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Abstract. Novel thick grating focussing and de-focussing devices are described which 
employ uniform phase gratings with special boundary shapes. The analysis used is based 
upon an eigenmodal approach to Kogelnik's coupled-wave equations, akin to the 
dynamical theory of x-ray diffraction. The relationship between the direction of phase 
progression of the coupled-waves at Bragg incidence, and the direction of the Poynting 
vector is carefully delineated. As a consequence, a new technique - Poynting Vector Optics 
- is suggested as potentially an important means of designing thick gratings to fulfil certain 
beam processing roles, especially in integrated optics applications. The two-dimensional 
coupled-wave equations are briefly employed to illustrate the effectiveness of a particular 
focussing device. 

PACS: 42.80, 42.82, 42.10 

Volume phase diffraction gratings have been of late 
much studied following Kogelnik's well-known article 
[1] analysing their properties. They appear in a variety 
of contexts, volume holography, acoustooptical in- 
teraction and integrated optics (the grating written on 
the guiding film) being the main examples. Kogelnik's 
coupled- wave theory is valid only for the 1-D case in 
which the incident and Bragg diffracted waves are 
infinite plane, the grating itself uniform, and the bound- 
aries flat. There have been numerous contributions 
[2] generalising Kogelnik's theory to greater or less 
degrees. Solymar and his associates have extended it to 
2 and 3-D, allowing for non-uniform grating strength, 
non-plane non-uniform waves, and non-flat bound- 
aries. Interesting results have been reported for non- 
uniform gratings with fiat boundaries [3], including 
the design of high efficiency volume grating beam 
synthesizers [4], the discovery of wave-guiding effects 
closely related to the Borrmann effect in x-ray diffrac- 
tion [5], and the relationship between non-uniformity 
of grating strength and the fidelity and efficiency of 
beam reconstruction [6]. 
It is the aim of the present contribution to describe 
preliminary results of an exploration into the effect of 
non-fiat boundaries on the performance of uniformly 
modulated gratings. This study will shed light on the 
relationship between the group velocity and phase 

velocity of the fields within a volume phase grating for 
incidence in a Bragg regime. In particular, it is shown 
that the direction of power flow is different from the 
direction of phase progression of the coupled waves in 
the grating. The relationship which exists between 
these directions is not an obvious one, and is elab- 
orated upon using an eigen modal (or characteristic- 
modal) approach closely akin to that used in the 
dynamical theory of x-ray diffraction [7]. A new 
technique for analysing the properties of volume dif- 
fraction gratings - the "Poynting Vector Optics" of 
volume gratings - is suggested as a potentially impor- 
tant design tool when the grating strength is high. 
Finally, following the principles of Poynting Vector 
Optics, novel power focussing and defocussing devices 
are designed in which the boundary shape of a uniform 
phase grating is varied in a special manner. These 
devices are likely to have important applications as 
beam expanders and reducers in integrated optics. 

1. Eigen-modes and the Direction of Power Flow 

Kogelnik's equations, expressed in a slightly different 
notation, read (for exact Bragg incidence) as follows 

E(r) = Vo(X ) exp ( - jko .  r) 

+ V_ 1 (X) exp [-j(l~ o - ko)-r], (1) 
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Fig. 1. The grating geometry; an infinite plane wave is incident on a 
straight boundary at the first Bragg angle 0 with respect to the 
grating planes. Continuity of mean dielectric constant is assumed 
across the boundary. Coordinate axes (x, y) are parallel and perpen- 
dicular to the planes, and the axes (32, 1O are at an angle ), to (x, y). 
The line X--0 is the input boundary 

where 

j~ 

F = ~/~X, ~ =e,,fl/4G~, 

(X, Y) are coordinates perpendicular and parallel to the 
input boundary, the relative dielectric constant 

G = eoc + a,. cos (k a - r), 

k 0 = (2u/A)~" 

is the grating vector, (x, y) are coordinates parallel and 
perpendicular to the grating planes, ko is the refracted 
illuminating wave vector in the absence of a grating 
(i.e. when ~,, = 0) and V o and V_ 1 are the coupled-wave 
amplitudes. The slope factors s o and s_ 1 are related to 
the trajectory angle 0 and the boundary angle ? (Fig. l) 
by 

