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Abstract. Results obtained in a 2-D modeling of the statistical structure of the wave boundary layer 
(WBL) are used for elaboration of the general approach to 1-D modeling taking into account the 
spectral properties of wave drag for an arbitrary wave field. In the case of the wave field described by 
the JONSWAP spectrum, the momentum and energy spectral density exchange, vertical profiles of the 
wave-induced momentum flux and dependence of total roughness parameter and drag coefficient on 
peak frequency are given. The reasons that the total roughness parameter increases with decreasing 
fetch are explained. The role of wind waves as an active element of the ocean-atmosphere dynamic 
system is also discussed. 

1. Introduction 

The structure of the atmospheric boundary layer above the sea for neutral density 
stratification is as a whole rather close to the self-similar one. However, near the 
surface the role of wave-induced fluctuations increases and immediately above 
waves, the resemblance to the usual boundary layer disappears completely. Far 
from the surface the wave-induced fluctuations are attenuated, and in the case of 
stationary, horizontal homogeneity and neutral stratification, the boundary layer 
above the waves is very close to that above a solid fiat surface up to a height 
where the Coriolis effects are significant. In particular, the turbulent momentum 
flux is constant with height and the wind profile is nearly logarithmic. The drag 
coefficient (and, therefore, the effective roughness parameter) is formed jointly 
by all drag mechanisms arising in the relatively thin layer near the interface. 

It is known that the concept of the stationary boundary layer above the sea is 
not adequate (see e.g., Benilov et al., 1978). In the case of the Pierson-Moskovitz 
spectrum, it is possible to estimate the height hen of the boundary layer whose 
total kinetic energy is equal to the energy of a fully developed sea 

//2 

hen cc l O - - ,  
g 

where u is the velocity scale and g is the acceleration of gravity. Obviously, he,~ 
may reach several hundred meters. It is not yet clear whether a saturated wave 
spectrum exists for constant wind. However, observations show that the growth 
rate of sea waves with constant wind diminishes and it is reasonable to consider 
a statistically equilibrium state. Under non-stationary conditions, development of 
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the boundary layer causes slow evolution of the wind velocity and vertical momen- 
tum flux profiles. As will be shown below, another reason for nonstationarity may 
be imbalance between outer wind stress and wave-produced stress. 

The main problem in the theory of the boundary layer is to establish a relation 
between turbulent stress T and wind velocity vector u = (u, v) at arbitrary height 
Z 

T = paClU[U, (1) 

where pa is air density and C is the drag coefficient at height z. 
The value of C for neutral stratification above land depends on the only morpho- 

logical surface characteristic, the roughness parameter Zo, which is connected with 
C by the relation 

�9 - -  , ( 2 )  
C =  ln ( z / zo )  

where k is von Karman's constant. 
The sea surface state is not predetermined due to waves produced by local wind 

and swell. In this case, Zo is usually estimated with the help of the famous formula 
suggested by Charnock (1955) 

Zo = mvZ,/g, (3) 

where v ,  is the friction velocity and m is an empirical coefficient whose value 
varies from 0.01 to 0.05. It is well known that the expression on the right side of 
(3) gives a very good scale for the roughness parameter. However, we can consider 
this formula only as a qualitative relation because the scatter of empirical data 
is very large. This discrepancy may be explained by the obvious inaccuracy of 
determination of z0 as well as by the influence of nonstationarity, nonhomogeneity 
and density stratification. The scatter may be explained also by a variety of wave 
situations which are often far from conditions for which relation (3) is valid. This 
additional scatter may arise due to systematic deviations of the wind profile from 
a logarithmic one maintained by wave-produced momentum fluxes. Formula (3) 
appears to operate in the case of a fully developed sea without swell. The coef- 
ficient has been est imatedto be 0.0130 by Smith and Banke (1975), 0.0144 by 
Garratt (1977), and 0.0185 by Wu (1980). 

The value of v ,  is usually unknown; however, relations (2) and (3) allow 
formulation of the drag law as follows 

U 2 
l n - - = - l n ( m C ) -  k gz (4) 

which connects the drag coefficient with the wind velocity at any height. 
Expression (4) gives a rather weak dependence of C on wind velocity. Thus, 

for m = 0.0185, Wu (1980) suggested the approximation 
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C10 = (0.80 + 0.065u10)10 -3. (5) 

According to the empirical data of Donelan (1982), this relation is valid in the 
case of a developed sea (ulo/co E (0.8, 1.5), where cp is the phase velocity of the 
spectrum peak frequency), but underestimates C10 considerably at limited fetches 
(see Figure 8 below). 

In the general case, the drag coefficient is a function of the 2 -D wave spectrum 

(+ ) C = S (o~, 0) (6) C _ _  

gz 

In a number of works, relations between the drag coefficient C and wind wave 
parameters have been derived. But in the majority of papers, the structure of the 
wave boundary layer and the mechanisms of drag formation have not been taken 
into account. These papers are mostly devoted to the generalization of empirical 
data. Until now, it is not yet clear what contributions are made by different parts 
of the wave spectrum (see Toba et al., 1990). The most powerful method to 
investigate the drag formation mechanism is numerical two- and three-dimensional 
modeling of the statistical structure of the wave boundary layer (Chalikov 1976, 
1978, 1986), which will be discussed in this paper. The potential of this method 
has not been fully exploited so far; however, this approach is too complicated to 
be used in parameterization schemes for joint atmosphere-sea models. It seems 
natural to base such schemes on the one-dimensional approach taking into account 
specific properties of the wave boundary layer. 

This problem was considered by Janssen (1989, 1991), where an attempt was 
made to investigate the spectral mechanism of drag formation as well as the direct 
and inverse coupling between wind and waves. The approaches demonstrated in 
these articles are different. In the first case where calculations were made of the 
wave-produced momentum fluxes, the author used the quasilaminar Miles' theory 
in terms of a "wave diffusion coefficient". It is unlikely that this effect may be 
represented using some sort of local diffusion coefficient, which assumes that the 
flux of momentum is created by the velocity profile. Wave-produced momentum 
flux is formed not by the wind itself but by externalities such as the moving water 
surface. Janssen used a nondivergent form of the diffusion term that resulted in 
some contradictions. To obtain the wave-produced momentum flux, Janssen (1989) 
performed integration of the momentum flux spectral density over frequency to 
infinity. It is incorrect because the spectrum and the wind-wave interaction par- 
ameter are unknown for large frequencies. In Janssen (1990), the logarithmic wind 
profile was used jointly with a formula for the roughness parameter taking into 
account the wave-produced effect. This formula was obtained incorrectly (see 
Chalikov, 1992). 

