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Abstract. Turbulent exchanges between plant canopies and the atmosphere are known to be strongly 
affected by intermittent coherent motions, which appear on time traces of turbulent variables as 
periodic, large-amplitude excursions from the mean. Detecting these features requires objective and 
powerful signal anaIysis techniques. We investigate here the possibilities offered by the recently 
developed wavelet transform, presented in a companion paper. For this purpose, a set of data acquired 
in a 13.5 m high pine forest in southwestern France was used, which provided time series of wind 
velocities and air temperature recorded at two levels simultaneously, under moderately unstable 
conditions. Firstly, a duration scale of the active part of coherent motions was estimated from the 
wavelet variance. Then, we focused on the detection itself of large-scale features; several wavelet 
functions were tested, and the results compared with those obtained from more classical conditional 
sampling methods such as VITA and WAG. A mean time interval A = 1.8h/u, (h being the canopy 
height and u,  the friction velocity) between contiguous coherent motions was obtained. The features 
extracted from the various traces and ensemble-averaged over 30 rain periods appeared very similar 
throughout the four hours of data studied. They provided a dynamic description of the ejection-sweep 
process, readily observable at both levels. An alternate Reynolds decomposition of the instantaneous 
turbulent fields, using the conditionally averaged signals, allowed the relative importance of large- and 
small-scale contributions to momentum and heat fluxes to be estimated. The results were found to be 
in good agreement with comparable studies. 

1. Introduction 

To a large extent, turbulent transport within and above plant canopies is known 
to be dominated by large-scale intermittent coherent structures. Their presence in 
the canopy layer may be revealed by periodic ramp patterns affecting scalar time 
traces, or more generally speaking, by occasional large-amplitude excursions from 
the mean on time series of turbulent variables (Raupach et al. ,  1989; Paw U et 

al . ,  1992). They have been observed over a wide range of canopies and turn out 
to bear a significant contribution to momentum and scalar fluxes, through cyctes 
of 'ejections' and 'sweeps' (Finnigan, 1979; Raupach et al . ,  1989; Gao et al. ,  1989; 
Paw U et al. ,  1992). A thorough analysis of these coherent motions is a pre- 
requisite to a better understanding of their role on turbulent transport processes. 

This paper is the second part of an investigation into the possibilities offered 
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by the wavelet transform for extracting information on turbulence structure in the 
vicinity of plant canopies, from time series of wind velocities and scalars. The 
wavelet transform was introduced in the first part (Collineau and Brunet, 1993, 
hereafter referred to as 'Part I'), as a local transform providing a time-frequency 
representation of a given signal by a specific wavelet function. After the main 
mathematical properties of wavelet functions and transform were given, and the 
principles of wavelet analysis set out, we presented various applications relevant 
to our purpose. The wavelet variance was shown to provide an estimate of the 
mean duration of periodic isolated events. The ability of the wavelet transform to 
detect sharp edges in time series (such as the sudden breakdown of a scalar 
ramp) was also demonstrated, thereby opening the possibility of using wavelets to 
perform conditional sampling. The intercomparison of several wavelet functions, 
using simple artificial data of particular shapes, led us to define a specific range 
of applications for each of them. In what follows, the reader is supposed to be 
familiar with the concepts and notations used in Part I. 

The aim of the present paper is to apply to real turbulence data the methodology 
developed in Part I, with the overall aim of gaining insight into how coherent 
motions affect turbulent transport processes in plant canopy flows. Data acquired 
in a 13.5 m high pine forest in southwestern France, provide simultaneous time 
series of wind velocities and air temperature at two levels, under moderately 
unstable conditions. 

After describing the experimental data set, we shall first deduce characteristic 
time-scales from the wavelet variance. In a second step, the methodology of jump 
detection will be discussed and the wavelet approach compared with more classical 
detection techniques such as VITA and WAG; this will provide an estimate of the 
frequency of occurrence of large-scale motions, over several contiguous hours of 
data. Conditional averaging will then be performed on the various time series 
recorded at both levels, allowing the large-scale patterns of the flow to be extracted 
and ensemble-averaged, and providing details on the dynamics of the ejection- 
sweep process. Finally, a triple Reynolds-type decomposition of the instantaneous 
turbulent field, using the conditionally averaged variables, will allow the relative 
importance of large- and small-scale contributions to momentum and heat fluxes 
to be estimated. 

2. Site and Data 

The experiment was carried out in a 20 year old pine forest (Pinus pinaster Ait.) 
in Les Landes area in southwestern France (44 ~ 42' N, 0 ~ 46' W) in summer 1989. 
The height of the canopy h was 13.5 m; the forest was planted in a regular array 
with 4 m between adjacent rows and 3 m between trees in the same row. Prevailing 
wind directions yield a fetch of approximately 1 km. 

