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Abstract. The dynamic range of single photon counting measurements in quasi elastic light 
scattering is restricted by detector and counter dead time effects. While distortions of single 
interval statistics have been treated at great length, only lowest order corrections or very 
special cases of dead time effects on temporal correlation functions were computed in the 
past. 

Dead times result in a direct distortion of correlograms on time scales comparable to the 
dead time. This effect exists even at low count-rates. It is independent of the count rate for 
paralyzable systems. NonparaIyzable systems show a count rate dependence with 
increasing correlation times at high count rates. 

Furthermore, counting saturation produces additional distortions extending to all lag 
times. These distortions are computed for the rather general case of F-distributed intensities 
with arbitrary shape of the photon correlation function. Such signals are commonly found 
in multiparticle homodyne experiments with a finite size detector, i.e. arbitrary value of the 
intercept or contrast of the correlogram. Exact results are provided for the paralyzable 
system including the effect of fluctuating dead times. The latter case is then used to compute 
a useful approximation for nonparalyzable systems as well. 

PACS: 07.65.Eh, 82.80.Di, 85.10.Pe 

Introduction 

The great success of single photon counting techniques 
in modern light scattering may largely be attributed to 
two facts: First, single photon counting offers high 
sensitivity with almost ideal, quantum limited noise 
performance. Second, the digital character of a se- 
quence of count pulses is well suited for digital 
processing, free of drifts and distortion 15roblems. For 
these reasons, photon correlation [1-3] has become 
the standard technique for spectral analysis of quasi 
elastic light scattering data and found many appli- 
cations in physics, chemistry and biology - the most 
prominent one being submicron particle sizing and the 
measurement of diffusion constants. 

However, compared to analog semiconductor de- 
tectors, photomultipliers and amplifier/discriminator 
systems used for single photon counting are restricted 
to a rather limited dynamic range only. Dark count 
rates, e.g. due to thermal electrons and nuclear decay 

events [-4] set a lower limit of some 10 Hz, which may 
be somewhat reduced by cooling of the detector tube. 
The upper limit is set by detector or processor dead 
times, typically between 10 and 100 ns. The easy way to 
avoid appreciable dead time distortions is to keep 
mean count rates below say 1% of the maximum peak 
count rates, and indeed many experimenters common- 
ly restrict light intensities to avoid count rates exceed- 
ing 100 kHz. The price they pay is reduced statistical 
accuracy or prolonged measurement times. 

Although there exists an extensive amount of 
literature about distortions of single interval counting 
distributions [-5-18], only a few results are available for 
dead time effects on temporal correlation functions 
[-19, 20]. It is the purpose of this paper to provide more 
detailed knowledge of correlation distortions for 
Gaussian, i.e. multi-particle, scattering signals with 
arbitrary temporal correlation including the impor- 
tant effect of fintie detector size. This type of signal is 
typically found in homodyne or self-beat experiments 
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[3, 17], the most common optical setup for dynamic 
light scattering. 

A summary of fundamental properties (Sect. 1) will 
be followed by an exact calculation for paralyzable 
detector systems (Sect. 2) and an approximation for 
nonparalyzable systems (Sect. 3). 

1. Notation and Fundamental Properties 

Most work on dead time distortion in photon statistics 
refers to the pioneering work ofDeLotto et al. [5], who 
considered counting distributions for counters which 
are unblocked or blocked by an event just at the 
beginning of the sampling interval of length t. Both 
cases are not typical for photon correlation. Modern 
real-time correlators use sophisticated derandomizers 
to achieve continuous counting with perfectly adjacent 
sampling intervals (width t). Their single interval 
counting statistics are characterized by the so called 
equilibrium distributions, where nothing is known 
about the initial state of the counter. Hence we will use 
equilibrium distributions throughout this paper. 

The dead-time characteristics of counting systems 
depend on the fact whether events falling into a "dead" 
period extend this period ("paralyzable counter") or 
are completely ignored ("nonparalyzable counter") 
[5]. A Schmitt-trigger type discriminator circuit ap- 
proximates the paralyzable system - overlapping 
photoelectron pulses result in one extended output 
pulse. Non retriggerable one-shots commonly used for 
pulse shaping correspond to the nonparalyzable sy- 
stem. Although most authors restricted their calcu- 
lations to the latter case, we will consider both cases 
here. 