Chalikov and Makin (1991) suggested a 1-D model where the vertical wave- 
induced momentum flux profile integrated over all frequencies has been approxi- 
mated by the step-function whose parameters have been chosen with respect to 
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results of the numerical experiments with the 2 -D model. The model equations 
allowed an analytical solution which gave a relation between the drag coefficient 
and the non-dimensional fetch 2 = xg/v~, (or non-dimensional peak frequency o~p = 
o~pv,/g). It has been shown that the drag coefficient may change by a factor of 

2 to 4 depending on the fetch, quite in accordance with Donelan's data (1982). 
In this paper we shall discuss a new version of the 1-D model where the main 

drag mechanisms arising above the wave surface are taken into account. Examples 
of the calculations for growing waves in the absence of swell wil! be given. 

2. 2 - D  Model  of  the Wave Boundary Layer 

Consider the Reynolds equations in the coordinate system (x = (x, y), ~ = z - ,~) 
connected with the sea-surface ~?(t, X) 

0u 0 
- -  + - - (uu j  + u'uD + Vp 
Ot Oxj 

+ ~-~( (uW + u'w' - O~? u-~ + pW?)=O, (7) 
0xj 

O--w--w+O (wuj+w'u~)+ ~ ( w'w' On , ,  ) 
at Oxj -~ wW+ ---oxjWUj+P =O, (8) 

0uj + 0 w :  0. (9) 
oxj o( 

Here t is time, x = (xl, x2) are horizontal coordinates; ( is vertical coordinate, 
~?(t, x) is surface elevation, coinciding with the lower bound ( = 0; u = (ul, u2) is 
the horizontal and W the vertical velocity, p is dynamic pressure divided by Pa, 
V =- (O/Oxl, O/Ox2), j = 1, 2. The summation convention is used. W is the contravar- 
iant vertical velocity (hereafter ((.)) means the inner product of two vectors): 

W =  w - - - -  u-  Vn. (10) 
Ot 

Equations (7)-(9) were derived by a special averaging procedure applied to the 
equations of motion written in the (-system of coordinates (Chalikov, 1978, 1980). 

At the upper bound ( =  h, either the wind velocity u = uh or the vertical 
momentum flux Th 

Th = u W +  u'w'  - 0~7 u-Y-u~- +pV~? (11) 
Oxj 

is given. 
At  the lower bound ( = 0, the surface velocity components are known 

u = Uo(t, x ) ,  w = Wo(t, x) ,  (12) 
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and they must satisfy the surface kinematic condition 

0_~_~ + u .  777 - Wo = 0. (13) 
Ot 

Expression (13) yields Wo and the advective vertical momentum flux equals zero. 
Conditions (12) are rather restrictive for computation because when ~---> 0, the 
discretization step A( must be of order Zo. Furthermore, with decreasing ~, the 
rote of short waves increases. The necessity for their resolution leads to a small 
horizontal step. That is why it is better to locate the lower bound at some small 
height ~r and to use a parameterization of surface stress in the form of the 
quadratic drag law 

u' w'  - Orl ~-u'y = Cr  [Au [Au (14) 
Oxj 

w ' w '  - = c ,  laul aw.  (15) 
Oxj 

Here Au = ur - uo, A w  = Wr -- WO, and the index r corresponds to ~ = if,. 
Elimination of the domain ff < (r, where the quadratic drag law is introduced, 

excludes high-frequency waves with ~o > wr = ~ / ~ g [ ~ r  from consideration. 
To close Equations (7) and (8), the second-order moments are written in terms 

of the velocity deformation tensor, mixing-length 

l :  k(,  (16) 

turbulent viscosity coefficient K, and turbulent energy e. The latter is calculated 
using standard non-stationary equations written in the (x, if) coordinate system. 

Discussion and analysis of Equations (7)-(9) as well as the main results obtained 
by 1985 have been presented in an overview paper of Chalikov (1986). The latest 
results based on this approach have been given by Makin and Burgers (1992). 

In the case of a single-mode surfaee wave with phase velocity c, the problem 
may be reduced to a stationary one with the use of a moving coordinate system 
x = x - ct .  When the surface form is the sum of a number of dispersing waves, 
the problem becomes essentially non-stationary. 

3. The Wind-Wave Interaction Parameter, Momentum and Energy Exchange Be- 
tween Wind and Waves 

The extensive computations of the statistical structure above monochromatic and 
multi-mode surfaces based on Equations (7)-(9) have been performed. They 
yielded, in particular, the wind-wave interaction parameter 

(17) 



70 D. V. CHALIKOV AND M. YU. BELEVICH 

where e is the spectral density of energy exchange divided by air density p~, S(w) 
is the wave spectrum, pw is water density. The interaction parameter  /3 can be 
approximated as 

-aao52 - a2, &a < -- 1 

a3~a(a40~, ,  - as) - a6, oJa E ( - 1 ,  f~a/2) 
104 /3 = (a40~a --  as) o~,, 0~ a E (~'~1/2, ~'~1) (18) 

a70~a - -  a8 ,  ~ ~ (~-Qi, ~Q'2) 

a9(O~a --  1) 2 + a l o ,  (-Oa > ~')'2" 

Here ,  07a = W]UAI COS O/g is the non-dimensional "apparent"  frequency of a wave 
moving at an angle 0 to wind direction; ua is wind velocity at a height equal to the 
"apparent"  wavelength A~ = 2~-g/(o)21cos 01); at - a l o  and f h ,  f~2 are parameters 
depending on the drag coefficient at height ~ = A, : 

f~a = 1.075 + 75 Ca, 

aa = 0.25 + 395Ct, 

a2 = 0.35 + 150G,  

a4 = 0.30 + 300C1, 

a9 = 0.35 + 240Ca, 

am = - 0.06 + 470Ca, 

f/2 = 1.2 + 300Ca, 

a3 = (ao - a2 - a l ) / ( a o  + a4 + a s ) ,  

a5 = a4 ~'~1, 

a 6 = a 0 ( 1 - a 3 ) ,  

a7 = (a9(a2 - 1) 2 + am)/(f~2 - •a), 

a8 -= a7~~1, 

ao = 0 . 2 5 a ~ / a 4 .  