The site was equipped with a 20 m tower, on which were mounted two three- 
dimensional sonic anemometers/thermometers (Dobbie Instruments, model 
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TABLE I 

Turbulence statistics over eight adjacent half-hour runs (day 250) at levels 1 (z/h = 1.24) and 2 (z/h = 
0.82). h stands for canopy height and z for height above the ground; u and w are the streamwise and 
vertical windspeed components (m/s), T the air temperature (~ L the Monin-Obhukhov length 

(m); overbars mean time averages 

Day 250 al T1 u'w~ w'T[ ~2 T2 u'w~ w'T~ h/L 

10:00 2.21 24.57 -0.57 0.38 0.89 25.87 -0.39 0.16 -0.157 
10:30 2.62 25.30 -0.78 0.42 1.05 26.66 -0.59 0.20 -0.109 
11:00 2.79 26.31 -0.71 0.35 1.04 27.67 -0.60 0.25 -0.104 
11:30 3.37 26.68 -1.22 0.51 1.24 28.04 -0.87 0.35 -0.067 
12:00 2.94 27.14 -1.12 0.54 1.10 28.53 -0.89 0.41 -0.080 
12:30 3.17 27.34 -0.99 0.38 1.05 28.7l -0.64 0.25 -0.068 
13:00 2.98 28.02 -1.00 0.51 1.02 29.51 -0.67 0.38 -0.089 
13:30 2.69 28.21 -0.75 0.39 0.96 29.54 -0.49 0.28 -0.106 

PAC100), five one-dimensional sonic anemometers/ thermometers  (Campbell 

Scientific Inc., model CA27), and twelve low-frequency sensors for wind speed 

and air temperature profiles (cup anemometers and double shielded aspirated 

thermometers). 

The present study involves only the measurements made on September 7 (day 

of year 250) with the 3-D sonic anemometers,  at a time when they were located 

at 16.70 m (z /h  = 1.24, hereafter referred to as level 1) and 11.05 m (z /h  = 0.82, 

level 2) respectively, the lower level corresponding to the bulk of the pine crown. 

The data were recorded at 16 Hz; a cosine correction was performed on the wind 

components,  which were then rotated to force the lateral wind speed component 

to zero. A second rotation to force ~ to zero was not performed, except for 

calculating the mean vertical fluxes w ' T '  and u ' w ' .  In what follows, u, v and w 

stand for the streamwise, lateral and vertical wind components,  respectively, 

and T for air temperature. For this study, a period of four hours was selected, 

corresponding to small rotation angles and slightly unstable conditions. The statis- 

tical moments of interest were integrated over 30 rain and are displayed in Table 

I. For coherent motion purposes, the raw data were smoothed and compacted 

with a sliding window of length 0.5 s. A typical example of u ' ,  w'  and T '  time 

traces (where the primes denote fluctuations from the 30 min averages a, v~ and 

5r) showing clear ramp patterns is shown in Figure 1, along with the instantaneous 

cross-products u ' w '  and w ' T ' .  

3. Using the Wavelet Transform in Turbulence Studies 

In most cases coherent motions yield ramps in scalar time traces (Paw U et al., 

1992), that can be seen in Figure i for temperature. 

The difficulty in detecting these discontinuities accurately comes from the ple- 

thora of scales at which they occar, and also from the inevitable background 
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A sample of time traces of u, w, T, uw and w T  at z/h = 0.82 (day 250, 10:20). Original data 
were smoothed by a sliding window of length 0.5 s. 

turbulent noise. As discussed in Part I, the filtering properties of the wavelet 
transform may be able to smooth turbulence signals without erasing the relevant 
discontinuities. The tenet of wavelet-based detection techniques is recalled in 
Section 3.2 of the present paper. 

The size-detection capability of wavelets has been demonstrated for artificial 
patterns (Part I) and will be applied to turbulence data to infer a characteristic 
scale. 

3.1. DURATION OF EVENTS 

Evidence of the ability of the wavelet variance to determine a mean duration of 
dominant events was given in Part I, for simple artificial data. We assume that 
this approach can be extended to experimental turbulence data such as those 
presented here, featuring a high "signal-to-noise" ratio (signal referring in this 
case to large-scale excursions from the mean). For  this, we computed the wavelet 
variances over the relevant traces for the first half-hour, using the M H A T  wavelet. 
All scalograms are presented in Figure 2a (u, w and T) and 2b (uw and wT), for 
both levels. Wavelet variances of wind velocities and cross-products have only one 
peak, whereas for temperature a secondary peak is visible at large values of the 
dilation factor. This is due to the existence of slow trends in the temperature 
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Fig. 2. Wavelet variance scalograms of (a) u, w, T, and (b) wT, uw at z/h = 1.24 and at z/h = 0.82, 
calculated with the MHAT wavelet, and plotted as functions of the duration scales D. Indices 1 and 

2 refer to z/h = t.24 and 0.82 respectively (day 250, 10:00-10:30). 
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signal, visible on the sample shown in Figure 1 and probably linked with the 
presence of intermittent clouds. 

Duration scales D were then calculated after identification of the peak scales 
a0. We obtained 20, 5.5 and 13 s above the canopy for u ' ,  w' and T '  respectively, 
13, 7 and 13 s within the canopy. The interpretation of these results depends on 
the nature of the data. For  temperature,  D certainly corresponds to a mean ramp 
duration representative of all the ramp-like events clearly visible in the time traces 
(Figure 1). For u'  and w',  the situation is more complicated in the sense that 
it is more difficult to separate visually large-scale structures from smaller-scale 
turbulence. At  both levels, D for w' is about half the value found for T'  and is 
very similar to the duration scale calculated on u 'w '  and w ' T '  traces, of the order 
of 4 -6  s at both levels. It is interesting to note that the time traces of the cross- 
products, or instantaneous fluxes, show very sharp activity around the breakdown 
time of temperature ramps; at the same time, w' switches rapidly to strong negative 
values. It therefore seems that these scales are associated with the energetic part 
of these strong downward motions often referred to as gusts. The duration scale 
for the streamwise velocity seems to be more related to that of T' :  they are equal 
at z /h  = 0.82 but the reason why a value as large as 20 s is obtained for u '  above 
the canopy is unclear. It may be due to the presence of low frequencies, observable 
on the us spectra. 