Photon correlation generally relies on the simple 
linear relationship between the measured digital corre- 
logram (more precisely: its expectation) and the inten- 
sity autocorrelation function, 

(none )  = ~2t2 ( I oI~) , (1 )  

where no and n~ denote the photoelectron counts 
obtained during sampling intervals of width t centered 
at times 0 and z, Io and It are the corresponding 
intensities, and a stands for the quantum efficiency of 
the detector system [3]. For sampling times t well 
below coherence times - the typical situation in quasi 
elastic light scattering - the photon count n is Poisson 
distributed about ~I in the absence of dead times [17], 
hence 

(n)  = air. (2) 

For non-overlapping counting intervals, statistical 
independence of individual photoelectrons implies 
statistical independence of"n o and n~, i.e. for each 
particular realization of the intensity as a function of 

time we obtain 

(none) = (no) (n~) . (3) 

Averaging over intensity statistics and using (2) we 
arrive at (1). 

Unfortunately, both conditions are violated in the 
presence of a finite dead time T. With increasing count 
rate more and more events fall into dead times and 
nonlinear saturation replaces (2). We will calculate this 
nonlinearity and its consequences in Sects. 2.2 and 3.2. 
At small lag times z, dead time introduces a direct 
statistical dependence between adjacent pulses - an 
immediate consequence of the existence of a minimum 
pulse separation T. This direct correlation is present 
even at low count rates! The resulting distortion of 
correlograms at small lag times will be the subject of 
Sects. 2.1 and 3.1. 

As dead-time distortions generally depend on 
details of the intensity statistics [14, 15] as well as on 
mean count rates, we will have to use a particular 
stochastic process for many of our calculations. Fortu- 
nately, most quasi-elastic light scattering experiments 
for particle sizing applications are performed in the 
homodyne setup [3] with a large number of scatterers 
present in the measurement volume. The central limit 
theorem implies Gaussian amplitude statistics or an 
exponential intensity distribution [17], if the detector 
is small enough to ensure perfectly coherent detection. 
In practice, larger apertures are used to improve 
detector sensitivity, as indicated by intercepts of 
measured correlograms 

f l=(l '~l~(n~ o (4) 

well below the Gaussian value 1. The finite size 
detector covers more than one coherence area and the 
resulting intensity may be described by a 
F-distribution 

p(I)= 1 (#(i))_i/ai~/a_le_,/a<,> ' (5) 
r(1/fl) 

where ( I )  denotes the mean intensity and 1/fl is a 
measure of the number of coherence areas covered 
[17]. For second order correlations we need the two- 
point distribution of the intensity which may be 
obtained by inverse Laplace transformation of its 
generating function 

(e-S~176 = [(1 + fl(I)so) (1 + fl(I)s~) 

__ f l 2 ( i ) Z e 2 S o S J  - 1/p (6) 
a s  

exp[-- (I o + I,)/ f l(I)  (1 -- 02)] 
P(Io, I,) = fl2(I)2 (1 -- 02)F(1/fl) 

off-d)./ r.,,_, \fl(z) O_a ) ] (7) 
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where r is defined by 

( IoI~)  - (1) 2 (1 -]-fie 2) (8) 

and denotes the temporal correlation coefficient of a 
single mode field amplitude. It should be noted that 
our model distribution is general enough to include 
typical heterodyne experiments as well. The corre- 
sponding very small intercepts fl imply a large number 
of degrees of freedom, where the F-distributions ap- 
proach the desired Gaussian distributions because of 
the central limit theorem. 

2. Paralyzable System 

2.1. Direct Dead Time Distortion 

A paralyzable system by definition "kills" all events 
which occur within less than the dead time T of 
another event of the "input" process, i.e. the process 
idealized to zero dead time. For Poisson input sta- 
tistics with a mean given by (2) we obtain the proba- 
bility q.  dt of obtaining an event within a certain time 
interval of width dt as a product of the probability to 
find no input event in the dead time interval T prior to 
dt, exp(-MT),  and the probability of an input event 
within dt, aldt ,  or 

q = ~I exp(-  a l T ) .  (9) 

The only restriction implied in (9) is the reasonable 
assumption of dead times well below coherence times 
of the intensity process. Whenever we refer to q at a 
specific time, we will use this time as an index just like 
we did for intensities in (6) and (7). 