Examples of the/3(aTa)-relation for different values of the drag coefficient Ca are 
shown in Figure 1. Note that at high frequencies [O~a]-> 2, the, /3-parameter is 
proportional to o~], i.e., the energy flux depends on the squared wind velocity. 
This dependence,  confirmed by experimental data of Hsiao and Shemdin (1983), 
seems to be more natural than the linear one derived from field experimental data 
(see Snyder e t  a l . ,  1981). High frequency waves are nearly "fixed" with respect 
to wind; thus their drag in turbulent flow is likely to have a quadratic dependence 
on wind velocity as is the case of usual roughness elements. 

The linear dependence on OJa exists only in the vicinity of oJa-~ 1. Note that 
when oJa _ 1, the value o f /3  is negative. This case corresponds either to waves 
runing faster than the wind or to waves moving at angles 0 > 7r/2 to the wind. In 
either case, the waves give their energy back to wind. In particular, the waves 
directed strictly perpendicular to the wind are moving in "motionless" media. 
Hence,  the turbulent viscosity is supported by the wind blowing along the wave 
crests. The momentum transferred from the waves to the wind reduces the momen- 
tum exchange. So, this situation is essentially non-steady. However,  the majority 
of the momentum leads to an increase of boundary-layer height. The time scale 
of this adaptation is large enough to make the inverse fluxes of momentum and 
energy important factors in stabilization of the wave spectrum. 

In the scheme described above, the values of ua and Ca are computed at a 
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Fig.  1. D e p e n d e n c e  o f  i n t e r a c t i o n  p a r a m e t e r / 3  o n  the  " a p p a r e n t "  f r e q u e n c y  a~ = coluz[ cos  O/g fo r  

d i f f e r e n t  va lue s  o f  t h e  d r a g  coef f i c ien t  Ca ( f o r m u l a s  (18) ,  (19)):  1 - Ca = 10-3~ 2 - Ca = 2 . 1 0  -3 ,  

3 - Cx = 3 �9 10 - 3  . 

height equal to the apparent wave length h a.  Since the wind velocity and drag 
coefficient change with height, introduction of ux and Cx eliminates the uncertainty 
in choosing a reference level, which is inherent in all schemes of/3 evaluation. 
This allows not only a reduction of the number of governing parameters, but 
also corresponds to the physical essence of the process, because with increasing 
frequency, the height of the layer where the wind-wave interaction takes place 
becomes thinner. In other words, everything outside this layer is insignificant for 
a given wave. This interpretation of the/3-parameter allows one to consider the 
superposition of momentum fluxes produced by different modes in a most natural 
manner. 

Applying the scheme in question to spectral computations of energy and momen- 
tum fluxes exchanges, it is possible in the first approximation to suggest that the 
wind profile is logarithmic with a certain total roughness parameter 
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u (Aa) = Uh ln,Aa/Zo,. ( ~ (20) 
ln(h/zo) 

Here, uh is the wind velocity at height h. Then, 

k 2 

CX = (ln(~/Zo) f . (21) 

In fact, the total roughness parameter for an arbitrary wave field is not known; 
moreover, the wave drag produces a deviation of the wind profile from the 
logarithmic one. That is why the simplified method may be inaccurate, especially 
for high frequencies as well as for small heights. 

The empirical data on the wind-wave interaction parameter collected by Plant 
(1982) are shown in Figure 2 together with the (dependencies (equations 18, 19) 
computed for different C1. The scatter is very large, one order of magnitude. 
Obviously, a considerable part of this scatter may be explained taking into account 
the additional dependence on C;~. It is interesting that for r > 0.1, both the 
empirical data and our approximation exhibit the quadratic dependencies of/3 on 
rg 

In a recent paper, van Duin and Janssen (1992) noted that turbulent nonlinear 
models "showed a substantial disagreement with observed growth rates for both 
high and low-frequency waves". A countervailing opinion is that the agreement 
between empirical data and the results obtained with a full nonlinear model is 
good, much better than that cited in the paper above. This is not surprising, 
because the model of Duin and Jansson (1992) in fact is a simplified version of 
Equations (7)-(9). Note that we did not use data collected by Plant (1982) for 
tuning the model and Figure 2 was included only in the latest version of this paper~ 

The energy flux E to a monochromatic wave with amplitude A and frequency 
o9 running at an angle 0 to the wind may be computed via the relation 

A 2 
E = pwgw yj~(O~a, CA)- (22) 

The energy flux to a wave surface with spectrum S(w) and angle distribution 
D(w, 0) is equal to 

E = Pwg ,(o9, O) dOdog, (23) 

where e(og, 0)= ogS(og)D(og, 0)[3(o3a, Cx) is the spectral density of energy ex- 
change. 

Using the relation, valid for linear waves 

k37/ 7/-  
o9 3t'  

it is possible to compute the momentum flux to a monochromatic wave 
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Fig, 2. Empirical data on the wind-wave interaction parameter /3 collected by Plant (1982). Solid 
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A 2 

ro - (pVT/) = - k ( p  0~/) = pwgk2/3(oja ' Ca). (24) 
o) Ot 

For an arbitrary wave surface, formula (24) may be generalized to 

ro = Pwg ~'(o), 0) dO do), (25) 

where o~(o), 0) = kS(o))D(o), O)/3(oJa, Ca) is the spectral density of momentum 
exchange; k = (kl, k2), kl = o)2/g cos 0 and k2 = o)2/g sin 0. 

The upper limit of integration o)r in integrals (23) and (25) prescribes the value 
at the lower level Cr of the numerical model. In fact, the energy flux and total 
drag are produced by all of the wave spectrum. However, expansion of the 
integration to infinity is impossible because neither the shape of the wave spectrum 
nor the interaction parameter/3 is known. Nevertheless. the computational error 
of the total energy flux due to the finiteness of o)r is insignificant, because integral 
(23) converges rather quickly: as S oc o)-5 and /3 ~ ~02, the integrand is pro- 
portional to 09 -2. At  the same time, integral (25) does not converge due to the 
incorrect extension of/3(09) and S(o)) to infinity. So, introduction of an upper 
limit o)r in this case is absolutely necessary. The wave drag produced by waves 
with frequencies o) > o)r is described using the quadratic drag law (14), (15). 

In any case, the divergence of integral (25) indicates that wave drag formation 
may depend strongly upon the high-frequency frequency spectrum band. 