In what follows, and in particular for detection purposes, we have used mainly 
the temperature traces since they show features that are easier to interpret. For 
reasons developed below, it was then necessarY to calculate D for each of the 
eight runs. As can be seen in Table III, the values found thereby are fairly constant 
and, on average, equal at both heights (12.2 s at z/h = 1.24 and 12.4 s at z /h  = 

0.82). 

3.2. J U M P  D E T E C T I O N  

Many empirical methods have been used to detect the sharp drops associated with 
the ramps, the most popular being the Variable Interval Time-Averaging (VITA): 
all these techniques require the choice of a threshold (Phong-Anant et aI., 1980; 
Schols, 1984; Shaw et aI., 1989). In Part I, jump detection algorithms based on 
wavelets were presented. Wavelet-based methods take advantage of the time-and- 
frequency representation of wavelets for triggering particular events in data sets. 
Developments about time- or frequency-localization involving tests on artificial 
patterns have been necessary for a better  understanding of the use of wavelet 
transform. In this part, we review the tenet and definition of jump detection 
techniques. 

3.2.1. Wavelet and Zero-Crossing Methods 

The wavelet-based schemes for detecting jumps in signals were defined and de- 
scribed in Part I. The detection function is given by the wavelet transform T~ (ao, b) 
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of the signal, used at the scale ao corresponding to the peak of the wavelet 
variance. 

At this stage, a distinction has to be made among the wavelets used in Part I 
between those yielding a zero-crossing at jump points (called second derivative- 
like operators) such as the MHAT wavelet, and those inducing a peak (called first 
derivative-like operators) such as the HAAR, RAMP or WAVE wavelets. Detec- 
tion according to the first type only involves identification of zero-crossing points 
with a particular slope sign depending on the slope of the jumps. Detection 
according to the second type will require the use of a threshold to select the larger 
peaks in the wavelet detection function. 

3.2.2. Classical Methods 
The two following classical methods are considered as reference schemes. The 
first one, VITA, has been much used by turbulence researchers (Subramanian et 
al., 1982; Bogard and Tiederman, 1986; Schols, 1984; Shaw et al., 1989). The 
V1TA technique involves a short-term variance of temperature data, calculated 
on a time interval At corresponding to durations less than the time between 
adjacent events and normalized by the long-term variance: 

= - -  [V'(t)] 2 dt - (1) VITAa~(t) cr~ J r--at~2 

2 

[ l  fj+Zj: dt) J - T ' ( t )  . 

Thus, the VITA scheme is able to detect the sharp drops ending the temperature 
ramps, where it exhibits positive peaks. It actually behaves like a low-pass filter 
limited by the frequency 1~At. We use an additional negative slope criterion to 
discriminate sharp decreases from increases. Then the detection occurs when the 
VITA function exceeds a certain threshold k, provided that the slope of the 
temperature trace is negative. 

The Window Averaged Gradient (WAG) technique (Bisset et al., 1990) is very 
similar to VITA, except that it is based on the first-order moment instead of the 
variance. It detects jumps by translating in time a differential scheme made by the 
difference between a short-term mean before and after the instant considered: 

WaGat(t) - 1 1 t T'(t) d t -  T'(t) dt . (2) 
O" T At - - A t ~ 2  J t 

This technique is able to separate sudden decreases from sudden increases without 
any additional slope criterion. The detection point is the time at which WAG 
exceeds a threshold k, as before with VITA. 

The At and k parameters of the VITA and WAG techniques have to be cali- 
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brated: this will be done here as is usual by matching the total number of detected 
events with a reference set. 

4. Evaluation of Detection Algorithms According to the Period Between Events 

In this part, our purpose is to evaluate detection techniques according to their 
ability to estimate A, the mean time-interval between events. The evaluation is 
performed on a single half-hour set of data (day 250; 10:00-10:30) within the 
canopy with six techniques: VITA,  WAG, H A A R ,  RAMP,  WAVE, MHAT.  Since 
all these techniques are jump-detectors,  they are applied to air temperature data. 
The zero-crossing method (involving the M H A T  wavelet) can however be easily 
implemented either on T'  and u'  time series, since it does not require a calibration. 
The results are to be compared to a reference set of ramp events. 

4.1. C A L I B R A T I O N  A N D  C O M P A R I S O N  O F  M E T H O D S  

All jump detection techniques need to be calibrated with respect to one or two 
parameters: the scaling parameter  for the wavelet methods (chosen a pr ior i  as the 
wavelet variance peak scale ao), a threshold for the first derivative-like wavelets, 
the window width and a threshold for VITA and WAG. 

