where ff -= X'10-x', c7 and h are normalization constants defined in Equations (12) 
and (13), respectively, and the intermittency exponent, q = 3/4. Furthermore, 
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1 /~( , 17/20 

is the conditional standard deviation of the normalized derivative, X'/O'x,, for a 
given value of the normalized concentration, X/Cp. 

The model joint pdf, ?(X, X') = f l  (x)f211 (X' I X), with f l  (X) and f211(X' I X) deter- 
mined according to Equations (17) to (21) is exhibited in Figure 9. The joint pdf 
shown here has been nondimensionalized with the mean and standard deviation 
of X and X', Cp and o-x,, respectively (i.e., X - X / C p  and Y =-X'/Crx,). The contour 
levels shown (inner to outer) correspond to 0.1, 0.05, 0.001, 0.005, 0.0001, 0.00005, 
and 0.000025, respectively. The parameters for fl(X) (viz., m and o- defined in 
Equations (18) and (19)) have been selected to match the measured values of 
conditional mean, Cp, and fluctuation intensity, ip, of the concentration time series 
whose (in-plume) derivative is displayed in Figure 1 (measured at lateral position 
y/o'y --~ 0.36 at downwind distance x/h = 20.0). In consequence, the model joint 
pdf of Figure 9 can be directly compared with the observed joint pdf of X and X' 
for the concentration time series associated with Figure 1. Isojoint pdf contours 
of X=-x/Cp and Y=-x'/o-x, for this time series are shown in Figure 10. The 
contour levels shown in Figure 10 (inner to outer) correspond to 0.5, 0.1, 0.05, 
0.001, 0.005, 0.0001, 0.00005, and 0.000025, respectively, and with the exception 
of the innermost contour level ( i . e ,  0.5) can be compared directly with those in 
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Figure 9. Such a comparison shows that the model joint pdf (cf. Equations (16) 
to (21)) reproduces the dominant features in the observed joint pdf. Both show 
contour shapes that approximately resemble parallelograms. There is a high proba- 
bility that small values of concentration, X, are associated with small values of 
absolute concentration derivative, Ix'l. Furthermore, there is greater probability 
for large (small) concentrations to occur together with small (large) concentration 
derivatives than for large concentrations and concentration derivatives to occur 
simultaneously. In consequence, although X and X' are uncorrelated random vari- 
ables, their joint pdf suggests a dependence between two variables where the 
activity of one appears to suppress that of the other. 

The model joint pdf of X and X', described by Equations (16) to (21), can be 
used in Rice's formula to determine the expected number of upcrossings (or, 
equivalently, excursions) of a fixed concentration level in a particular sampling 
period, 7",. Hence, the mean number of X/Cp-upcrossings per unit time of the 
normalized concentration is given by (cf. Equations (2), (17), (20), and (21)) 

1 F(2/q) 
( N  (x/Cp))  = 2 [F(1/q)F(3/q)] 1/2 ':rx'/c'~ (X/Co ) f  ~(x/Cp ) , (22) 

where 
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- -  " X " 1 7 / 2 0  

1 O-x, ( ~ 7 )  ~x,,c,(x/cp) ~ c,, (23) 

Here ,  crx,l%(xlCp) is the conditional standard deviation of the normalized deriva- 
tive, x'/Cp, and q = 314. Note that X' is normalized by Cp in this case (and not 

by o" x, ). 
This model for the mean upcrossing rate can be tested against some of the 

available data. Accordingly, Figure 11 exhibits the observed number  of upcrossings 
per unit time as a function of the normalized concentration, x/Cp, in comparison 
with the predicted number  of upcrossings per unit time as determined using 
Equations (22) and (23) (solid curve). The lognormal distribution was used to 
model fl(X/Cp). In general, the agreement between the predicted and observed 
upcrossing rate is very good. The model slightly underpredicts the upcrossing 
intensity for normalized concentration levels, X/Cp, greater than about 10. This 
may be due to the fact that the conditional standard deviation, crx,/cp(XICp), is 
not accurately characterized by the relationship embodied by Equation (23) for 
values of x/Cp greater than 10. In this regard, it should be recalled that this 
functional form was derived from a'#(X/Cp), which was determined based on 
values of X/Cp less than about 6 (cf. Figure 4), and there is no guarantee that 
extrapolations of this relationship beyond this range are valid. Furthermore,  some 
of the discrepancy may be the result of statistical scatter due to the paucity of 
data at large values of the concemration level. Data  measured at other plume 
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positions, not displayed here, show a similar behavior to that exhibited in Figure 
11. 

