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A numerical study of the shape stability 
of sawn timber subjected to moisture variation 
Part 1: Theory 

S. Ormarsson, O. Dahlblom, H. Petersson 

Abstract A three-dimensional theory for the numerical simulation of 
deformations and stresses in wood during moisture variation is described. The 
constitutive model employed, assumes the total strain rate to be the sum of the 
elastic strain rate, the moisture-induced strain rate and the mechano-sorption 
strain rate. Wood is assumed to be an orthotropic material with large differences 
between the longitudinal, radial and tangential directions in the properties found. 
The influence of the growth rings, the spiral grain and the conical shape of the log 
on the orthotropic directions in the wood is taken account of in the model. A 
finite element formulation is used to describe the deformation process and the 
stress development during drying. 

Introduction 
In timber exposed to moisture variations, deformations as cup, twist, crook and 
bow (see Fig. 1), is a serious problem since it can make the wood products 
unsuitable for construction purposes cf. (Johansson et al. 1994 and Perstorper 
et al. 1995). To improve the shape stability of such products, it is important to 
clarify how the properties of the material, its internal structure and environmental 
conditions affect the deformation process. However, the complex behaviour of 
wood makes computer simulation necessary. Theoretical simulation of the de- 
formation process requires a proper constitutive model. It is important that such 
a model take account both of the direction dependence of the material and of the 
behaviour of wood being strongly influenced by variations in moisture content. 
The internal structure of wood allows it to be defined locally as being an or- 
thotropic material. In the description that follows, an orthotropic coordinate 
system will be used as a local coordinate system. The coordinate system is de- 
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Cup Twist Crook Bow 

Fig. 1. The various deformation types 
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Fig. 2. Global and local coordinate system 

noted by the letters l, r and t, which designate the longitudinal, radial and tan- 
gential directions in the wood material, see Fig. 2. Variables with a bar relate to 
this local coordinate system, while variables without a bar relate to a global 
coordinate system x, y, z. 

Mode l l ing  of  strain 
The total strain rate ~ is assumed to be the sum of the elastic strain rate ~e, the 
moisture strain rate ~,~ and the mechano-sorptive strain rate ~w~, i.e. 

~ = ~ + ~ + ~  (i) 

This means that neither creep nor the influence of cracking is considered. 

Elastic strain 
Elastic strain is related to stress by Hooke's law 

~e z C~r (2) 

where C is the compliance matrix and ~e and ~ denote elastic strain and stress, 
respectively. The elastic strain rate ~:e is obtained by differentiation of Eq. (2): 



~e = ~ -v ~ (3) 

where a dot deno}:es the derivative with respect to time. The vectors ~e, ~ and the 
matrix C are as follows: 

~e = [El Er Et ~/lr ~'lt ~/rt] T 

= [(Yl (~r (Yt Tlr ~lt "Crt] T 

(4) 

(5) 

= 

1 Vr~ vii 0 0 0 
E1 EI Et 

Vlr ~_1 Vtr 0 0 0 
E1 Er Et 
vtt Vr~ 1 - 0 0 0 E1 Er Et 

0 0 0 0 0 
1 0 0 0 0 0 G~t 

0 0 0 0 0 ~rt 

(6) 

The parameters Eb Er, Et are the moduli of elasticity in the orthotropic directions 
and Gk, Glt, Grt are the shear moduli in the respective orthotropic planes. The 
parameters Vlr, Vrb Vk, Vfl, Vrt and Vtr are Poisson's ratios. Since the compliance 
matrix C is assumed to be symmetric, the Poisson's ratios are related as follows: 

Er . . Et Et 
Vrl = N Vlr, Vtl = ~ Vlt and Vtr = N Vrt' 

The moduli El: Er, Et and GI~, Glt, Grt depend on moisture content and 
temperature, see e.g. (Dinwoodie 1981). If the moisture content is higher than the 
fibre saturation point wf, variation in moisture content is assumed to have no 
influence on the moduli. In the present study the elastic and shear moduli are 
assumed to be given by 

E1 = ElO(1 -- E1T(To - T)) + Elw(Wf - Wa) 

Er = Ero(1 + ErT(To - T)) + Erw(Wf - Wa) 