Integration of (9) over the sampling interval dt 
yields the dead time distorted mean count number 

( n ) = s i t  exp( -- ctI r ) .  (10) 

Direct statistical dependence between events does not 
extend beyond one dead time T. Input pulses occuring 
earlier than T before the considered interval dt have no 
influence on q. Since a dead time T, on the other hand, 
ensures a minimum separation of events by T, we 
obtain the conditional probability density for detec- 
tion of an event within dt centered at z past another 
(output-) event as 

{0q for 0 < z < T  (11) 
qC(z) = for z > T 

Multiplication with the probability density of the 
initial event and with the widths of both intervals yields 
the two-point distribution 

[0 for 0 < z <  T 
qoq~(z)dt 2 = (12) l qoqfl t  2 for z > T ' 

which must be integrated over the finite lengths of the 
sampling intervals to produce the photon correlation 
function for a given realization of the intensity: 

(non~ [Io, L )  

= i d t t~Stdt2qoqC(t2- tx)  
0 

z + t  

= q0 J' ( t -  ]z '-  zl)q~(z3dz' 
~-t 

[ qoq~t 2 for z > T+ t 
=Jqoq~[t2- - �89  T--z) 2] for T + t > z >  T 

| q o q ~ � 8 9  2 for T > z >  T - t  

t0 for T - t > z .  

(13) 

Since the usual digital correlators compute corre- 
lograms at lag times which are integer multiples of the 
sampling time t, 

z k = k .  t ,  (14) 

the results of (13) are more appropriately expressed in 
Fig. 1, where the dead time correction factors 

(nonkt) (15) 
f k - -  qoqktt 2 

are graphed as a function of the ratio of dead time T 
and sample time t. 

For dead times smaller than the sample time, only 
the first channel of the correlogram will be distorted by 

f l  = 1 - TZ/2t 2 . (16) 

It should be noted that (13) does really not depend on 
the intensities I o and I,. The conditional expectation 
equals the expectation, and this fact was used in the 
definition of (15). Independence of the direct dead time 
correction from count rate and intensity statistics 
yields a nice and simple general correction formula. 
But it also implies that these distortions of the 
correlogram at small lag times cannot be avoided by 
resorting to small mean count rates. Instead the 
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Fig. 1. Direct dead time correction factors for paralyzable 
systems as a function of dead time over sample time 
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corrections of Fig. 1 or (13) should be used to put an 
end to the common practice of ignoring the fist one or 
two channels during the evaluation of measured 
correlograms - at least, if afterpulsing remains negli- 
gible on the short time-scales considered. 

2.2. Nonlinearity Effects 

For a complete dead time correction of correlograms 
measured with paralyzable systems we still have to 
compute the distortion of (qoq , )  due to counting 
saturation. This distortion may be obtained by direct 
integration over the two-point intensity density, as 
given in (7) for the finite detector, many particle signal. 
A simpler approach makes use of the generating 
function, (6), and requires the calculation of a deriva- 
tive only. For  maximum generality we allow variable 
dead times To and T~ for the two sampling intervals 
considered: 

(qoq, l To, T~) 

= (a lo  e -  ~Ioroc~i~ e -  ~I,T,) 

k aSo aS: so=~To,s =~T.I 

a2 3 = ,~ao ~ [(1 +fl(I)so)(1 +f l ( I )s , )  

__ fl2 ( l> 2 oasosr" ] - 1/e so=~ro Isz = o~T~ 

= 0~2(I) 2 {1 + e ( I ) f l ( T  0 + T 0 

q-o~2(I)2fl2ToT~+ fl[1 - - a ( I )  ( T  O + T~) 

-- 2a2(I)2f lTo TJO z + a=(I)2f l  2 r o T~e 4} 

x [_1 + a ( I ) f l ( T  o + T~) 

+ a2(I>2f12(! _ 02) To T j -  2- l/a. (17) 

Simplifying to a single dead time T = To = T,, dividing 
by the square of the mean count rate, 

