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1. Introduction 

It is well known that chaoticity of a dynamical system (in the sense of exponential 
divergence of nearby trajectory) is usually estimated by the largest Lyapunov 
indicator (see for a review Froeschl6 1984). However, this quantity, even for t very 
large, does not give a full description of the chaotic flow since it is an asymptotic 
quantity. Actually the Lyapunov characteristic indicators are nothing but the first 
moment of the distribution of the local variations of the tangent vectors to the flow 
(see Benettin 1980, Froeschl6 1984). Since we have no prior knowledge about the 
mathematical forms of the distribution, we will try to characterize this distribution 
using not only the two first moments (the mean and the r .m . s . )  but also the Fisher 
coefficients ")'1 and 72, which measure respectively the asymmetry and the flatness 
with respect to the normal distribution. Actually generalized Lyapunov exponents 
of order 2 have been already introduced (Crisantin et al. 1988, Fujisaka 1983) in 
the context of theoretical physics mainly for dissipative flows. 

In Section 2, we describe briefly the definition of local Lyapunov indicators and 
the statistical tools used to study their distribution. In Section 3, we give in the first 
subsection the variations with time of the generalized Lyapunov indicators (GLI) 
fortypical orbits of the standard map. Using the GLI we make an exploration of 
a section of the standard map in the second subsection, and, in the third one, we 
perform a global study of the standard map by means of Kolmogorov like entropy 
varying the parameter. 

2. Generalized Lyapunov Indicators (GLI) 

For a given dynamical system it is well known that two orbits initially close diverge 
either linearly or exponentially depending on whether the two starting points lie in 
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an integrable region or in a stochastic one. 
The Lyapunov characteristic exponents (LCE) provide a more precise quanti- 

tative definition of  stochasticity. Let us recall the essential features of  the theory 
(see Benettin et al. 1980, Froeschl6 1984). Let M be an N-dimensional compact 
differentiable manifold, # a normalized measure on it and • t a measure-preserving 
flow. The set (M, #, • t) is called a dynamical system. Let P E M; Tp(M) de- 
notes the tangent space of M at the point P and DO,o, the tangent mapping of  • t 
from Tp(M) onto Tc,,(I:,)(M). Given a nonzero vector w E Tp(M), one defines 
the quantity 

"/~(P) =ll w II -1 In II DOte(w) II 

and, if the limit exists, 

1 t 
x(P, w)= t~oolim 7 7 w ( P  ) 

(here [] . ]] denotes the norm associated with the metric #). The limit is shown 
to exist for almost all initial points P and all vectors w and it is called the LCE 
of the flow • t relative to P and w. Of course the compactness of  the phase 
space is rarely realized in celestial mechanics and therefore we are dealing with 
what could be called heuristic Lyapunov characteristic indicators. Moreover, as the 
vectors w scan the whole tangent space, x(P, w) takes at most N distinct values 
xi(P), i = 1,..., N,  and there exists at least one basis (e l , . . . ,  eN) of  Tp(M) 
such that 

xi(P) = lim 17~ti(P ) 
t - - + o o  

For the sake of simplicity we shall denote 7t~ by 7 t and choose the indices such 
that x I ( P )  _> x2(P)  _> ... >_ XN(P). Furthermore, for a Hamiltonian system or 
for a symplectic mapping, xi(P) = -XN+I-i(P). This set of  xI(P) is a sensitive 
indicator of  stochasticity in the sense that, if there exist p isolating integrals i.e. 
uniform integrals functionally independent and in involution. Then there are 2p 
vanishing xi(P). As a consequence, in an integrable situation, all the xi(P) vanish. 
However for the standard map we are interested in the computation of  the largest 
and unique positive LCE. Let us consider a mapping F and the corresponding 
tangential mapping defined as follow 

OF 
Xn+l = F(Xn) , Yn+l = (-~n)Yn • 

We iterate simultaneously these two mappings, taking the norm of the initial vector 
Y0 equal to 1, the evolved vector Y,~ are renormalized at arbitrary times j r  (here 
7- = 1 is the period of the mapping and j = 1, ...n). Then we get : 

T6 

x(Xo, n) = __1 ~_In(aj) , xI(X0) = lim x(Xo, n) , 
71, T n---+ oo 

j = l  
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where X1 ( X 0 )  is the largest LCE and is of  course approximated with a finite n. 
The Lyapunov characteristic indicator x ( X o ,  n)  is no more than the first moment, 
i.e the mean value of  the distribution of  local variations l n ( a j ) .  See Froeschl6 
1984 for the mathematical definition of  a j, which result from the Gram-Schrnidt 
orthonormalization of  the vectors Yn. 