4. A 1-D Model of the Wave Boundary Layer (WBL) 

In order to derive non-dimensional model equations, let us consider the horizontal 
averaging operator 

_1 ILlfo 2 
(a) = L1L2 J0 a dxl dx2. 

Then the averaged Equations (7)-(9) become 

O(u----)) + ~ ( u W  + u'w' - O-~-~u'u) + pVrl)=O, (26) 
ot Oxj 

~ + - ~ ( w W  + w'w' - ~--u ' j  + p )  = O, (27) 
ot xj 

0(gO _ 0. (28) 
0( 

Equation (28) and kinematic condition (10) yields (IV) = 0 at any height; (7) -- 0 
by definition. 

Equation (27) characterizes the non-static rate of flow and is of less interest to 
us. Equation (26) describes the momentum balance. The terms in angle brackets 



O N E - D I M E N S I O N A L  T H E O R Y  O F  T H E  W A V E  B O U N D A R Y  L A Y E R  75 

are the components of the vertical momentum flux: the first is produced by wave- 
induced velocity; the second, by turbulence; the third, by wave-induced variations 
of the longitudinal momentum flux; and the fourth by wave-induced variations of 
pressure. The vertical distributions of these quantities have been investigated by 
Makin and Chalikov (1986a, 1986b), and Makin (1989). 

As the relaxation time scale of the boundary layer, with depth of order of 
several tens of meters, does not exceed 102-103 sec (approximately one order 
smaller than the time scale of wave field development), Equation (26) may be 
written in the form of a stationary balance of momentum 

0 ( T + ~ - ) = 0 ,  

where T is the vertical momentum flux vector produced by turbulence 

T (uw  
Oxj / 

(29) 

(30) 

and ~- is the wave-induced flux produced by wave fluctuations of velocity and 
pressure 

~- = (uW + pVn). (31) 

When ~ ~ 0, the contravariant component W diminishes, and the momentum flux 
to a wave is, in practice, transferred by surface pressure only 

"to = (pV~7). (32) 

The turbulent flux of momentum at the surface ff = 0 is equal to 

To = (C, Au, u,). (33)  

This momentum flux generates an average horizontal flow in water, i.e., currents. 
Note that from the point of view of boundary-layer theory itself, it is impossible 

to break up the total flux into a flux to waves and that to the current, because 
their relationship depends on an arbitrary scale ~r as well as on the available 
horizontal resolution of the numerical model. If we are to take into consideration 
all possible scales up to the molecular viscosity range, then the momentum is 
transferred to all surface perturbations almost by pressure alone, and the longitudi- 
nal flow is generated only by molecular friction. Introducing the discretization 
scale ~, increases the currentward part of momentum because the subgrid waves 
are omitted from consideration. The wave part of the momentum decreases accord- 
ingly. The sum of these fluxes must be conserved. 

There is no contradiction in this uncertainty. In fact, the overwhelming part of 
the momentum is transferred to all wave frequencies by the form drag. However, 
all waves finally vanish and their momentum passes to currents. Besides, the 
lifetime of very short waves is small and that of long waves is so large that they 
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Fig. 3. Examples of vertical distribution of momentum flux F = I~'[/[~-o[ produced by a monochromatic 
wave: 1 - CA = 10 -3, 2 - Ca = 2 �9 10  - 3 ,  3 - CA = 3 �9 10-31 

can even reach the shore. So, the possibility of the separation mentioned above 

depends on the time and horizontal scales of  wave energy dissipation as welt. 
To construct a 1-D model  of  a wave boundary layer, it is necessary to define 

the vertical distribution of wave-induced m o m e n t u m  flux ~-(~). For monochromat ic  
waves running at an angle 0 to the wind, the vertical distribution of r (~ )  may be 

taken in the form 

r = ~-oe(oJa, Ca, ~), (34) 

where F is a function depending on non-dimensional frequency o~a, drag coefficient 

Ca at height ( = ~ and the non-dimensional height ~ = ( /A, ;  "r0 is the surface 

wave-induced m o m e n t u m  defined by (25). 
The scalar function F was repeatedly investigated in numerical experiments with 

the 2 - D  model.  The examples of this function are shown in Figure 3 for different 
values of C. Our  approximation of this function is based on computat ions per- 
formed by Makin (1989). They are given by the following expression 

(1 
where ~o is a function of drag coefficient Cx, and ~o = 0.31 - 50Ca. I t  is interesting 
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to note that F is in practice independent of o) a. This means that the frequency 
exerts an influence upon the surface momentum flux ~'o, but not upon its vertical 
distribution on the scale z/h,. We suppose that in the case of the multi-mode 
surface, z(~) can be expressed by superposition of the "elementary" fluxes: 

;if/ 7" = P w g  kS((.o) O(o), 0) ~((~a, CA) F (~ ,  CA) dO dw. (36) 

Let h be the height where the wave disturbances vanish and Th is equal to pure 
turbulent momentum flux. Let us then introduce the non-dimensional variables 
marked with a tilde, using the following scales: for velocity, 

vgr = ~V/'[Thl/Pa; (37) 

for time, v,/g; for length (height), v~,/g; for frequency, g/v,; and for wave number, 
g/v~. Now, using an assumed closure hypothesis, we can write equation (29) as 
follows: 

0 (/~0~ +e)=o,  (38) 

where /s = Kg/v,~ is a non-dimensional turbulent viscosity coefficient. On the 
upper bound we assume 

~= h: g 0 ~  + e =  Th. (39) 
0( 

Note that on the upper bound, [z I ~ ITh[ = 1. Integrating (38) over the range (~, h) 
yields the equation 

R O~ + i = Th, (40) 
0~ 

which shows that the balance of momentum in the boundary layer is possible only 
when the vector of total momentum stress at the surface ~ = 0 is equal to the outer 
momentum stress Th. In particular, this approach is possible in a symmetric 
angular wave distribution, that is, when D (~o, 0) = D (w, -0 ) .  Otherwise, the non- 
balanced lateral constituent of stress leading to a non-stationary regime may arise. 

To close Equation (40), we shall use the same scheme as in the 2 -D case, i.e. 