Because none of these methods can be considered as a genuine reference,  we 
have visually selected a reference set of detection points based on the identification 
of temperature ramps. As pointed out by Paw U et al. (1992), visual identification 
of turbulent coherent  structures is indeed considered by most researchers as the 
method by which all other detection methods are checked and validated. This 
reference set consists of 60 events over the 30 rain period chosen (day 250; 10:00- 
10:30). Following Subramanian et al. (1982) and Bogard and Tiederman (1986), 
the adjustment of the parameters (time integral for classical methods, thresholds 
when needed) has been performed under the requirement of getting a number of 
events closest to 60. 

Figure 3 shows on the same graph the wavelet variance for the zero-crossing 
method and the number  of events detected, as a function of the duration scale D. 
As expected, the number of detections decreases with D, since a wavelet with a 
large dilation factor can only detect the largest events. In other words, wavelets 
look at data at a particular scale, necessitating the choice of an optimal scale. It 
is precisely on this point that an important result is obtained: with the scale ao, 
corresponding to the variance peak, the number of events detected is 62, very 
close to the reference value of 60. Furthermore,  it is shown below that these 
events are, to a good approximation, the same as those selected visually, with few 
extra or missing detections. This, again, lends strong support to the assumption 
made in Part I, according to which the wavelet variance approach, successfully 
tested on simple patterns of equal length, may also be valid for real turbulence 
data showing large excursions from the mean, but also featuring a wide range of 
scales. 
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Fig. 3. Effect of the dilation parameter on the number of events detected (day 250, 10:00-10:30, 
z/h = 0.82), using MHAT.  

For the other five methods, the choice of parameters is obviously dramatic, as 
pointed out by Bogard and Tiederman (1986) who discussed the effect of thres- 
holding. The adjustment procedure gave the following threshold values for the 
first derivative-like wavelets: 0.2 for HAAR, 0.15 for RAMP, and 0.55 for WAVE. 
A calibration based on &t-values ranging from 2 to 20 s also gave the VITA and 
WAG parameters: respectively 2~t = 10 s and k = 0.55; At = 8 s and k = 0.6. The 
outputs of the VITA and WAG techniques appear reasonably stable in this range 
of parameters. 

Figure 4 shows a 500 s subset of the original temperature data, together with 
the six detection functions and all detection times. The total number of events 
detected in each case is given in Table II; it is of course close to 60 since all 
methods were first calibrated (except MHAT already discussed). 

The question now arises as to whether the different schemes have selected the 
same events. Table II also shows the probability P(Ref) of detecting the reference 
events, and the probability P(Err) of wrong detections for each technique. Dis- 
crepancies in VITA (28% of wrong detections) often come from multidetection 
of a single event (see Figure 4). First derivative-like wavelet methods (Figure 4) 
show acceptable (HAAR, RAMP) to very good agreement (WAVE) with the 
reference frame. It has to be pointed out that the WAVE wavelet has the localiz- 
ation in frequency of Gaussian derivatives and not the tendency to extra detections 
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of zero-crossings discussed below. However ,  it needs a threshold calibration, which 
is often subjective for routine applications. Errors in zero-crossings (MHAT)  are 
due to too good a localization in frequency of the Laplacian of a Gaussian: this 
method misses very close events, while it tends to add irrelevant events during 
quiescent periods with no referenced events (see the beginning of time-series in 
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Wavelet  detection functions for temperature  data (day 250, 10:00-10:30),  using (a) 
M H A T ,  (b) WAVE, (c) H A A R ,  (d) R A M P ,  (e) VITA,  (f) WAG. 

Figure 4). This is a consequence of very variable time-intervals between events 
on a method well localized in frequency. However ,  it is fortunately limited to a 
few false detections per  half-hour, so that the zero-crossing technique, easier to 
implement ,  can be considered as efficient on turbulence data. It is interesting to 
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TABLE II 

Results of the detection schemes for the first run (10:00-10:30) of day 250, at z/h = 0.82. P(Ref) is 
the probability of detecting the reference events, P(Err) the probability of wrong detections and N 

the number of events detected by each technique 

Detection Data At (s) D (s) k P(Ref) % P(Err) % N 
technique 

VITA T' 8.0 - 0.55 66 28 63 
WAG T' 10.0 - 0.60 83 17 62 
HAAR T' - 13.0 0.20 88 17 59 
RAMP T' - 11.0 0.15 87 17 60 
WAVE T' - 14.0 0.55 93 12 58 
MHAT T' - 14.0 - 88 12 62 
MHAT u' - 15.0 - 90 17 58 

note that the results obtained with the u '  signal turn out to be as good as those 

obtained with T ' .  

4.2. INTERPRETATION 

One important result obtained from the set of detected points is A, the mean time- 

interval between events. Figure 5a shows an histogram of the corresponding time- 

intervals between the events selected by the zero-crossing technique: it peaks at 

about 30 s with 75% of the results in the range 20-35 s. Time-interval distributions 

for classical (VITA and WAG) or even first derivative-like wavelet methods resem- 

ble an exponential law (Bogard and Tiederman, 1986), because threshold methods 

at small scales lead to multidetection of single events, so that the corresponding 

histogram of time-intervals is more weighed towards the smallest time-intervals 

and, in many cases, does not exhibit characteristic peaks. Precision in the peak 

values is eventually influenced by the time localization of techniques and false or 

missing detections. The zero-crossing technique realizes a trade-off between these 

effects. 