ActuaLly this distribution summarizes a lot of  informations concerning the dy- 
namics of  an orbit. For instance the presence of cantori around invariant zones will 
be reflected in the distribution, since for a while the motion is roughly quasi peri- 
odic. Besides the mean ra and the r .m.s .  ~r given by the first and second moment 
of  the distribution : 

, ~ = E ( X )  , ~ =  ~ / E ( X - m )  2 ,  

we compute the fisher coefficients 

71 = ~3/or3  , "/2 = ~t4/O'4 -- 3 , 

with ~p -- E ( X  - ?T~) p. 

In the case of  a normal distribution 71 and 3'2 vanish; when the shape of  the 
distribution is symmetric 71 is equal to zero, in the unimodal case while 72 reflects 
the flatness of  the distribution with respect to a normal one. These quantities could 
be considered as generalized Lyapunov exponents (GLE). However like for the 
definition of  Lyapunov characteristic exponents we necessarily consider the results 
of  a finite number of  iterations (or integrations for a continuous system). Therefore 
we will rather consider the concepts of  generalized Lyapunov indicators, which 
will be the values of  m, ~r, "/1, 72 estimated from a finite number n of iterations, 
and will be called in the following GLI. 

3. Numerical Results 

3.1. CONVERGENCE OF THE GENERALIZED LYAPUNOV INDICATORS (GLI) 

We study orbits of  the standard map 

X l = X O + a s i n ( x o + Y o )  , Yl = xo + Yo (mod27v) , 

for different initial conditions and different values of  the parameter a. 

Fig. 1 a, b, c, d show respectively the variations with the number of  iterations of  
m, or, 71, and "Y2 previously defined. In the well studied case (see Lichtenberg et 
al. 1983) a = - 1.3 for a regular orbit, i.e an invariant curve. We notice as expected 
the convergence of  ra to the value zero, the fast convergence of  ~r to a constant 
value. While the quantity 71 and "~2 converge more slowly to a non-zero value. 
This is not surprising since the distribution for 105 iterations (Fig. 5 a) is bimodal, 
then consequently neither symmetric unimodal nor normal. 
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Fig. 1. (a), (b), (c), (d) show respectively the variation of the generalized in- 
dicators m, or, 71, 72, for initial conditions corresponding to an invariant curve 
(a = - 1 . 3 ,  z0 = 1., ~ = 0.) 

The variations of the GLI m, cr, 71 and 72 for a chaotic orbit (a = - 1.3, z0 = 
2, Y0 = 0) are respectively shown on Fig. 2 a, b, c and d. As it is well known, 
the mean does not go to zero, and a good approximation to a constant value is not 
reached before 104 iterations. Conversely the limit of cr is reached very quickly 
(102 iterations). Moreover the oscillations displayed by m and 72 (a and d) reveal 
the complicated structure of the "Chaotic zone", when the motion takes place, that 
is around invariant curve the presence of cantori slows down the diffusion. Like 
~r, the convergence of 71 (c) is quite fast (,,o 102 iterations), however the small 
value does not reflect a symmetric distribution as seen on Fig. 5 b. In this case the 
non zero value of cr may be explained in the chaotic region by the presence of a 
dense set of hyperbolic points which may have different eigenvalues and different 
orientations of the eigen vectors. 