It would be interesting to compare the model of the mean upcrossing rate (cf. 
Equations (22) and (23)) with that which would have been obtained by assuming 
that the pdf of the concentration derivative, X', given a concentration, X, is 
statistically independent of X, and that the concentration derivative pdf is Gaus- 
sian. Adopting these assumptions leads to the following model for the upcrossing 
intensity of the normalized concentration: 

<N(X/Cp)> = ~rx'/cJ1 (X/Cp) (24) 

Equation (24) is the model proposed by Kristensen et al. (1989) for the mean 
upcrossing rate. Figure 11 compares the upcrossing intensity with that predicted 
by the model embodied in Equation (24) (dashed curve). The model of Equation 
(24) results in a drastic underestimation of the upcrossing intensity for normalized 
concentration levels, X/Cp, greater than about 4. On the other hand, the mean 
upcrossing rate is overestimated for normalized concentration levels less than 
about 3. In general, we found that failure to account for the statistical dependence 
of X' on X leads to poor estimates of the upcrossing rate. 

The model for the upcrossing intensity embodied in Equations (22) and (23) is 
applicable only to in-plume concentrations (or, equivalently, to situations where 
intermittency due to plume meander is negligible). The upcrossing rate can be 
predicted from a knowledge of Cp and ip for the concentration time series, and 
o- x, for the concentration derivative time series. Models for the prediction of the 
spatial distribution of Cp and ip exist for plumes dispersing in a neutrally stratified 
turbulent boundary layer (Wilson et al., 1985; Sawford and Stapountzis, 1987). A 
model for the spatial distribution of the unconditional standard deviation, cry., of 
the concentration derivative has been developed by Kristensen et al. (1989) for 
plume dispersion from an elevated point source in a neutral boundary layer. In 
consequence, all the components exist for the prediction of recurrence statistics 
of concentration fluctuations (e.g., upcrossing intensity, return periods between 
successive upcrossings, mean excursion durations, etc.). To incorporate the effects 
of intermittency due to plume meandering, it is straightforward to show that the 
upcrossing intensity, <N(x/C)), of the normalized concentration level, )~/C, for 
the total concentration time series (zero concentrations included) is related to the 
upcrossing intensity, <N(X/Cp)), of the conditional concentration time series (cf. 
Equations (22) and (23)) as follows (C is the (total) mean concentration): 

(N (x/C)) = 3' (N(x/(yCp)))  , (25) 

where y is the intermittency factor. To derive Equation (25), we have used the 
relationship C = yCp. Equation (25) allows one to determine the upcrossing rate 
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for the total concentration time series, once the upcrossing rate for the conditional 
time series has been obtained. 

5. Summary and Conclusions 

To verify certain assumptions underlying the simple model developed recently by 
Kristensen et al. (1989) for estimating the number of upcrossings per unit time of 
a given fixed concentration level, this study has analyzed some concentration 
fluctuati'on data from dispersing plumes in a near-neutral atmospheric surface 
layer, with the objective of extracting information on the statistical properties of 
the concentration derivative. Our results have shown that the pdf of concentration 
derivative, although symmetric, is highly non-Gaussian with wide flaring tails that 
are indicative of a significant intermittency effect of the small-scale concentration 
eddy structures in the dispersing plume. We show that the pdf of X' can be well 
approximated by a gqG distribution with an intermittency exponent, q = 0.3. This 
result was obtained from concentration fluctuations measured at various positions 
in the crosswind cross-section of a dispersing plume in a near-neutral atmospheric 
surface layer over a limited downwind range from 25 to 100 m. Within these 
constraints, we found that the pdf of normalized concentration derivative, X'/o-x,, 
displayed a remarkable universality in form. Because the concentration derivative 
emphasizes the information in the small eddy scales, the universality of the concen- 
tration derivative pdf is indicative of the local isotropy and homogeneity of the 
statistical characteristics of the small-scale structures in the plume. 

Although X and X' are necessarily uncorrelated for a stationary process, our 
data indicate that they are not statistically independent as is assumed by Kristensen 
et al. (1989). The dependency between X and X' is such that they tend to inhibit 
each other in the sense that large (small) values of X are preferentially associated 
with small (large) values of X'. We found that the conditional pdf of the concentra- 
tion derivative, X', given a fixed value of concentration, X, is well described by a 
gqG distribution with intermittency exponent q = 3/4. Because the conditional 
concentration derivative pdf exhibits a constant intermittency exponent in the 
dispersing plume (at least over the range of positions covered by the available 
data), its form is completely specified by the conditional standard deviation, 
o- x, (X/Cp).  Under near-neutral stratification, we found that the conditional stan- 
dard deviation of the normalized derivative, X'/O-x,, reduces to a universal form 
which can be well approximated by cr x, (x /Cp) /cr  x, = (x/Cp)17/2~ It would be 
interesting to investigate (when more data become available) whether this univer- 
sal form for the conditional pdf and the corresponding standard deviation of the 
normalized concentration derivative are maintained at greater downwind dis- 
tances, or under diabatic conditions (e.g., very unstable thermal stratification, 
strong stable vertical stratification, etc.). 