So=COS(0+7) and s i = c o s ( 0 - 7 )  , (3) 

and the propagation constant fi = (2rr/)j 1/~o~ where 2 is 
the free space wavelength of the monochromatic illu- 
minating wave. The Bragg condition is exactly satisfied 
when 

[F,o-k~l = E, ol =/~; 

this condition has been assumed in (1) and (2). 
Characteristic modes of (2) may be found by requiring 
the determinant of coefficients to equal zero, yielding 
eigenvalues 

F -+ = _ _ _ j ~ / ] / ~  (4) 

and normalised mode shapes 

l 1/So ] 

where e is a column matrix. Thus the general solution 
of (2) may be written: 

= A  e e x p ( j ~ |  
LV- t(X)J ~ VSoS_l/ 

�9 / r  ' 

+ A - e -  e x p ( - J ~  t , (6) 
\ VSoS_I ] 

where A- and A + are the modal amplitudes. Only one 
of the two modes will be excited if the ratio 
[Vo(O)/V_I(O)] at the input boundary is equal to 

T ~ .  This excited mode will then progress 
through the grating without further change, that is, the 
coupled-wave amplitudes V o and V 1 will be de- 
coupled, remaining constant in magnitude. The only 
significant change is in their phase; the X-component 
of the wave-vector of the excited eigen-mode will differ 

by an amount +(~c/S~oS ~ 1) from its value in the 
absence of a grating, (k o �9 X). 
Suppose now that only one eigenmode is excited. The 
power flow for this mode may be based upon a simple 
intuitional definition of the Poynting vector 

s =  Y~ Iv.?~., (7) 
n=O,--1 

where fi, is a unit vector in the direction of phase 
progression of coupled wave (n). From (7) it is easy 
to show that the angle between S and ir (a unit vector 
parallel to the planes), a, is given by 

= arctan(tan ? tan 2 0), (8) 

independently of which eigenmode (e + or e-) is ex- 
cited. The theoretical basis for the definition (7) of S is 
well established in x-ray diffraction theory (yon Laue 
[8]). It is in fact the definition of macroscopic energy 
flow, i.e. the actual microscopic flow averaged over a 
single grating period. Kato's result [9], that the direc- 
tion of power flow associated with an eigenmode is 
perpendicular to the dispersion surface at that 
eigenmode's point of excitation ("tie-point"), is equiva- 
lent to (8). For a clear description of the dynamical 
theory of x-ray diffraction, see the Battermann and 
Cole review article [7] ; for a delineation of the link 
between the present theory and it, see [2]. 
An important question still to be answered is how S is 
affected for the common un-balanced boundary con- 
dition Vo(0 ) = Eo, V_ i(0)--0. It is clear that in this case 
both eigenmodes will be excited in equal amounts. Is 
the Poynting vector therefore a simple sumS + + S-  of 
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the power flows of each mode? A glance at (6) will 
show that this cannot be so since the (+ )  and ( - )  
modes have different rates of phase progression in the 
X-direction. This wave-vector splitting (2tc / ] /s~_l)  
means that the modes beat together giving the familiar 
"pendell6sung" sinusoidal solutions of Kogelnik's 
theory. Therefore, the direction of power flow will 
oscillate between the (0) and ( - 1 )  directions at a 

spatial frequency proportional to 2~c/(s]/~oS_l)-, with a 
mean direction (i.e. that obtained by averaging over a 
pendelt6sung period) at an angle e to the grating 
planes. In order to clarify this, take the solutions of (6) 
for the unbalanced boundary condition mentioned 
above : 

Vo(X ) = E0 cos (~ / l /%~s_  1), 

V ,(X)= E o ]l-so/s_1 sin 0 c X / ~ - ) .  (9) 

Hence, the Poynting vector, according to (7), is 

S(X) = (I V0l 2 + IV_ 11=) cos0 
+ (I Vo[ z - [V_a 12) sin 0 ~. (10) 

It may easily be shown via algebraic manipulation that 
in this case the angle ~ depends upon position, and is 
given by 

tan7" +c~ ) 
c~(q) = arctan tan 0 1 ~--ta-~i17. cos( )J '  (11) 

where 

q = tc t (x . -  y. tanT.)/]//~ - tan 2 7,,), (12) 