( q )  = ( a l e - a I T )  = a ff-S (e-I~)['= eT 

= a ~ (1 + f i ( I ) s ) -  */at, = ~r 

= a ( I )  (1 + a ( I ) f  T ) -  1 - l i f t ,  (18) 

and using the abbreviation 

e = c~(I) T (19) 

we obtain the dead time corrected normalized photon 
correlation function 

Dead time enters into (20) as the product of input count 
rate-e(/)  in the absence of dead time and the dead time 
T. This product, e, equals the mean number of input 
counts which fall into one dead time interval. At low 
count rates (e~ 1), (20) may be approximated up to 
second order in e: 

(qoq~) ~ 1 + fill  - 2e(1 + fl) + g2(1 q- fi) (1 q- 3fl)]O e ( q ) 2  

+ f12e2(1 + 3fl)04 . (21) 

The first order term agrees with earlier calculations 
[19] and causes a decrease of intercept only, i.e. the 
shape of the correlogram remains identical. More 
important are the terms of second order in e, which 
include the square of the undistorted correlation as 
well. This term is the lowest order nonlinear distortion 
of the correlogram and produces artificial polydisper- 
sity and bias towards smaller hydrodynamic radii or 
larger diffusion constants in particle sizing ap- 
plications. 

Expansions of (20) to higher orders in e are of little 
practical value, due to the asymptotic character of 
these representations which limits their use to very 
small e. The next higher power of 6, a 06-term, does 
not occur until fourth order in e. 

2.3. Fluctuating Dead Times 

The Schmitt-Trigger type discriminator mentioned in 
Sect. 1 as a system which should provide paralyzable 
dead time effects, will generally show a certain spread 
of dead times associated with a spread in photomulti- 
plier pulse amplitudes. If this dead time spread can be 
determined experimentally, e.g. in the form of a 
histogram, we can use this information to average dead 
time corrections over fluctuations in T 

For the direct distortion discussed in Sect. 2.1 this 
implies further smoothing of the correction factors fk. 
If all dead times remain below the sample time t, direct 
distortion will still be limited to the first channel. We 
obtain 

f 1 = l _ ( T 2 ) / 2 t 2 =  1 ( T )  2 Var(T) 
2t 2 2t 2 , (22) 

an increasing distortion for increasing variance of the 
dead time. 

Averaging the mean count rate expression (18) is 
just as straightforward, if dead time distribution in- 
formation is available as a histogram. More care has to 
be taken for the two-interval expressions, which in- 
volve two independent dead times. We have to use (17), 

(qoq~> 1 + fl(1 -- 2s -- 2fie 2) (1 + fie) - 262 + fi2s2(l + fie) - 264 
- -  ( 2 0 )  

( q ) 2  [1 - flEe2(1 -t- fie)- z0212 + 1/, 
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the conditional expectation, and average over both 
dead times, T O and T, independently. Only then may 
we compute the quotient for the normalized corrected 
correlograrn, similar to (20): 

(qoq,) ((qoq, ]To, T~))To, T. (23) 
(q)2  [((q] T))T]2  , 

where ( ) r  denotes the dead time averages. 

2.4. Iterative Dead Time Correction 

As a first stage of dead time correction, the one (or 
more) correction coefficients fk (13 and !5), should be 
divided out to correct the first channel(s) of a measured 
correlogram. This step is necessary even at low count 

�9 rates. 
The second stage, correction of nonlinearity distor- 

tions, is necessary, if e 2 terms cannot be neglected in 
(21), more precisely if 

~2//(1 + 3//) ~ 1 (24) 

is violated. At first glance, (24) seems to indicate less 
dead time problems at small intercepts//. However, 
smaller intercepts obtained by larger apertures of the 
detector imply larger intensities and hence larger dead 
time parameters e=~(I )T .  In fact, e rises like 1///or 
more, and the dead time effects increase with decreas- 
ing intercept. 

If nonlinearity distortions are to be corrected, this 
correction should preferably be based upon (20). The 
asymptotic character of (21) makes it difficult to 
estimate the quality of this approximation at larger e. 
Clearly, (19) cannot be solved for//and 02(z) in a closed 
form. These solutions must be approached by iterative 
techniques instead. 