Et = Et0(1 + Et~r (T0 - T)) + Etw(wf - Wa) 

Glr = Gtro(1 + GIrT(To - r ) )  + Glrw(Wf - -  Wa) 

Glt = Olt0(] q- GltT(T0 - T)) + Gltw(Wf - Wa) 

Grt = Grto(1 + GrtT(To - T)) + Grtw(Wf - Wa) 

(7) 
(s) 
(9) 

(lO) 
(11) 
(12) 
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where 

Wa = w i f  w ~ Wf ( 1 3 )  

w a = w f  i f  w > Wf (14) 

The parameters Elo, Ero, Eto, Gko, Glto and Grto a r e  the basic values of the moduli 
at temperature T = To = 20 °C and with the moisture content w being equal to or 
higher than the fibre saturation point wf. The quantities E~w, E~, Etw , Glrw~ Gltw, 
Grtw, E1T~ ErT~ EtT, GIRT, GltT and GrtT a re  material parameters describing the 
influence of moisture content and temperature. In wood, the moisture content w 
is defined as 



W W 
w = - -  (15) 

Wo 

where Ww is the weight of the water in a wood sample and w0 is the oven-dry 
weight of the same sample. 

The fibre saturation point wf is defined as the amount of water required for 
saturation of the cell wall, without the presence of any free water in the cell lumen. 
This point is dependent on temperature T, see e.g. (Bodig and ]ayne 1982), and is 
assumed here to be 
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wf = wf0(1 + WeT(T0 -- T)) (16) 

where wf0 is the basic fibre saturation point at temperature T = To. The param- 
eter wfr describes the influence of temperature on the fibre saturation point. 

Moisture-induced strain 
Changes in moisture content are accompanied by considerable shrinkage or 
swelling of the material, see e.g. (Kollmann and C6t6 1968). The moisture-induced 
strain rate is assumed to depend solely upon the rate of change in moisture 
content. It is defined as 

~ w = ~ r ~ r  a (17)  

where wa denotes the rate of change in moisture content below the fibre satu- 
ration point. The matrix ~ is defined as 

0¢ z [Cq 0~ r 0~ t 0 0 0] T (18)  

The parameters cq, ~r and at are material coefficients of moisture-induced strain 
in the three orthotropic directions. Although that the shrinkage parameters may 
be dependent on temperature and on moisture content, this is not taken into 
account here due to the lack of experimental data. 

Mechano-sorpt ive  strain 
If a wood specimen under load is allowed to dry, it exhibits greater deformation 
than the sum of the deformation of a loaded specimen under constant humidity 
condition and the deformation of a non-loaded drying specimen. This phenom- 
enon, termed the mechano-sorptive effect, can be expressed, see (Ranta-Maunus 
1990, Santaoja et al. 1991 and Thelandersson and Mor~n 1990), as follows: 

~ w o = l ~ ] W a l  (19) 

In Eq. (19), IWa] denotes the absolute value of the rate of change in moisture 
content below the fibre saturation point. The matrix 8 is the stress matrix and In 
the mechano-sorption property matrix, the latter defined as 

ml 

- -  ~Ilr m l  

l i l  ----- - -  ~ l tml  
0 
0 
0 

--]-trlmr --[A.tlm t 0 0 0 
mr -- ~tr mt 0 0 0 

-- ~rtmr mt 0 0 0 
0 0 mk 0 0 
0 0 0 mlt 0 
0 0 0 0 mrt 

(2o) 



where ml, mr, mr, mk, mlt and mrt are mechano-sorption coefficients for the 
orthotropic directions and for the orthotropic planes. The coefficients ~tlr , ~ht, 
btrt, btrl, gtl and gtr describe the coupling of the mechano-sorptive strain between 
the different directions. The mechano-sorption matrix is assumed to be sym- 
metric, resulting in the relations btrl = m~ btlr, ~ttl = ~ ]'tlt and ].ttr = ~ btrt. Ac- 
cording to (Carlsson and Thunell 1975 dnd Castera 1989), mechanot-sorption is 
dependent on temperature. The parameters ml, mr, mt, mlr, mit and mrt are thus 
assumed, very simply, to be 

ml = ml0(l ÷ mlT(T0 -- T)) (21) 

mr = mro(1 + mrT(To -- T)) (22) 

mt = mto(1 + m,:T(To -- T)) (23) 

mlr = mlro(1 + mlrT(To -- T)) (24) 

mlt = mlto(1 + mltT(To -- T)) (25) 

mrt = mrto(1 + mrtT(To -- T)) (26) 

3 2 9  

The parameters ml0, mr0, rot0, mlr0, mlt0 and m~t0 are the material parameters at 
temperature T = To = 20 °C. The coefficients mlT, mrT, mtT, mlrT, mltT and mrtr 
describe the influence of temperature. 