Given the scatter observed on these histograms, one can question the statistical 

significance of A. Figure 5b presents a chronological display of the time-intervals 

between events from a half-hour set (day 250, 10:00-10:30,  60 events for 30 min): 

in such a representation, peaks correspond to long quiescent periods without 

events. One cannot deduce any unimodal periodic behaviour. Instead, series of 

consistent events (of period 20-25 s) are followed by "quiescent" periods (of about 

100 s), but no steady regime can be determined. Thus a mean value of 29 s gives 

a very crude idea of the processes involved with a standard deviation of 11 s. 

5. Evaluation of Detection Algorithms According to the Averaged Patterns 

Detection techniques used in Section 4 have shown their ability to detect character- 

istic ramp-events. This now allows one to perform conditional averages of the 
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of time-intervals between events for the zero-crossing technique applied on temperature data. 
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turbulent fields around particular times. Conditional averages have been used by 
several researchers, using principally VITA (Phong-Anant et al., 1982; Schols, 
1984); Subramanian el al. (1982) have compared different techniques, and con- 
cluded that there are significant technique effects, especially for second-order 
moment averaging. Thus, the methods used in Section 4 have to be intercompared 
with respect to pattern averaging. 

We conditionally sample and average the wind speed components and tempera- 
ture as well as their second-order moments. For each detection scheme, conditional 
averages are sampled on a 30 s long window centered at detection points. For 
techniques involving thresholds, the detection point is given by the instant corre- 
sponding to the peak of the detection function for each occurrence. With the zero- 
crossing method, the zero-crossing instant defines the center of the window. The 
length of 30 s chosen for the averaging window is of the order of the period 
between events. Brackets will be used for conditional averages of a function f and 
N for the total number of detected events, so that: 

N 

(f(t)) = 1 ~ f ( t  + ti) (t E [0, 30 s), ti is the detection time). (3) 
N i = l  

This definition requires no other assumption than those included in the detection 
scheme. From such a basic definition, one would expect rather variable results; 
as a matter of fact, factors such as the variability of size of the events and the 
uncertainty in time and scale of the detection schemes all tend to reduce their 
accuracy and clarity. As far as conditional averaging is concerned, localization-in- 
time properties appear very important, because the uncertainty in conditional 
averages depends on the time at which the averaging window is centered. From 
Part I, we know that the RAMP and HAAR wavelets are well localized in time, 
whereas MHAT and WAVE are well localized in frequency. However, it turns out 
that results exhibit quite clear and repeatable features, whatever the wavelet 
function. 

5.1. A QUALITATIVE AGREEMENT BETWEEN TECHNIQUES 

Let us first of all investigate the effect of the choice of the detection scheme by 
comparing the six techniques presented above. Here, the techniques are compared 
on the same data as in Section 4. The detection is also performed on air-tempera- 
ture traces. In Figure 6 conditional averages are compared of first- and second- 
order moments normalized by their standard deviations calculated over the 30 rain. 

In addition to the uncertainty of detection techniques, the degradation of accur- 
acy, as distance from the detection point increases, may also come from the 
variability of both the duration and the period between events, which can lead to 
overcrossings between adjacent events. 

In order to investigate the statistical significance of conditional averages, we 
present in Figure 7 standard deviations at each point of the window for temperature 
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Fig. 6. Conditional averages of u, w and T (normalized by their respective standard deviation) and 
uw, w T  (normalized by their respective standard deviation) at z/h = 0.82 with the 6 detection schemes 

(day 250, 10:00-10:30, z/h = 0.82). 

da t a  (it  wou ld  be  s imi lar  for  o t h e r  t u rbu l ence  fields).  Such high var iab i l i ty ,  even  

if e x p e c t e d  f rom a visual  o b s e r v a t i o n  of  da ta ,  has  to be  k e p t  in mind  in the  

fo l lowing i n t e r p r e t a t i o n s  of  cond i t i ona l  averages .  

5.2. COMPARISON OF TECHNIQUES 

Given this overall agreement, three criteria have been used to evaluate the tech- 
niques: first, the sharpness of the temperature ramps retrieved; second, the step 
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Fig. 7. Mean and standard deviations of conditionally averaged temperature data, using RAMP 
(.z/h = 0.82, day 250, 10:00-10:30). Data are normalized by their standard deviation. 

size; and, third, the duration of the events. Since temperature ramps are chosen 
to diagnose the presence of coherent motions, the sharpness observable after the 
averaging process characterizes the ability of each technique to perform a good 
localization in time. This is the key point in conditional averaging, especially if 
quantitative information upon duration or amplitude scales is needed. 

In Figure 6, the collection of curves remains within a reasonable range. How- 
ever, because of the weak localization in time of the associated wavelet, the 
sharpness of the peaks obtained from the zero-crossing method is less marked. 
The jump excursions, normalized by the corresponding standard deviations, range 
from 1.1 to 1.7. This is less than what can be observed for single events in time 
series (peak values up to 2-3, as observable on Figure 1), because of the effect 
of the averaging procedure itself. WAVE and MHAT yield lower step sizes. 

The mean event durations, visually determined from the averaged patterns, 
match correctly the values obtained from the wavelet variance peaks, despite a 
tendency to be slightly longer because of the degradation noticed at the jumps of 
the averaging window. The VITA results, especially for temperature averages, 
yield longer durations that may be due to multidetections of single events. 