The information on the conditional statistics of the concentration derivative 
was used to revise a model for recurrence statistics of concentration fluctuations 
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developed by Kristensen et al. (1989). This revised model agrees very well with 
measurements of the mean upcrossing rate obtained in a dispersing plume under 
near-neutral stratification. In consequence, development of a model to predict the 
mean concentration, C, the intermittency factor, y, the fluctuation intensity, i, and 
the concentration derivative standard deviation, O-x,, would allow determination of 
not only the single-point concentration pdf, but also multi-point statistics as em- 
bodied in the joint pdf of concentration and its derivative. The latter statistics 
reflect the small-scale properties of the dispersing plume and, in consequence, 
embody the information on the dynamics of the turbulent mixing processes. In 
turn, the joint pdf of concentration and its derivative allows the prediction of a 
number of recurrence statistics of concentration fluctuations such as upcrossing 
intensity, mean excursion duration, return period (inverse time factor), etc. 

Appendix A. Effect of Instrument Smoothing on Recurrence Statistics 

It is clear that the measured upcrossing intensity will be influenced significantly 
by the high-frequency content of the signal. In accordance with Equations (22) 
and (23), the effect of instrument smoothing on the upcrossing intensity will 
depend on the relative contribution made by the scales which are not resolved to 
fluctuation statistics such as the concentration pdf, f l  (X/Cp), the conditional stan- 
dard deviation, oe(x/Cp), of the normalized derivative, ~-= X'/Crn,, the standard 
deviation, O-x,, of the concentration derivative, and the intermittency exponent, 
q. The effect of low-pass filtering imposed by an instrument on the concentration 
pdf, f l ,  has been studied elsewhere (e.g., Dinar et al., 1988; Mylne and Mason, 
1991) and, consequently, will not be considered here. The effect of time averaging 
on the standard deviation, o-x,, of the concentration derivative can be determined 
analytically as follows: 

~2'(fe) = Y2 O)2IH(O))I2S(O)) do), (A1) 

where fR is some measure of the frequency resolution of the instrument (e.g., 
- 6  dB point of the frequency response function), o) is angular frequency, S(~o) is 
the power spectral density of concentration fluctuations, and H(o)) is the frequency 
response function of the instrument. 

The influence of frequency resolution on the determination of the conditional 
standard deviation, o- e (X/Cp), and the intermittency exponent, q, cannot be deter- 
mined analytically. In this case, we evaluated the influence by passing the original 
signal (measured by our concentration sensors) through a sequence of zero-phase 
Butterworth filters of order 8 with - 6  dB cut-off frequency, fR, selected between 
1 and 100 Hz. We recall that the magnitude-squared of the frequency response 
function of a Butterworth filter of order r is 
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1 [H(n)[ z = (A2) 
1 + (31/2rn/fn) 2r' 

where fR is the frequency for which IH(fR)I = 1/2 ( - 6  dB cut-off frequency). At 
a frequency resolution measured by fn, we found that oe(X/Cp;fn) can be well 
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approximated by a power-law form a(JR)(X/Cp) -be'R), where a and b are constants 
at any frequency resolution that do not depend on X/Cp (cf. Figure 4 which was 
constructed for the original signal measured with an instrument with - 6  dB point, 
fR = (41/~ - 1)1/2/(2~r ~ 100 Hz (cf. Equation (9))). The variation of a and b 
with the cut-off frequency is exhibited in Figure 12. As expected, the conditional 
standard deviation, ore (X/Cp), is seen to decrease monotonically with the progress- 
ive loss of high-frequency content in the signal. Figure 12 indicates that the 
dependence of a and b on fR can be approximated with the power-law forms 0.874 
f~0.o447 and 0.645/,~os, respectively. 

The variation of the intermittency exponent, q, for the conditional pdf of 
normalized concentration derivative, q5-= ~/o-e (X/Cp), (cf. Figure 6) with the cut- 
off frequency is shown in Figure 13. We found that q (fn) can be well approximated 
by the power-law form 1.59 f~R ~ It is seen that the observed intermittency 
exponent, q, increases with the loss of high-frequency content in the signal. At 
high frequency resolutions, the conditional pdf of normalized derivative becomes 
more peaked around the center and its tails "skirt out" more, and the more so the 
greater the frequency resolution. Hence, as expected, the intermittency becomes 
increasingly stronger at the smaller scales, and this physical effect is observed, 
provided that the instrument is sufficiently responsive. For instruments with large 
averaging times, the conditional pdf of normalized derivative becomes increasingly 
parabolic (i.e., Gaussian) in shape and the value of the intermittency exponent 
approaches 2. 
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