Global material formulation 
The total strain rate in Eq. (1) is expressed in terms of a local coordinate system. 
According to Eq. (3), the stress rate in the local system can be expressed as 

= I)(~e - ~ )  (27) 

where the matrix iO is the inverse of the local compliance matrix C shown in Eq. 
(6). Substitution of Eq. (1) into Eq. (27) yields 

= 17)~ - ~o (28) 

where ~0 is a so-called pseudo-stress vector describing the effect of moisture 
change. The vector is given by 

= D(tw + Gw + (29) 

Substitution of Eqs. (17) and (19) into Eq. (29) yields 

(30) 

The relation (28) above refers to the local coordinate system (1, r, t). This has to 
be transformed to the global coordinate system (x, y, z) see Fig. 2, if account is to 
be taken of variation in the orthotropic directions due to annual rings, spiral 
grain and conicity. This transformation is performed in three steps. 

The first step is to establish the relation between the global directions and a 
system of coordinates having its origin at the surface of a circular cylinder and its 
central axis along the pith. In this system, the axis 10 is parallel to the pith, r0 is 
perpendicular to the surface of the cylinder and to is tangential to the surface of 
the cylinder. Fig. 3 indicates the vectors used in the formulation that follows. 
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Fig. 3. Geometry of the vectors used in calculating the direction cosines between the global 
and the local coordinate-axes 

The material point P has the coordinates (Px, Pr, Pz), the points B and C on 
the pith being assumed to have the coordinates (bx, by, bz) and (Cx, Cy, Cz), 
respectively. On the basis of these assumptions, the relation between the axes 10, 
r0 and to and the global axes i, j and k can be determined. The vector P from the 
origin to the material point P, the vector B from the origin to point B and the 
vector C from the origin to point C are defined as 

V = pxi + pyj + pzk 

B = bxi + byj + bzk 

C = Cxi + cyj + c~k 

(31) 

(32) 

(33) 

The vector N from point B to point P and the vector S in the pith direction, from 
the base to the top of the tree, are defined by 

N = P - B (34) 

S = C - B (35) 

The unit vector q in the pith direction is given by 

S 
q =  ~ (36) 

The vector Q is a projection of the vector N on the pith direction, i.e. 

Q = ( s  .q)q (37) 

The vector R perpendicular to both the pith and the surface of the cylinder is 
given by 



The unit vectors 1o, ro, and to can then be calculated as 

1o = q  (39) 

R ro=  (40) 
to = 10 x r0 (41) 

These directions coincide with the orthotropic directions in the wood, provided 
no conical effect or spiral grain is present at the material point studied. The nine 
direction cosines defining the relation between the local and global coordinate 
systems can be written in matrix form as 

ro = A T 

to 

where 

(42) 

[lc, ilo] r c = A T r 0 

tc to 

ax aX aX ] [lox tox] 10 r0 to Fox 
Y / loy toy [ A o =  a~ arYo ato = roy 

Lal~ aZro aZto kloz roz tozJ 

(43) 

where lox, r0x, t0x etc. are the vector components of the respective unit vectors 10, 
r0 and to. 