/(  = lVV~c~,  (41) 

where 7, g are the non-dimensional mixing length and turbulent energy, cl -- 4.6 
- an empirical constant. Let us assume linear dependence of the mixing length 
upon the distance to the surface 

l =  k~, (42) 

Turbulent energy g satisfies the equation 
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0 g:oe (e/c~)3'2 
/5 + 0_~~ off [ = o. (43) 

Here, /5 is the non-dimensional production of turbulent energy and the last two 
terms describe diffusion and dissipation of g, accordingly. To obtain P, let us 
consider the mean energy equation, taking an inner product of (38) and fi 

0 cc 0. +,)~ ) 0 o 0  (44) 

The first term corresponds to turbulent flux and transport (by wave-induced fluc- 
tuations) of mean kinetic energy/~m- The second describes the transformation of 
/~m to turbulent energy g and the mutual transformation of energy/~m and kinetic 
energy of wave-induced fluctuations Ew, correspondingly. The discussion on ener- 
getic properties of the wave boundary layer has been given by Panchenko and 
Chalikov (1984). 

The wave fluctuations redistribute/~w slightly, but most of/~w transforms to 
locally, so the production of g may be assumed in the form 

(/~ 0fi g). 0fi 

or, taking into account (40), 

(45) 

( =  h: e = cl, ( =  (r: O--~ = 0. (48) 

t~ oa + 0__~: oe (e/cl)3'2 
�9 0-~ 0~" 0~" ~ - o, (47) 

where Th is constant with height. 
Hence, the turbulent energy g is the solution of the following equations: 

The first boundary condition implies that g is constant above the wave boundary 
layer, the second one means that at a small height ~ = ~r, the dissipation of ~ is 
balanced by its production. 

The uncertainty of the roughness parameter Zo is a specific feature of the wave 
boundary layer in contrast to the ordinary one. Moreover, we cannot localize the 
lower boundary too close to the surface, i.e., to the domain of influence of very 
short surface disturbances because the profile of the wave-induced momentum flux 
is unknown at small distance to the surface. That is why we must choose the lower 
boundary condition at some finite height where the influence of these disturbances 
vanishes. 

t5 = Th" 0~ '  (46) 
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We proceed from the assumption that in a sufficiently broad interval (0)1, 0)2) , 
the frequency spectrum shape S(o5) fits Phillips' law 

S(o~) = ao~ -s. (49) 

The non-universal part of the spectrum corresponding to a given wave situation 
is located below o~1. Above o~2, the effects of capillarity and other unknown 
phenomena occur. It is quite reasonable to choose the height ~r in the interval 

~r ~ (2~', 27r~, (50) 

where we assume the usual drag law to be appropriate 

k 2 Cr=(~n(;/~o)). ( 5 1 )  

Here, ~o is the non-dimensional local roughness parameter which in the case of a 
developing sea is always smaller than the total one Eq. (3). 

If the energy level in the Phillips interval does not depend on external conditions 
(such as wind velocity, fetch or spectrum shape at low frequencies), the value of 
the roughness parameter must be a universal characteristic of local drag. It has 
been known, however, that this parameter may change, for instance, with fetch. 
By analogy with a solid rough surface, we shall suppose that ~o is proportional to 
the root-mean-square height hr of "rough elements", i.e., high-frequency waves 

~o ~ /~r, (52) 

where 

o0 1/2 

Using the Phillips spectrum Eq. (49), we obtain 

~0 = x V ~ ,  (54) 

where X is a universal constant. As the mechanism of drag formation at high- 
frequency surface perturbations is unknown, this constant is to be derived from 
empirical data. An approximate estimation of X is possible using the Pierson- 
Moskowitz spectrum with a = 8.1 10 -3. For go = m = 0.0130 (Smith and Banke, 
1975), 0.0144 (Garrat, 1977), 0.0185 (Wu, 1980), we have obtained X = 0.14, 0.16, 
0.20, accordingly. As will be shown below, the wave-induced momentum flux for 
a developed sea is small, thus the wind profile is close to the logarithmic one even 
at a very small height. That is why we consider total and local roughness par- 
ameters to be equal to each other, i.e., go = fro. For a developing sea, Janssen 
(1982) suggested 



80 D. V. CHALIKOV AND M. YU. BELEVICH 

o~ : 0.57 O~p 3/2 . (55) 

The computed vertical structure of the wave boundary layer for a developing sea 
(see below) shows fair agreement with empirical data (Donelan, 1982) for X = 
0.10. So expression (4) takes the form 

u 2 ) k 
l n - -  = - ln(0.1 ~ C - : ~ ,  (56) 

gr 

but this dependence (shown in Figure 7a) cannot be considerably better than 
formula (4) because both do not take into account the form drag produced by the 
overall spectrum. So formula (56) underestimates the drag coefficient, especially 
at small heights. 

Finally, the lower boundary condition for Equation (40) is as follows 

~ =  ~r: T R  = I~O~l~ = Crlllrlllr �9 ( 5 7 )  

Here, fir is wind veloity at height ~ = (r and Cr is the local drag coefficient Eq. (51). 
The required ~0 is computed according to Equation (54). The height (~ should be 
sufficiently small to describe the wave drag produced by the nonuniversal part of 
spectrum; i.e., 

2q7 
~r < ~ .  (58) 

(,Op 

5. The Structure of the Boundary Layer Above Developing Waves 

The 1-D model formulated above is intended for analysis of boundary-layer struc- 
ture and for computing the energy and momentum fluxes to waves for an arbitrary 
2-D wave spectrum and also for coupled WBL-wind wave mixed-layer modeling. 

As an example, we consider the JONSWAP spectrum approximation for de- 
veloping sea waves (Hasselmann et al., 1973; Hasselmann et al., 1980) 

5 O~ --4 
(59) 

where 7 = 3.3 and 

~0.07, o3io)~ --< 1, 
O" | 

t0.09, o5/@ > 1, 

with directional distribution 
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D(~,  0 ) =  Nsl cos2S (~),  

where 

s 4 o 6  1 
= , /x = L-2.34, o3/@ > 1, 

Ns = cos 2~ dO = 2~v7~ F(s + �89 
._= r ( ,  + 1)' 

where F(s) is a gamma-function. 
Due to the symmetric angular distribution D with respect to wind direction, we 

let the lateral stress component be equal to zero. In this case, the model equations 
can be written as 

/{70~ + kS(o3)D(o3, 0)/3(o3a, C~)F(,~, CA) d0do3 = 1, (60) 

oa + o_.goe (e/c1) 3'2 
0~ 0K O~ /- - 0 ,  ( 6 1 )  

where F, R and [ are defined by Equations (35), (41), and (42), respectively. The 
boundary conditions are 

oe  0a_ 
O-~ = 0, O# = G I G [ a ,  (621 

g = cl, (63) 

• ~r: 

~ = h :  

and ~ is chosen as 

2Ir 

O.}p 
o3r = 15 G "  (64) 

Numerical integration of the above equations has been performed for a number 
of fetches defined by non-dimensional peak frequency @. The following values 
of @ were used: 0.06, 0.10, 0.15, 0.20. 