Thus, WAG, HAAR and RAMP are the most successful averaging techniques, 
given their good localization in time. In what follows, all conditional averages will 
be performed by the RAMP method. 

6. Run-to-Run Consistency of  the Results 

In this rather methodological work, we have so far focused on a single run of data 
(day 250, 10:00). The question arises now as to whether the same results would 
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TABLE III 

Number of events N1 and ?42 detected at levels 1 and 2 from the zero-crossing method applied on 
temperature data, and characteristic duration scales D (s) calculated from the wavelet variance for 8 

adjacent half-hour runs (day 250) 

1 0 : 0 0  1 0 : 3 0  1 1 : 0 0  1 1 : 3 0  1 2 : 0 0  12 :30  1 3 : 0 0  13 :30  

N1 71 84 56 66 50 79 76 68 
N2 62 70 74 69 62 73 68 69 
D (TI) 11.5 11.5 12.0 12.5 17.4 11.0 10.5 11.0 
D (Tz) 13.0 12.5 10.0 11.1 14.3 11.5 15.5 11.0 
D (uw~) 4.0 6.0 5.0 2.5 3.5 3.5 4.0 4.0 
D (wT~) 5.0 6.5 5.0 5.0 5.0 5.0 6.5 6.0 

be obtained for similar dynamic and thermal conditions, w e  therefore performed 

the same analyses over eight contiguous 30min runs on the same day, under 

moderately unstable conditions. 

Table I I I  presents the results obtained on temperature traces at each level, in 

terms of the number of events detected and the time scales defined by the wavelet 

variance. M H A T  was used for this particular purpose since it requires no cali- 

bration, which is a great advantage when several runs have to be analysed. 

The wavelet variance gives a rather stable value for D: about 12 s for tempera- 

ture at both levels, 4 s for uwl and 5.5 s for wT~. On average, the number of 

events detected is identical at both levels (69 and 68 at z/h = 1.24 and 0.82, 

respectively), giving a mean interval of 26s between adjacent events (or 

1.8h/u,). This number appears very stable at z/h -- 0.82 but more variable above 

the canopy, so that a difference up to 14 detections per run can be obtained 

between the two levels; this is probably due to a more significant number of missed 
or false detections at z/h = 1.24, where the "signal-to-noise" ratio is lower (small- 

scale turbulence appears more important relative to the magnitude of large-scale 
structures), as is clearly visible on the traces. 

Conditional averaging was then performed on the same runs, using R A M P  as 
a detection scheme. The results obtained on (u ') ,  (w'),  ( r ' ) ,  (u 'w ' )  and (w ' r ' ) ,  
are presented in Figure 8 for the eight runs, both above and within the canopy. 
The patterns extracted appear surprisingly stable for the first- and second-order 
moments,  especially in the canopy; the largest scatter is found on (u') ,  (w' T')  and 
especially (u 'w' )  at z/h = 1.24. The remarkable result here is the consistency of 
the patterns exhibited by the wind speed components and the cross-products from 

run to run, whereas the detection was only performed on the temperature traces. 
This suggests the existence of a strong dynamic link between the various traces, 
which we must now consider in more detail. 

7. Averaged Patterns and Turbulent Processes 

7.1. WIND FIELD AND TEMPERATURE 

In order to get a better picture, the structures extracted from these eight previous 
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runs were ensemble-averaged. The first-order moments, still normalized by their 
respective standard deviations, are shown on Figure 9a, above and within the 
canopy. Here again, the results are presented over 30 s windows centered at the 
detection point. 

The patterns obtained above the canopy show a characteristic temperature rise, 
accompanied by a slow ( (u ' )<  0) upward ( (w ' )>  0) movement of air, followed 
by a sharp drop (although, of course, smoother here than on the individual 
structures). Simultaneously, the wind switches to a strong downward motion 
((w') < 0) associated with an acceleration of horizontal velocity ((u') > 0). This 
two-stage process has already been observed in numerous turbulent laboratory 



D E T E C T I O N  OF T U R B U L E N T  C O H E R E N T  MOTIONS 67 

o.2- 
r , 

_~ -o.2 �9 

-0.4 

~ *-o.6 

2-0.8 

Time (s) 

i-i. 
-,5 -io -~ g ,b ,s 

rlm,~ (s) 

1.2 ? 

~' i <W'T'> 1 

~ 0.6 

~ O.4 

E 

--tl.2- 
-~5  - 1 0  -S 

1.5 <W'T'> 2 

0.6 

0.4 

O. 

-O2 
5 ~0 15 -%5 -~8 -5 5 ~0 15 

rime (~) Tim, (s) 
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and atmospheric boundary layers (e.g., Phong-Anant et al., 1980; Rajalopalan and 
Antonia, 1982; Shaw et al., 1989; Gao et al. 1989; Bergstr6m and H6gstr6m, 1989; 
Paw U et al., 1992), and similar patterns obtained by conditional analysis. The 
first stage is referred to as an "ejection", or an updraft bringing up air from below 
(warmer in our case), while the second is a typical "sweep", a downdraft carrying 
high momentum (cooler) fluid down from aloft. Here, the temperature trace is 
quite similar to, and in phase with, the vertical velocity trace, whereas the stream- 
wise velocity is out of phase. <u')/~r, and <w')/o-w have the same magnitude 
(peaking at about -+0.5) and appear smaller than (T')/o-r, which peaks near -+0.8. 