The second step in the transformation is to take account of the effect of the 
conical angle qb, see Fig. 4. The coordinate rotation due to the conical angle is 
shown in Fig. 4. The conical angle qb is the angle in the lor0-plane between the unit 
vector 1o and its projection lc on the cone, see Fig. 4. The new unit vectors lo rc 
and to, shown in Fig. 4, given by 

,"(0" "'" 
r o ~ ) 

,'"'" = /;/" 

(44) 
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R = N - -  Q ( 3 8 )  

Fig. 4. The transformation due to the conical 
angle 
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where the orthogonal transformation matrix Ac is 

ac 

al0 ale 
alr~ rc 

lc a~ 
al~ a~ 

10 
at c 
a~ = 
a~O 

[c°s(qb) - s in(~))  i ]  
s i n ( , )  cos(0) 

0 0 
(45) 

The third step in the coordinate transformation is to take account of the spiral 
grain angle 0. This is performed in the same way as for the conical angle. The 
spiral grain angle is defined as the angle in the lctc-plane between the unit vector 
lc and the fibre direction l, see Fig 5. The orthotropic unit vectors present fol- 
lowing this transformation, denoted as 1, r and t, are given by  lc] 

= A T rc 
tc 

(46) 

where the orthogonal transformation matrix As is 

[cot FallC ar 
A s =  |a~ c a~ c a [ c |  = 1 0 (47) 

t, attcJ L - s i n ( 0 )  0 cos(0) La~ c a r 

This allows the relation between the local and the global coordinate systems to be 
expressed as 

A T (48) 

where 

A---- [a(  a~ a T] =AoA~As (49) 
La~ a z atJ 

Fibre d i ~  

Fig. 5. The transformation due to the spiral grain 
angle 



global denotes the direction cosines between the local and the global in which aloha 1 
directions, respectively, see Fig. 2. This, in turn,  allows the mater ial  relation in the 
global coordinate  system to be expressed as 

= Di: - 6o (50) 

where 

6 = GT~ (51) 

60 = GT~o (52) 

= G/; (53) 

D = GTI)G (54) 
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where a bar  over the letter denotes the local coordinate  system and G is a 
t ransformat ion  mat r ix  given by  

G = 

a~a~ a ly a 1 y a lzz al a~a [ a~a~ a[a~ 
x x  YY z z xY z x  Y z 

a r a r ar ar a r a r a rar a r a r ar a r 

a~a t a~at y a~a~ a~at y a~a~ atYa~ 
2a~a x 2a~ar y 2a~a z a~ar y +alYa~ a~a x + a ~ a  z aYa~ +a~a~ y 

2a ta  ~ 2atYa[ 2ata  ~ a~a~ +atYa~ a ta  ~ +a~a~  atYa~ + a ~ a l  y 
x x 2arYat y z z x Y Y x z x x z y z z Y 

2a r a t 2a r a t a r a t ÷ ar a t a r a t ÷ a r a t ar a t ÷ a r at 

(55) 

The matr ix  G includes the direction cosines given in Eq. (49). 

Finite element formulation 
A finite element formulat ion for s imulat ing deformat ions  and stresses in wood 
during mois ture  'variation is given by  

Ka = t' ÷ t'o (56) 

where fi is the rate of  nodal  d isplacement  and the other  matr ices are given by  

K = / BTDB dV (57) 

v 

P ~ - - / N T t d S ÷ f N T f d v  (58) 

s v 

Po = / BT60 dV (59) 

v 

where K is the stiffness matrix,  the vector  P represents  the load due to the 
bounda ry  force vector  t and the body  force vector  i~ and the vector  P0 includes the 
pseudo- load  due 1:o change in mois ture  content. The matrices N and B express the 



shape functions and the strain shape functions, respectively, for the type of ele- 
ment employed. Since Eq. (56) is nonlinear, the global displacement vector a must 
be determined using a numerical time-stepping procedure. A number of different 
numerical procedures are available to use, see e.g. (Zienkiewicz and Taylor 1991). 
Numerical results obtained using the formulation described in the present paper 
are dealt with in (Ormarsson et. al 1998a, 1998b). 
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Conclusions 
A three-dimensional theory for the numerical simulation of deformations in wood 
during moisture variations is described here. A finite element formulation is used 
to describe the deformation process and stress development. Wood is assumed to 
be a strongly orthotropic material. The total strain rate is assumed to be the sum 
of the elastic strain rate, the moisture-induced strain rate and the mechano-sorp- 
tion strain rate. The material properties are assumed to be influence~t by moisture 
content and by temperature. The model takes account of the influence which the 
growth rings, the spiral grain and the conical shape of the log have on the 
orthotropic directions in the wood. 
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