The JONSWAP spectrum for different values of @ is shown in Figure 4a. The 
specific feature of this spectrum is a well pronounced overshoot effect; namely, 
the value of the spectrum for a smaller fetch exceeds that for a larger fetch for 
any given frequency O3 > @. This effect is described in the model in two ways. 
The main part of the spectrum for 0 < o3 < o3~ is taken into account via the integral 
in equation (60). The influence of high frequency components is included in the 
local drag law Equation (62) using relations (51), (54), (55). The results are 
shown in Figures 4b, c and Figures 5, 6, 7. 

Figure 4b shows the spectral density distribution of the momentum flux com- 
puted according to Equation (23). The density of the energy flux increases with 
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Fig. 5. Vertical distribution of momentum flux integrated over the spectrum ~ (see (25)). Captions 
as in Figure 4. 

increasing fetch, and its maximum is located in the vicinity of the peak frequency. 
It is remarkable that the spectral density of the momentum flux computed accord- 
ing to Equation (25) (Figure 4c) shows an inverse regularity: its maximum increases 
with decreasing fetch. This phenomenon may be explained by the overshoot 
effects, and partly by an increase in the local roughness parameter. 

The vertical profiles of the wave-produced momentum flux computed by using 
(36) are shown in Figure 5. The larger the fetch, the smaller the flux, but the 
greater is the height that it reaches because it is produced by longer waves. In 
spite of the rapid vertical attenuation of the wave-induced flux of momentum at 
small fetches, the drag effects are stronger than at large fetches. This phenomenon 
may be explained using slightly simplified equations. Neglecting diffusion in the 
equation of turbulent energy balance, one can obtain the following solution of 
modified Equations (60), (61) 

1 1"{ (1 - ()3/4 
=- = | -~ d~. (65) 

C -1/2 a ~J~o C 
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Fig. 6. Vertical profiles of wind velocity [u/- Captions as in Figure 4. 

Thus, the drag coefficient depends monotonically on the integral of the wave- 
induced momentum with respect to height. 

Although ( at small heights may be sufficiently large, the wind profiles (Figure 
6) reveal an insignificant departure from the logarithmic ones, but shift due to 
variations of the effective (total) roughness parameter. So, for any height except 
for a thin layer just near the surface, the following expression, 

Z.O = Z e - k a  (66) 

gives in practice, the same values of the total roughness parameter. 
The dependencies of Zo and ~o on O~p are shown in Figure 7. The values of ~o 

have been calculated using the formula 

~0 = 0 . 0 7 5  0-~ 3 ,4  , ( 6 7 )  

which is derived from (54) and (55). It is easy to notice that Z0 varies with 
increasing O3p to a greater extent than ~o does; this fact confirms the important role 
of wave-induced drag. The most convenient characteristic of the wave boundary 
layer is the drag law type: 

C=f(~, @). (68) 
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~o (numerical solution), 2 - local roughness parameter ~o in accordance with (66). 

This function, which was calculated by using the solution of Equations (60) and 
(61), is shown in Figure 8b. With increasing u2/g~ and O~p, the drag coefficient 
grows rather quickly. Relation (4), where the non-dimensional local roughness 
parameter m --- ~o is calculated according to Equation (54), is shown in Figure 8a 
for comparison. This formula gives a weaker dependence of C on o~p and u2/g~. 
Consequently, the drag over the sea surface is formed to a considerable extent 
by the specific wave situation but not the high-frequency universal part of the 
spectrum. 

Using data in Figure 8, it is possible to derive the drag law which connects the 
drag coefficient at any arbitrary height ~ with external parameters R = ln(uZ/g~) 
and f l  = u/cp (where u is the wind velocity at height if). This dependence may be 
approximated by the formula 

In C = -6.460 + 0.1021) + 0.0091) 2 

+(0.311 + 0.055fl + 0.0061~2)R 

+(0.032 + 0.01112 + 0.001~2)R 2. (69) 
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Fig. 8. Dependence of drag coefficient C at height z on ln(lul2/gz), u - wind velocity at the same 
height: (a) (o depends on o~p only; (b) numerical solution. Captions as in Figure 4. 

Unfortunately, reliable empirical data on the dependence of the drag coefficient 
or roughness parameter on fetch are scarce. To verify ou r theory, we used obser~ 
vations collected by Donelan (1982). They are displayed in Figure 9 together with 
the curves plotted according to Equation (69). Obviously, Figure 9 demonstrates 
qualitative agreement with experimental data. 

The theoretical model uses the distance from the wave surface as a vertical 
coordinate. The point is that the wave drag mechanisms are formed close to the 
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Fig. 9. Empirical dependence of the drag coefficient Clo on wind velocity Ulo and o~p (Donelan, 
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curves represent the numerical solution: 1 - Ulo/Cp = 0.8; 2 - 1.15; 3 - 2.5; 4 - 3.5. 

surface and the use of the routine Z-coordinate in 2-D or even 1-D models leads 
to a loss of the main physical properties in the wind-wave interaction process. 
Nevertheless, measurements are rarely performed in a following coordinate sys- 
tem. Therefore there is some reason to establish a relation between characteristics 
obtained by averaging at a fixed height s and those at a fixed distance to the 
surface (Chalikov, 1978). 

Any one-point moment M(~) in the ~-coordinate system may be estimated using 
its vertical distribution M(~) in the ~-coordinate as 

M(Z) = [ M(~ - ~)P(~) d~, (70) 
J~ ~ < z  

where P(~)  is the probability distribution function 

(71) 

and o- is the root-mean-square deviation 

o -2 = 2 ~o S(r do~. (72) 

Vertical distributions of wind and wave momentum flux in the Z- and ~-coordinates 
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The wind profile (~7) and momentum flux profile (#) in g (curves i) and ~(curves 2) coordinates. 

for the Pierson-Moskovitz spectrum are shown in Figure 10 as an example. Both 
profiles above wave crests in the Z-system are close to that in the (-system. So the 
"following height" ~" in the definition of the external R-parameter may be replaced 
by the usual height z above mean water level. 