Qualitatively speaking, similar patterns are visible at z/h = 0.82. However, the 
ensemble-averaged traces of first-order moments appear more asymmetric about 
the detection point within the canopy than above: in the former case, the absolute 
magnitude of the large-scale fluctuations is significantly higher during the sweep 
than during the ejection. For instance, the ratio of the maxima reached by <w')/Crw 
after and before the front is about - 1  at z/h = 1.24 against - 2  at z/h = 0.82; the 
difference is even higher for <u') and <T'). This asymmetry is largely responsible 
for the values reached by the skewness of the distributions in the canopy (Sk, = 
1.28, Skw = -0 .48 ,  SkT = -0 .23  at z/h = 0.82, on average for the same period 
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displayed. (u'w') and (u'}(w'), ( w ' r ' )  and (w')(T')  are normalized respectively by ]u-7~l and 

of time), showing a higher departure from Gaussian than above ( S k ,  = 0.41, Skw = 

- 0 . 1 6 ,  Skr = - 0 . 1 5  at z / h  = 1 .24 ) .  

Another difference between the two heights is the existence of a time lag at 
z / h  = 0.82 between temperature and vertical wind speed at the detection time, 
which is not observable above. This feature happens repeatedly, since Figure 9 
shows data averaged over eight half-hour runs. Time lags for maximum corre- 
lations were calculated from space-time correlations between the various traces at 
the two heights, taking the upper level as the reference; the results are displayed 
in Table IV. One striking result is the absence of any lag between vertical velocit- 
ies, as already observed by Raupach et al. (1989) over a model canopy in a wind- 
tunnel and in a eucalyptus forest, and by Shaw and Zhang (1992) in a deciduous 
mixed forest. At  the upper level, there is no lag either between temperature and 
vertical velocity. On the other hand, temperature at z / h  -- 0.82 exhibits a delay 
of about 1.5 s on average with temperature at z / h  --- 1.24; this leads to a mean 
normalized value of "rUh/h ~ 0.32 between these two heights (~- being the delay 
and Uh the mean horizontal velocity at treetop), in excellent agreement with the 
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TABLE IV 

Time-lags (s) corresponding to maxima in cross-correlations, for eight adjacent runs (day 250) 

69 

Delay (s) 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 

/"1, T2 1.50 1.50 1.75 1.00 1.25 1.25 1.00 1.25 
Wl, w2 0. 0. 0. 0. 0. 0. 0. 0. 
wl, T1 0. 0. 0. 0. O. O. O. O. 
Ul, u2 1.50 0. 0.75 0. 0.25 0.50 0. 0.50 
ul, TI 0.50 0.50 0. 0.50 0.50 0. 0.25 0. 

observations of Raupach et al. (1989) and Shaw and Zhang (1992). A lag also 
exists between streamwise velocities, although smaller than for temperature; this 
was observed too by these authors. 

Further analysis of the data recorded at other levels, and especially deep in the 
canopy where negative time lags have been reported for longitudinal velocities, 
will provide a more complete picture. Generally speaking, these features have 
been shown by these authors and others to be consistent with the existence of 
downwind tilted coherent structures (such as double-roller type eddies) containing 
inclined scalar microfronts, which manifest themselves in the traces as ramp pat- 
terns. 

7.2 .  MOMENTUM AND HEAT TRANSPORT 

More insight can be gained by examining the flux patterns. For this purpose, it is 
convenient to use a triple decomposition of the turbulent variables (Antonia et 
al., 1987; Brunet and Raupach, 1987; Bergstr6m and H6gstrOm, 1989). Indeed, 
any instantaneous variable F (u, w, T) can be decomposed into: 

F = P + f,  + f , ,  (4) 

where iv is the long-term average, fl  a perturbation due to the large-scale motion 
and fs the remaining small-scale fluctuation; the sum fl  + f .  is the turbulent 
fluctuation f '  in the conventional Reynolds decomposition. If conditional averag- 
ing is applied to f '  = F -  P = f~ + fs, we get ( f ' )  = f~ under the assumption that 
fs  is uncorrelated with the detected large-scale motion ((fs) = 0). For a product 
of two fluctuations f '  and g' ,  we also obtain: 

( f ig ' )  = (f ' ) (g ' )  + (f~gs). (5) 

If we now define an averaging operator ( ' )  at the scale of the detection window, 
such that: 

1 [+ar/2 
()?> = A-T J-aT/2 <if(t)) dt,  (6) 

where AT is the window width (30 s here), and perform this average on Equation 
(5), we obtain: 
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( f '  g') = (f ')(g') + (fsgs) . (7) 

If the window is representative of the mean period of the motion i ~ . ,  if the 
structures detected are reasonably representative of the flow), then ( f 'g ' )  should 
be close to the conventional Reynolds-averaged flux f ' g ' ,  and the first term on 
the right-hand side of Equation (7) represents the contribution to f 'g '  from the 
organized motions. 