As a first problem we extrapolate the measured 
correlogram towards zero lag time in order to obtain 

( q ) -  2 lim (qoq~) 
z'-'* 0 

= (1 + fl) (1 + fie) 2 + z/e(1 + 2//e)2- ,/p. (25) 

Together with (18) or 

(q)  = e T (1 + fig)- * - */p (26) 

we may compute e and fl for a given dead time T. 
Starting from an initial value 

e= (q )  T/t (27) 

we solve (25) for//. With this estimate of / /we can use 
(26) to improve our e value, and this iteration may be 
continued until stable results are obtained. Only a few 
cycles should be required for moderate e. 

The second problem yields the final dead time 
correction. With known e and//, (20) has to be solved at 

alllag times in the correlogram to obtain e2(z). Like for 
the solution of (25), the complicated form of the 
equation suggests to use an iteration procedure that 
does not require the knowledge of derivatives. The 
uncorrected channels of the correlogram may be used 
as initial values for Q2, or we may compute the solution 
of the e-expansion (21), 

e2(,) ~ ~ 1 + ( l - a )  ~ 

• \ (q>2 

with 

(28) 

a=2e(1 + f l ) -  ~2(1 +fl)(1 +3//), 

b = e2(1 + 3//). 

The correction technique may be generalized to in- 
clude fluctuating dead times by replacing (20) with (23) 
and changing (25) and (26) accordingly. The compu- 
tational effort rises essentially linearly with the number 
of bins used in the dead time histogram. 

3. Nonparalyzable System 

3.1. Direct Dead Time Distortion 

Again we restrict our calculations to dead times T well 
below coherence times. Hence we may apply the 
known results for Poisson input signal [5] to deter- 
mine the probability of finding an output event in a 
certain time interval dt, 

aI 
q = 1 + cdT'  (29) 

and the conditional probability to find an output event 
in dt centered at a time z past a given output event, 

q~ = ~I Z (~I)k- 1 (~-  kT) ~- 
k=l (k--l)! 

x exp[-- aI(~ -- kT)],  (30) 

where K is the largest integer such that K T < z .  
Equation (29) approaches the simple step function 
obtained for the paralyzable system, (11), at low count 
rates. There is, however, a distinct count rate de- 
pendence at high rates which is illustrated in Fig. 2. 
The systematic antibunching in non-paralyzable sy- 
stems leads to an increasing direct correlation effect for 
increasing count rates with the extreme case of periodi- 
cally spaced events with period T at infinite input 
count rates. 

In order to obtain (non~), we have to integrate 
qo" q~(t2- h) over both sampling intervals like in (13) 
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Fig. 2. Relative conditional probability of an output pulse 
following another pulse after a time z as a function ofz over dead 
time T for three input count rates, 0, 0.l/T, and 0.3/T 
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Fig. 3. Direct dead time correction factors for nonparalyzable 
systems as a function of dead time T over sample time t for three 
input count rates, O.03/t, 0.l/t, 0.3/t 

and obtain 

~-t-t 
<non~)=qo S ~ ( z 3 ( t - l { - z l ) d { .  (31) 

"C--t 

The integration is straightforward but  leads to com- 
plicated expressions due to the v'-dependent upper 
summat ion  limit in (26). Numeric  integration of (30) 
over the tr iangular  weight function in (31) provides a 
more practical solution and was used to compute  the 
correction factors (non~t)/qoqit t2 as a function of T for 
various count  rates in Fig. 3. For  large lag times we 
obtain - of course - a limit equal to I just as for 
paralyzable systems. 

3.2. Nonlinearity Effects 

Averaging qoq~ over the finite detector, mult i  particle 
statistics (7), 

[ ~I0 ~I~ \ 
<qoq~) = \1 +Mo T 1 ~ - I ~ T / '  (32) 

involves a two-dimensional  integration over the joint  
F-density of(7) or (32) may  be expressed as an integral 
over the associated generating function, (6). Both 
approaches yield a rather complicated integral involv- 
ing incomplete F-functions. 