6. Computation of Wave Boundary-Layer Structure, Energy and Momentum 
Fluxes to Waves and Currents for an Arbitrary Wave Field 

This paper is devoted to a general investigation of the physical mechanisms respon- 
sible for drag above a wave surface. The main difference between the wave 
boundary layer and the boundary layer above an unmoving flat surface consists 
in the onset of an additional near-water momentum flux due to wave fluctuations 
of pressure, velocity and turbulent stress. Because the momentum balance takes 
place in a stationary boundary layer, the wave-produced momentum flux causes 
variations of turbulent momentum flux and deviations in the wind velocity profile 
from the logarithmic one inside and additive changes of wind velocity outside the 
wave boundary layer. Within the logarithmic interval of the wind profile, it is 
convenient to describe these effects by using the total roughness parameter which 
takes into account wave drag both in the low-frequency part of spectrum and in 
the universal range where Phillip's law is assumed. 

The JONSWAP spectrum was used to illustrate these phenomena. However; 
the main objective of our work is an elaboration of a computational algorithm for 
the wave boundary-layer structure with an arbitrary wave field including waves 
produced by non-local wind. This problem has been formulated above (see Equa- 
tions (40), (47) and boundary conditions (48), (57)). Let us reformulate this 
problem using dimensional variables for the case when the velocity at :some height 
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h and 2-D wave spectrum S(o~, 0), (oJ < o9r) are known. For o9 > ogr, we suppose 
that the high-frequency part of spectrum is described by Phillips law S = ag2o9 -5 
with given a. We shall use the z-coordinate system, but it is nesessary to keep in 
mind the effect demonstrated in Figure 8. 

The structure of the stationary wave boundary layer is governed by the momen- 
tum balance equation 

O ( K O U +  "r) = O, (73) 
Oz \ 3Z 

where wave-induced momentum flux ~- is equal to 

f?f; r = Pwg o92 cos OS(og, O)/3(o~a, C ~ ) f ( ~ .  Cx) d0dog. (74) 

Function/3 is defined by Equations (18), (19); function F, by Equation (35); K is 
the turbulent viscosity coefficient 

K = l~ / e / c l ,  l = kz .  (75) 

Our computations showed that the diffusion term in the equation for turbulent 
energy usually is insignificant; so the equation for e can be taken in the form 

Oz " Oz (kz)~ 4 - O. (76) 

The term in the brackets describes the total vertical momentum flux which is equal 
to the turbulent stress Th outside the wave boundary layer. 

The lower boundary condition is 

Z = Zr: K au = Tr = Cr[UrlU~. (77)  
Oz 

In the general case, the wave spectrum is not symmetric with respect to the wind 
vector; hence, a lateral stress component may arise. In the joint ocean-atmosphere 
model, both components of Th are to be taken into account in the following time 
step of the atmospheric model. The computed velocity profile may be used for 
computation of the energy flux to waves. 

7.  D i s c u s s i o n  

Because the local thermodynamic interaction is a primary element of a multiscale 
ocean-atmosphere system, the accuracy of its parameterization predetermines the 
quality of weather forecasting and climate modeling to a considerable extent. 
Meanwhile, the existing approaches to parameterization of microscale interactions 
do not take into account many obvious mechanisms which can influence both 
media. In this paper, only the dynamical interaction is discussed. However, it is 
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7. Discussion 

Because the local thermodynamic interaction is a primary element of a multiscale 
ocean-atmosphere system, the accuracy of its parameterization predetermines the 
quality of weather forecasting and cfimate modeling to a considerable extent. 
Meanwhile, the existing approaches to parameterization of microscale interactions 
do not take into account many obvious mechanisms which can influence both 
media. In this paper, only the dynamical interaction is discussed. However, it is 
possible to combine our 2-D equations with transfer equations for temperature 
and vapour and consider the density stratification effect. 

The existing methods of momentum flux calculation are based on the Charnock 
relation, which does not take into account the specific character of a given wave 
field. 

In all of the models, it assumed that the wind and wave fields are adapted to 
one another and that the wave spectrum is the spectrum of fully developed waves~ 
Usually this is not correct because the space and time scales of a stationary wave 
field under a sufficiently strong wind are too large. Besides, waves produced by 
local wind are often superimposed on non-local swell. As a result, the drag 
coefficient depends on the 2-D wind-wave spectrum and wind velocity. 

Surface waves play an important role in the dynamical regime of the ocean 
upper layer as well. In all of the mixed-layer models, waves are not taken into 
account and the whole momentum flux transfers to currents. In reality, a consider- 
able part of this flux changes the wave momentum; it is redistributed over the 
spectrum due to non-linear interaction and goes back to the atmosphere through 
the inverse Miles mechanism, and to currents, by wave dissipation. This transition 
delay of momentum from wind to currents depends on the space and time scales 
of wave dissipation. Short waves give back their momentum almost locally whereas 
long waves carry it long distances. Besides, dissipation of wave energy intensifies 
turbulence in the mixed ocean layer. 

Wind waves are an important regulator of dynamical interactions between the 
atmosphere and ocean. At present, there exist several spectral hydrodynamical 
models of wind waves. Probably, the most developed model is the WAM-model 
(WAMDI Group, 1988). This model is based on the equation 

OS 
- -  + %. VS = Fnl + Fin + Fai~, (78) 
Ot 

which describes the transfer of wave energy density S(o), O, t, x) by the group 
velocity eg, and its evolution due to non-linear interactions Fnz, wind input Fin and 
dissipation Fdis~. Non-linear interactions are treated according to Hasselmann's 
theory (1962, 1963), somewhat simplified for computational reasons (Hasselmann 
and Hasselmann, 1985). 

Energy input to waves is described by the Fin term in the form 
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Fin = 09/3(00, O)S(09, 0), 

91 

(79) 

where /3 is a wind-wave interaction parameter. Usually /3 is computed by using 
Snyder et al.'s (1981) relation which has been obtained experimentally from mea- 
surements of wave-induced pressure fluctuations. These measurements were car- 
fled out at a fixed height and then extrapolated to the wave surface using potential 
wave theory. Makin (1988) (see also Chalikov and Makin (1990)) showed that the 
decay parameter for pressure is very sensitive to non-dimensional wave frequency 
and deviates considerably from unity. In view of this, the method developed on 
the base of 2D models of the WBL (see Section 3 of the present paper) is 
preferable. Because the energy input depends on the wind profile, this method 
may be fully realized with joint boundary layer-wave models (see Section 6). 