2. is a generalised boundary angle defined by 

7. = arctan (tan 0 tan Y), (13) 

(x.,y.) are normalised coordinates in the x and y 
directions : 

x. = x/tcos 0, y. = y/tsin 0 (14) 

and t is a characteristic length along a trajectory in the 
grating. The normalisation procedure in (t3) and (14) 
allows elimination of the angle 0 explicitly from the 
expressions 1. Integrating (11) in the form 

dy./dx.  = dy/dx,  cot 0 = cot 0, tan [~(q)] 

yields for the integrated path of power flow: 

y.(~) = y.(0)+ {~ tan 7. + [ (1 /~-  tan2 7.)/2~ct] 

-sin [ 2 ~ t ~ / I / ( ~ - ~ t ~ ] } / ( i  - tan 2 7.), (15) 

'- Note however that  a two-wave regime [in which only the (0)th and 
( -  1)th coupled-wave amplitudes are non-negligible, all higher-order 
waves being very weakly excited] must  be in force. This restricts the 
angle 0 to values which are not too small, via the condition that  the 
parameter o = (2e0je,.) (2/A) z must be greater than unity [10]. 
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Fig. 2a-e. Poynting vector paths for three boundary angles, 7. = 0~ 
+ 20 ~ and - 2 0  ~ plotted against the normalised axes (x., y.); thus 
the grating planes are parallel to x.. Values of grating strength and 
corresponding characters are: ~ct=0(a), 0.2(b), 0.5(c), 2.0(d), and 
5.0(e). The input ray passes straight through for zero grating strength 
(a), and fluctuates about  the mean direction S . . . . .  at  an angle ?. to 
the x.  axis for ~ct>0 

where 

= x . -  y. tanT. 

is proportional to X, see (12) and (9). This equation 
gives the '~ of a ray of power entering at y. = y.(0), 

=0. Equation (t5) clearly shows that the mean path 
(averaging over one period of the sine function) 
starting at y~(0)= 0 is 

y. = x. tanT~, (16) 

which corresponds to the power flow direction of a 
single eigenmode, see (8). For ~c=0 (no grating) it is 

y. = x . ,  (17) 
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Fig. 3. (a) Focussing of an input wave 
by Poynting vector optics. The direc- 
tion of Sm,,n at every point on the 
boundary (assuming Bragg incidence 
and continuity of average dielectric 
constant) is always towards a point F 
within the grating. Hence for high 
values of grating strength, focussing 
of the incident power will occur. (b) 
The converse geometry to (a); a vir- 
tual focus F exists such that the direc- 
tion of Smea, at every point on the 
boundary is away from F. For high 
values of grating strength, this device 
would function as a beam expander 

bo~dar 

/ 
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Fig. 4. The geometry used to derive the correct boundary shape for 
focussing to occur. The local tangent to the boundary is at an angle 
7,, to the y. axis such the S ~ .  passes through a fixed point F. tn the 
normalised coordinate system (x,, >%) the angle arctan(cot0 tana) is 
in fact equal to 7, 

that is, the direction of phase progression of the 
incident wave (no diffraction), and for ~:~ oe (the high 
coupling limit) it is 

y, = x~ tanTn, (18) 

that is, the mean path. The magnitude of the fluc- 
tuation from the mean path is 1/[2t~t ( ] /~ - t an~ , ) ] ,  
inversely proportional to the grating strength. 
Equation (t5) is plotted in Fig. 2 for a variety of 