For  a first estimate of nonlineari ty distortions we 
may  expand (32) as a series in e = ot(I)T and compute 
the mixed intensity moments  as derivatives of the joint  
characteristic function, (6): 

(qoq,) 

=~2<i )2  ( / ~ ?  2 
',12 ~(--T) -x- <I> 4 

<I~I~) 
+ 2e z 

] + e2 <IoI~ ) 
<i>4 +0(e3) 

= g2</)2 {1 ~ f l Q 2  __  2e(1 + fi) (1 + 2rio 2) 

Jr 292(1 + fl) (1 q- 2fi) (1 + 3flO 2) 

+ e~(l +/3) 

x [1 + fl + 4fl(1 + fi)O 2 + 2fl2~ 4] + O(g3)} 

= ot2(I) z {1 - 2e(1 + fl) + fl[1 - 4e(1 + fl) 

+ 2~2(1 + fl) (5 + 8fl)]02 

+ 2~2p~(1 +/3)r  + o(e3)}. (3 3) 

Expansion of ( q )  up to a 2 provides the normalized 
correlation function: 

<q) = e ( I )  [1 -- e(1 + fi) 

+ e2(I + fi) (1 + 2fi) + O(e3)], (34) 

<qoq~) _ 1 + f i l l  --2e(1 + f i ) + e 2 ( l  +f l )  <q>2 

X (3+7fl)]vo2+292fi2(lq-fi)~4-I-O(a3). (35) 
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As compared to the paralyzable system (21), (35) 
indicates the same linear decrease of the intercept with 
increasing count rate. The e2-terms are both larger, 
resulting in a less rapid decrease of the intercept and a 
stronger (nonlinear!) Q4-term, particularly for fl well 
below 1. 

The larger e2-coefficients also indicate even worse 
convergence of the asymptotic expansion (33). Growth 
of the coefficients like F(1 + kfl) for the order e k limits 
the use of (33-35) to very small e, where dead time 
corrections are not very necessary. Better convergence 
may be obtained by an expansion of the mean dead 
time corrected count rate q into a sum of negative 
exponentials. For practical calculations the 
approximation 

1 2+V~ 
1 +~I~-~ ~ _4___exp[_(~_g~.)alT]O ,/B 

+ - - ~ - ~  exp[ - (2 + V2)~I T-]' (36) 

provides a close fit (error <0.1% up to alT=0.2,  
<1% up to a lT=0.5)  and is well suited for exact 
calculations for (qoq~). Equation (36) was obtained by 
fitting up to the third derivative at T=  0. 

Equation (36) approximates the nonparalyzable 
count rate saturation by a paralyzable system with a 
dead time distributed with weights (2_ [//2)/4 at the 
dead times T(2-T-V-} ). Equation (23) provides the 
solution of this problem as 

paralyzable systems, because it shows no dependences 
upon count rate. 

The second way in which dead times distort 
correlograms is through saturation nonlinearities of 
the count rate. The resulting distortion may be com- 
puted exactly for paralyzable systems, if we restrict our 
attention to sample times well below coherence t imes- 
the typical situation in most photon correlation experi- 
ments. Results are given for F-distributed intensities 
with arbitrary degrees of freedom and arbitrary tem- 
poral correlation. This very general process covers all 
homodyne (and approximates well most heterodyne) 
ex~periments with a large number of scattering par- 
tides, i.e. Gaussian amplitude statistics. The results are 
generalized to fluctuating dead times described by a 
histogram. 

Equivalent calculations for nonparalyzable sy- 
stems are more complicated. Instead we suggest an 
approximation of the nonparalyzable system by a 
paralyzable one with a simple, two-peak dead time 
distribution. This approximation provides much bet- 
ter estimates of first moments and the correlation than 
a power series expansion, while still being simple 
enough to serve for a practical correction procedure. 

Such a dead time correction procedure involves 
iterative routines to first solve for the time independent 
distribution parameters by extrapolation to lag time 
zero - obviously including direct distortion correction 
- and then so solve for the undistorted correlation at all 
lag times of the experiment. The procedure requires 

(qoq,) ~ (6 + 4V2) (qoq~ ] T~, T t )  + 4(qoq , ] T~, T2) + (6 - 4V~ ) (qoq, I T2, T2) 
(@2 [(2+V~)(j+a(I)fiT~) l_l/p+(2_V~)(l+a(l)flT2)_~_l/a]ze2(i) 2 

(37) 

with T1,2=(2-T-~/2)/2T and the conditional correl- 
ations given by (17). Like (36), this approximation for 
dead time distorted correlograms of a nonparalyzable 
system is correct up to order e 2 and provides a highly 
improved fit even for e-values not very much smaller 
than 1, as compared to the polynomial expansion. 
The dosed form of the result is well suited for an 
iterative correction procedure paralleling that for 
paralyzable systems given in Sect. 2.4. 