Dissipation of wave energy occurs mostly as a result of wave breaking, and the 
term Faiss is written by analogy with eq. (79) 

g d i s s  = 0 ) 9 ( 0 9 ,  O)S(o), 0), (80) 

where @(09, 0) is a dissipative function (Komen et al., 1984). 
The general scheme of microscale dynamical interactions in a Wave Boundary 

Layer-Wind Waves-Mixed Layer system is shown in Figure 11a, b. 
The wave spectrum in wave forecasting models is represented in a frequency 

range (0, 09r). It is assumed that for 09 > 09r the shape of the "subgrid" part of 
spectrum is universal. The frequency 09~ predetermines the lowest level of the 
numerical model (r ----- g/092 where the local quadratic law Equation (77) is intro- 
duced. 

The momentum flux from wind to waves is equal to 

ro = Pwg kS(09m, O)/3(w, O) dOd09, (81) 

and the momentum transferred from waves to the currents due to dissipation is 
equal to 

~c = Pwg kS(09, 0)~(09, 0) dO dw. (82) 

The momentum flux from wind to waves in the "subgrid tail" of the spectrum, 
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Fig. 11. (a) Scheme for energy and momentum exchange between Wave Boundary layer (WBL), 
Wind Waves (WW), Mixed layer currents (MLC) and Mixed Layer Turbulence (MLT). ~'0 - momentum 
exchange between WBL and WW (81); ~r - between WW and MLC (82); Tr - between WBL and 
MLC (77). E - energy exchange between WBL and WW (83), Ec - between WW and MLC (86); E~r 
- between MLC and MLT. (b) General scheme of the ocean-atmosphere interacting system (for 

explanation, see text). 

w h i c h  i m m e d i a t e l y  t r ans fe r s  to  t h e  c u r r e n t ,  is g i v e n  by  E q u a t i o n  (77). T h e  t o t a l  

m o m e n t u n  flux to  t h e  c u r r e n t  ~'c + Tr  p r o v i d e s  t h e  u p p e r  b o u n d a r y  c o n d i t i o n  fo r  

c o m p u t a t i o n  o f  w ind -  and  w a v e - d r i v e n  cu r r en t s .  T o t a l  e n e r g y  e x c h a n g e  b e t w e e n  

w i n d  a n d  w a v e s  is g i v e n  by  
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 r;j E = Pwg 09S(09, 0)/3(09, 0) d0d09. (83) 

The energy flux from waves to currents is equal to 

Ec = rc "Uc (84) 

(uc is the surface current velocity); and from wind to currents 

E~ = T, "Uc. (85) 

Dissipating waves also produce a turbulent energy flux E r  to the ocean upper 
layer, which is used as the boundary condition in the mixed-layer model. 

fo = 09s(09, o) (09, o) d0 d09 - Ec. (86) 

Production of turbulent energy E~r due to turbulent dissipation of orbital wave 
velocities can be easily considered as well. 

The wave boundary layer includes regions/11, V of Fig. 1lb. In region I I I  for 
neutral stratification the wind profile is a logarithmic one with total roughness 
parameter produced by wave and local drag (formula (69)). In region/V, where 
the upper bound lies at height hw of order 0.lAp (Ap is wavelength at the spectral 
peak), a wave-induced flux of momentum arises, produced by waves with spectrum 
S(09, 0), 0 < 09 < wr. The higher frequencies are taken into account in sublayer V 
where subgrid waves form the local roughness parameter (54) and tangential stress 
Eq. (77). Because the height of the wave boundary layer hw is usually much 
smaller than the Monin-Obukhov length scale L, stratification is close to neutral; 
and the effects of stratification may be taken into account in region III. Above it 
lies the outer part of the boundary layer where it is necessary to introduce the 
Coriolis force. 

The non-homogeneity of the stress field over the ocean surface due to the 
variable wave field amplifies the vertical motions at upper levels of the planetary 
layer. So, it is quite possible that wind waves affect weather and climate. 

The mixed layer VII obtains its momentum and turbulent energy via transition 
zone V I  (formulae (81), (83)). 

In this paper, we have presented a theory of the boundary layer above a wave 
surface with an arbitrary spectrum. It uses the results of a 2 -D numerical simul- 
ation of the boundary layer above monochromatic waves, namely, a vertical profile 
of wave-induced momentum flux and a parameter of wind-wave interaction in 
broad ranges of wave frequencies and values of the drag coefficient. We supposed 
that the superposition principle is appropriate for a multimode surface. It is 
important that the wind-wave interaction parameter is negative for waves with 
apparent phase velocity greater than wind speed. Probably, this effect provides 
stabilization of the wind-wave spectrum at constant wind. 

Equations describing the structure of the wave boundary layer are derived. 
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Concepts of local and total roughness parameters and drag coefficients are con- 
sidered. It is supposed that at heights where the drag is formed by high-frequency 
waves with spectrum So) -5, the local roughness parameter  depends on Phillips' 
constant a only. This dependence has a weak influence on the total drag coefficient 
whose variability is mainly under the influence of the wave momentum fluxes 
produced by lower-frequency waves. 

The model is used to simulate the 1-D structure of the wave boundary layer  
with the wave field described by the JONSWAP spectrum. It is shown that with 
decreasing fetch, the total energy input increases whereas the momentum flux 
decreases. This is explained by the overshoot effect and energy growth in the high- 
frequency part of the spectrum with decreasing fetch. 

The wind velocity profile in all cases is close to the logarithmic profile. So inside 
the boundary layer (except for its lowest part) it is sufficient to know the total 
roughness parameter  which grows rather quickly with decrease in fetch. Near the 
surface in the following coordinate system, the wind profile deviates from the 
logarithmic one due to the wave-induced momentum flux which weakens the 
turbulent stress. 

A drag law for developing waves is suggested. It describes the above-mentioned 
effects with sufficient accuracy. 

A 1-D model of the wave boundary layer above an arbitrary wave field has 
been elaborated. This model allows calculations of spectral distributions of energy 
and momentum exchange as well as the turbulent stress vector at the upper bound 
of the wave boundary layer. This kind of model must be an essential part of any 
atmosphere - wind waves - ocean joint model. 

The main mechanisms responsible for the surface wave influence on the ocean 
- atmosphere system are enumerated. 
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