boundary angles and grating strengths. For very low 
coupling, the incident wave travels through relatively 
undiffracted; at intermediate values, the power flow 
path fluctuates over a range on either side of the mean 
path (18). 
It is interesting to enquire how the power flow operates 
if the illuminating wave is of finite extent. Poynting 
vector optics suggests that (tbr high ~ct), power will flow 
predominantly at an angle ~ to the grating planes, 
dependent via (8) upon the angle between the (flat) 
boundary and the grating planes. This general result 
has been substantiated (using the two-dimensional 
coupled-wave theory [5]) for Gaussian beam incidence 
on a flat boundary, the degree of power flow confine- 
ment to the direction e being proportional to the 
coupling level. From the discussion in the last para- 
graphs, it seems highly likely that the correct condition 
for good guiding of power is that the spatial rate of 
change of the incident amplitude distribution should 
be much slower than the rate of pendell/~sung cou -  
pling between the waves. Or, stated in another way, 
that the change in the incident amplitude over a 
distance equal to the fluctuation 1/[~:t 1/(1 - tan 2 7,)] 
of the Poynting vector path from its mean should be 
very slight. An alternative approach is based upon 
Fourier plane-wave decomposition of the incident 
beam, arguing that the wider this spectrum relative to 
the off-Bragg angular sensitivity of the grating, the 
poorer is the guiding of the incident power along the 
mean path y,, =x~ taws, [2]. 
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Fig. 5a and b. The results of a two-dimensional analysis of the focussing device (to be presented more fully in a subsequent article). The numbers 
adjacent to each intensity profile refer to peak intensities. The power in each case [i.e. (a) and (b)] is unity, and only the di~?acted profiles at the 
output face are depicted. For clarity the profile a is given a short way along the diffracted beam trajectory. Values of grating strength and 
corresponding characters are: tot= 7.1 (a), 16.5 (b). Intensity magnifications of 20 x (a) and 80 x (b) are obtained. The grating strengths were 
selected so that maximum power is diffracted into the ( -  1)th beam. Upon leaving the output boundary x, = 1, the light travels in the ( -  1)th 
direction, with profiles as depicted (note that these profiles are taken at an angle of 45 ~ to the direction of travel) 

2. Poynting Vector Optics 
as a Design Tool for Grating Devices 

Intriguing power focussing and defocussing devices 
may be designed using Poynting vector optics. From 
(8), a special boundary shape can be found such that a 
ray incident on any part of it will be diffracted such 
that power will always flow (on average in the high- 
coupling limit) either (a) towards a real focus or (b) 
away from a virtual focus (Fig. 3). In terms of norma- 
lised coordinates, (8) may be written tan a cot 0 = tan7,, 
and (Fig. 4) the equation of the correct boundary shape 
will be 

dy./dx.  = tan 0 cot ~ = (1 - x.)/( - y.) (19) 

giving upon integration 

y.Z = - x.(2 - x.). (20) 

The dimension t in this context is the "along- 
trajectory" length between the origin and the focal 
plane x , =  1. Equation (20) takes a simpler form if 
coordinate axes perpendicular to the trajectory 
directions, 

4, = ( x , -  y,) and t/= - (x, + y,) 

are used; the boundary curve is then 

%=~ , / (1 -~ , )  or { ,=%/(1+%) .  (21) 

The lines ~,= 1 and % = - 1  are trajectories through 
the focus. In Fig. 5, field intensity profiles in the focal 
plane, obtained using the 2-D theory, are given for 
incidence of a uniform finite beam on this boundary. 
The values of the coupling, ~ct = 7.1 and 16.5 mean that 
there are approximately 2 and 5 periods of pendel- 
15sung between the origin x ,  = 0, y, = 0 and the focus 
(1, 0). These values were selected (using the 2-D theory) 
such that maximum power is diffracted into the ( -  1)th 
coupled wave. The device is an efficient non- 
converging (i.e. non-lens-like) beam concentrator, the 
degree of concentration (or contraction of the incident 
finite width) being proportional to the coupling level. 
A full analysis of this device will be available in a later 
article. 
The alternative virtual focus geometry (with the grat- 
ing present on the other side of the boundary) seems 
likely to offer non-divergent beam expansion, but has 
not yet been analysed. 
As a general technique, Poynting vector optics offers a 
useful method for designing (in the high coupling case) 
thick grating beam processors. Probably the most 
important application area is integrated optics, where 
thick gratings can be used for spatial processing of 
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guided modes,  the modula t ion  depth of  the grating 
being controlled electro-optically at will (system of 
interdigital electrodes), and nonplane grating bound-  
aries being easy to fabricate. I t  is hoped  in future 
articles to explore the possibilities of  Poynt ing  vector 
optics more  rigorously, applying it also to gratings 
with non-planar  diffracting fringes and non-uniform 
modula t ion  depths. 
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