Figure 9b shows the ensemble averages of the products (u'w')  and (u')(w') 
(normalized now by the total flux [u~wV[), as well as (w ' r ' )  and (w'}(T') (nor- 
malized~by w' T ' ) ,  both above and within the canopy. First of all, (u '~ ' ) /u 'w'  
and (w 'T ' ) /w 'T ' ,  calculated from the digital time series over the window, are 
found to be reasonably close to 1 (respectively, 1.11 and 1.15 at z/h = 1.24, 
and 1.12 and 1.11 at z/h = 0.82). Given the uncertainties associated with the 
measurements, the detection process and the assumption leading to Equation (5), 
this shows that the value chosen for the window length provides a fairly correct 
representation of the flow. Using the same procedure, Antonia and Fulachier 
(1989) obtained values of 0.93 and 1.13 for shear stress and heat flux, respectively, 
in a turbulent laboratory boundary layer. 

Ejections and sweeps are clearly visible on the traces, and provide two distinct 
contributions to the overall fluxes. The ratio of the total stress fraction transferred 
by sweeps to that transferred by ejections is found to be 1.04 at z/h = 1.24 against 
2.43 at z/h = 0.82. These values are consistent with results from quadrant analysis 
reported by Shaw et al. (1983) over corn (about 1.5 and 2.5), and Finnigan (1979) 
over wheat (about 2.0 and 3.5 at similar heights). Slightly smaller ratios are 
obtained here for sensible heat flux: 0.89 at z/h=1.24 and 1.82 at z/h=0.82. It has 
to be pointed out that conditional analysis thus provides not only quantitative 
results on the relative importance of sweeps and ejections, as does quadrant-hole 
analysis, but also insight into the dynamics of the processes, since part of the 
temporal information is conserved. 

The large-scale contributions to fluxes, (u')(w')/(u' w') and (w')(T')/(w' T') are 
found to be, respectively, equal to 0.26 and 0.40 at z/h = 1.24 and 0.31 and 0.39 
at z/h = 0.82. It is interesting to note that large-scale motions appear to be more 
efficient at transporting heat than momentum, which was also noticed by Antonia 
et al. (1987) and Antonia and Fulachier (1989). 

Gao et al. (1989) obtained values as high as 0.75 for heat and momentum 
transfer near a deciduous forest top by sampling the downdrafts and updrafts 
associated with a series of 18 temperature ramps identified by eye, the traces 
being filtered with a 10 s running average in order "to reduce the background 
turbulence". The origin of the difference between these results is not clear. A 
priori, one can question the (subjective) visual selection of Gao et al. (1989), 
which may tend to favor the largest events, as well as their procedure to remove 
small-scale motions. 

One may also question the validity of the assumption required to obtain our 
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Equation (5). Concerning this point, one notices on Figure 9b that the small-scale 
contribution to the fluxes, seen at all times as the difference between ( f ig ' )  and 
(f ' ) (g ' ) ,  appears as a roughly constant background level, although it tends to 
increase towards the edges of the windows. In this sense, the assumption of small- 
and large-scale motions being uncorrelated is not entirely appropriate but seems 
reasonable enough for our purpose. 

Furthermore, it is important to notice that our findings are in good agreement 
with other reported studies based on a similar triple decomposition of the turbulent 
variables. For example, Antonia et al. (1987) obtained typical values of 0.28 and 
0.44 in the turbulent far wake of a cylinder, for the large-scale contributions to 
momentum and heat fluxes, respectively. In other words, this type of result may 
depend substantially on the detection and averaging procedures, and further work 
is obviouly needed to clarify this. 

8. Concluding Discussion 

Two types of results have been presented in this paper: firstly, methodological 
results on the wavelet approach itself, when applied to real turbulence data; 
secondly, results concerning the nature of turbulence in a forest canopy. 

One of the remarkable results of the first type is the efficiency of wavelets at 
detecting jumps in turbulent time series; a quite satisfying correspondence was 
obtained between the large structures initially selected by eye on a reference time 
trace and the events detected by the four wavelets used. The zero-crossing method 
is particularly interesting since it requires no empirical calibration. 

Detection being performed on temperature only, conditional averaging allowed 
a representative pattern to be extracted for each turbulent variable, and for the 
cross-products representing vertical transfer. These patterns turned out to be 
remarkably stable throughout a period of four hours. Noticeable differences were 
found on first-order moments between the two measurements levels, accounting 
for the differences in the skewnesses of these variables, and for the dominance of 
sweeps over ejections in the canopy, readily visible on the cross-product patterns. 

More generally, the approach followed in this paper appears able to provide 
substantial information on the dynamics of turbulent transport processes. In parti- 
cular, the triple decomposition we used allowed the relative importance of small- 
scale mixing (appearing here at a fairly constant background level) and motions 
due to coherent structures to be evaluated fairly simply, on average as well as on 
an instantaneous basis. 

This work is to be considered more as a methodological study than a complete 
analysis: we restricted ourselves to a few hours of data acquired under similar 
flow conditions. In particular, no attempt was made to investigate the possible 
dependency of the frequency of occurrence of coherent structures on characteristic 
flow variables such as u , ,  Uh or z /L .  Indeed, Raupach et al. (1989) showed that the 
gust frequency should be a function of a shear scale u, /h ,  which was subsequently 
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confirmed by Paw U et al. (1992) on several sets of canopy data. Here, only a 
mean value for gust frequency was obtained (0.56u,/h). This needs further work 
and is obviously one of the major goals attainable through the use of wavelet 
analysis. 
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