3.2. TRANSVERSAL EXPLORATION ALONG THE X-AXIS 

Since the standard mapping exhibits all the features of conservative Hamiltonian 
systems with two degrees of freedom, i.e. invariant curves, islands, cantori, chaotic 
orbits, we have plotted on Fig. 3 a, b, c, d. the values of the estimators m, or, 71, 
and 72 after 10 000 iterations with the following initial conditions: Y0 fixed equal to 
zero and z0 spacing the z axis from 0 to 7r with a step equal to 0.02. On Fig.3 a, we 
recover the well known results taking LCEs as indicators of stochasticity, i.e. zero 
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Fig. 2. Same as Figure 1 but for a chaotic orbit (a = - 1.3, z0 = 2., Yo = 0.) 
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Fig. 3. (a), (b), (c), (d) show respectively the variations along the x axis of  the generalized 
Lyapunov indicators (GLI) m, ~r, 71, 72 computed at 10 000 iterations at Y0 = 0 for a 
step 0.05 for the coarse graining. 
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Fig. 4. Generalized Kolmogorov entropies hi, h2, ha, h4 versus the parameter axis a. Coarse 
graining step equal to -0.2.  For each value of the parameter a, M = 50 N = 2000. 

values indicate ordered region and important variations of  the values of  mlo0oo 
even for orbits starting close to each other. The same behaviour, as far as continuity 
is concerned appears for the variations of  71 and 72. Let us notice the smallest and 
more discriminating variation of  a. In the ordered region, the continuous decrease 
of  a to ~ 0.32 when x goes to 1 may be due to both the flatness of  the elliptic like 
invariant curve and the variation of  the rotation number. More studies on simple 
models are needed to discriminate between these two effects. 

4. Kolmogorov like Entropy 

Pesin's formula gives the relation between the LCEs and the Kolmogorov entropy 
of  a system. Let •(P) denote the sum of  all positives LCEs. In our case, one has 

Q ( P ) - - -  x I ( P )  

The formula states that the total entropy is given by 

h = 0 ( P )  

Consequently, the local quantity L)(P) defines a density of  Kolmogorov entropy. It 
is related to the exponential stretch of  a small volume of  the phase space, in the 
directions corresponding to the positive LCEs and the Kolmogorov entropy gives 
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Fig. 5. Typical distributions of the local Lyapunov exponents ln(ai) for different orbits of 
the standard mapping 

a z0 = 1. Vo = 0. a = -1.3(invariant curve) 
b zo = 2. 90 = 0. a = -1 .3  (a chaotic orbit) 
c zo = 1. V0 = 0. a = -0.1 (invariant curve in the circulation case) 
d zo = 1. Yo = 0. a = -10.  (strong chaotic orbi0 

an average over the phase space of  this density. Following the same philosophy we 
compute using a Monte Carlo method the quantities 

1 M N 

hk-  N M ~ ~ In(aij ) 
j i=1 

j refers to an orbit j whose initial conditions have been taken at random and i 
refers to the number of  iterations. The subscript k (k -- 1,4) defines the quantities 
hi, h2, h3 and h4. Where hi is an estimation of  the Kolmogorov entropy, h2 is a 
measure o f  the dispersion of  this entropy. While h3 and h4 estimate respectively the 
mean over the phase space o f  the asymmetry and the flamess parameters defined 
previously. The variations along the parameter axis a, of  hi ,  h2, h3 and h4 are 
plotted respectively on Fig. 4 a, 4 b, 4 c and 4 d. 
The three quantities hi ,  h3 and h4 increase with the absolute value of  the parameter 
a, while h2 reaches a constant value for ] a ]> 5, which means that the distribution 
of  the local Lyapunov indicators [In(aij)] is more or less translated towards the 
positive axis. 
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5. Conclusion 

The first moments of the distribution of the local Lyapunov exponents, and par- 
ticularly the r . r a . s ,  a seem to provide good hints of the global stochasticity of 
orbits of hamiltonian systems (or symplectic mappings). We plan to continue this 
preliminary study in two directions. 

First, using simpler ad hoc mappings we intend to characterize, by the four first 
moments of the distribution, the geometry and kinematics of regular orbits, and 
as far as chaotic orbits are concemed we will try to measure the influence of the 
magnitude and orientation of hyperbolic invariant manifolds. 

Second, since many distributions are far from the normal one and show, for 
instance, bimodal feature, the tools of artificial intelligence may provide better 
parameters to characterize the slope of such distributions. 
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