5. Conclusions 

Dead times affect photon correlation functions in two 
separate ways. A direct (anti-)correlation exists for lag 
times comparable to the dead time. This effect exists 
even at small count rates and should be corrected 
whenever sample times are not very large compared to 
the dead time. The correction is particularly simple for 

precise knowledge of the dead time or dead time 
statistics and the design of suitable measurement 
setups as well as computer simulations are now under 
way in our laboratory. 

Of the two dead time effects on photon correlation 
functions, only the direct anticorrelation may be 
avoided by performing a two detector cross correlation 
experiment - a useful scheme to avoid afterpulsing 
problems [21]. The second type of distortions, due to 
count rate saturation occurs in cross correlation just as 
in autocorrelation. The same type of intensity statistics 
applies and the only further complication in the 
calculations of Sect. 2.2 is the introduction of two 
possibly different quantum efficiencies % and c~ of the 
two detectors. 

Acknowledgements: Thanks go to E. O. Schulz-DuBois and M. 
Drewel for continuing discussion and to B. Stampa for first 
experimental verifications. 



102 K. Schfitzel 

References 

1. H.Z. Cummins, E.R. Pike (eds.): Photon Correlation and Light 
Beating Spectroscopy (Plenum, New York 1974) 

2. H.Z. Cummins, E.R. Pike (eds.): Photon Correlation Spec- 
troscopy and Velocimetry (Plenum, New York 1977) 

3. E.O. Schulz-DuBois (ed.): Photon Correlation in Fluid Mech- 
anics, Springer Set. Opt. Sci. 38 (Springer, Berlin, Heidelberg 
1983) 

4. An Introduction to the Photomultiplier, EMI Electronics 
Ltd. 

5. I. DeLotto, P.F. Manfredi, P. Principio: Energia Nucl. 11, 
557 (1964) 

6. F.A. Johnson, R. Jones, T.P. McLean, E.R. Pike: Phys. Rev. 
Lett. 16, 589 (1966) 

7. G. B6dard: Proc. Phys. Soc. (London) 90, 131 (1967) 
8.1LF. Chang, V. Korenman, C.O. Alley, R.W. Detenbeck: 

Phys. Rev. 178, 612 (1969) 

9. A. Kikkawa, K. Ohkubo, H. Sato, N. Suzuki: Opt. Commun. 
12, 227 (1974) 

10. E.E. Serralach, M. Zulauf: J. Appl. Math. Phys. (ZAMP) 26, 
669 (1975) 

11. M.C. Teich, W.J. McGill: Phys. Rev. Lett. 36, 754 (1976) 
12. S.K. Srinivasan: Phys. Lett. 50A, 277 (1974), J. Phys. A 

(Math. Gen.) 11, 2333 (1978) 
13. B.I. Cantor, L. Matin, M.C. Teich: Appl. Opt. 14, 2819 (1975) 
14. G. Vannucci, M.C. Teich: Opt. Commun. 25, 267 (1978), J. 

Opt. Soc. Am. 71, 164 (1981) 
15. M.C. Teich, G. Vannucci: J. Opt. Soc. Am. 68, 1338 (1978) 
16. L. Mandel: J. Opt. Soc. Am. 70, 873 (1979) 
17. B. Saleh: Photoelectron Statistics Springer Ser. Opt. Sci. 6 

(Springer, Berlin, Heidelberg, New York 1978) 
18. A.S. Arutyunov: Opt. Spectrosc. (USSR) 53, 179 (1982) 
19. E. Jakeman, CJ. Oliver, E.R. Pike: J. Phys. A4, 827 (t971) 
20. S.K. Srinivasan, M. Singh: Phys. Lett. 8, 409 (1981) 
21. F.T. Arecchi, M. Corti, V. Degiorgio, S. Donati: Opt. 

Commun. 3, 284 (197I) 


