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Abstract.  Frequency analysis is a new method for analyzing the stability of orbits in a conservative 
dynamical system. It was first devisedin order to study the stability of the solar system (Laskar, Icarus, 
88, 1990). It is a powerful method for analyzing weakly chaotic motion in hamiltonian systems or 
symplectic maps. For regular motions, it yields an analytical representation of the solutions. In 
cases of 2 degrees of freedom system with monotonous torsion, precise numerical criterions for the 
destruction of KAM tori can be found. For a 4D symplectic map, plotting the frequency map in 
the frequency plane provides a clear representation of the global dynamics and describes the actual 
Arnold web of the system. 
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1. Frequency Analysis 

The method of numerical analysis of the fundamental frequencies was introduced 
in the study of the stability of the solar system, as modeled by a reduced (but 
nevertheless complicated) 15 degrees of freedom system (Laskar, 1990). In that 
case, frequency analysis permitted numerical estimates of the size of chaotic zones 
in all directions of the 15 degrees of freedom, and revealed that for the inner 
planets (Mercury to Mars), the chaotic zones were relatively large, while for the 
outer planets (Jupiter to Neptune), these zones were much smaller. 

More generally, the frequency analysis method can be applied to study the 
stability of the solutions of a conservative dynamical system, and is based on a 
refined numerical search for a quasiperiodic approximation of its solutions over a 
finite time span (Laskar, 1990, 1992, Laskar et al., 1992). If f ( t )  is a function with 
values in the complex domain, obtained numerically over a finite time span [ -T ,  T] 
the frequency analysis algorithm will consist in the search for a quasiperiodic 
approximation for f ( t )  with a finite number of periodic terms of the form 

N 

f ( t )  : E aneiakt " 
k=l  

The frequencies ak and complex amplitudes ak are found with an iterative 
scheme. To determine the first frequency al, one searches for the maximum of the 
amplitude of 

$(cr) = ( f ( t ) ,  e i~t) 

where the scalar product ( f ( t ) ,  g(t)) is defined by 

af (f( t ) ,g ( t ) }  = - ~  T f ( t ) ~ ( t ) x ( t ) d t  , 
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and where x ( t )  is a weight function, that is, a positive function with 

1 
~_T x ( t ) d t  = 1 .  

2 T  - T  

In all computations, the Hanning window filter was used, that is 

x ( t )  = 1 + cos (rr t /T)  , 

although some other weight functions could be used. Once the first periodic term 
e iazt is found, its complex amplitude al is obtained by orthogonal projection, and 
the process is started again on the remaining part of  the function fl  (t) = f ( t )  - 
a le  i~zt. As all the different functions e iakt are not orthogonal, it is also necessary 
to orthogonalize the set of  functions (ei~kt)k, when projecting f iteratively on 
these e i~kt. In the case of an hamiltonian system with n degrees of freedom, the 
frequency analysis of  the solutions will give its quasiperiodic expansion and in 
particular will determine the vector (ui)i=l,n of the fundamental frequencies of the 
system. In the case of nonintegrable systems, not all the solutions are quasiperiodic, 
but under certain conditions, for example under the hypotheses of KAM theorems, 
there still exist many of these. For such solutions, the frequency analysis over a 
finite time span [0, T] will give the same kind of results as for integrable systems. 

Even if an orbit is not regular (quasiperiodic), in case of nearly integrable sys- 
tems the solution will look very regular on a finite time span. More precisely, this 
will be the case if the time span is smaller than the characteristic time of diver- 
gence of  nearby orbits. In this case, the frequency analysis gives a quasiperiodic 
approximation to the solution which holds only locally in time. In other words, it 
will give us a frequency vector (ui(t))i  for each value of t, obtained by applying 
the frequency analysis algorithm over the time span [t, t + T]. In the case of a 
quasiperiodic solution, ui(t) does not depend on t, while for non-regular solutions, 
tq (t) will evolve with time, revealing the diffusion of  the orbit in phase space. 
The frequencies are used here instead of the action variables for a more accurate 
monitoring of  the diffusion of the orbit. 

2. Two Dimensional Twist Map. 

Let us first consider the case of a symplectic twist map on R 2. As an example, we 
shall consider the Standard Map, 

x I = x - a s i n y  mod(2rr) 
yl x I + y mod(2rr) 

As a dynamical system, it is not integrable, and gives rise to the usual features of 
conservative dynamics, with invariant curves, chaotic regions, and elliptic islands. 
A simple criterion for the disappearance of irrational curves, based on Birkhoff's 
theory, was derived from the frequency analysis of such a monotone (increasing) 
twist map (Laskar et al., 1992). 
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Fig. 1. Variation of the fundamental frequency u for the 2D Standard Map for different 
values of the parameter a, in the vicinity of the golden rotation number u0 which corresponds 
to the zero dotted line. The origin in the x scale is arbitrarily taken to be xo = 4.176550. 
The origin of frequencies is the golden value ug = (3 - v~) /2 .  The unit for u and z is 
10 -6. If Zl < z2 and u(x l )  > u(zz ) ,  we can conclude that there exist no KAM invariant 
curves of irrational rotation number between u(z2) and u(z l ) .  In Fig. lb, we can see that 
that the golden invariant curve does not persist for a = 0.9718. 

For  each initial condit ion z on the vertical line y = 0, we call 7~ the orbit 
obtained by  iterating the mapping and u(x)  the frequency given by the frequency 
analysis o f  this orbit during a given t ime span. 

I f  there exis t  two va lues  z < z ~ on the ver t ica l  l ine ff = O f o r  w h i c h  u = u(  z ) > 
u r = u ( z ' ) ,  then there are no invar iant  K A M  curves  o f  i rra t ional  rotat ion n u m b e r  

u"  w i th  u ~ < u"  < u. 

This criterion provides a simple way o f  knowing whether  a K A M  curve has 
disappeared by looking at the graph o f  the frequency map u ( z ) ,  obtained on a 
given t ime span [0, T]. The figure ( lb )  was obtained with T = 12516, and shows 
the disappearance of  the golden curve for the value a = 0.9718 o f  the parameter, 
which is very  close to and compatible with the value ac = 0.971635 derived by 
Greene (1979). 
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3. Higher Dimension 

We shall consider the case o fa  symplectic map on R 2n written in coordinates (x, y) 
which are close to angle-action variables. 

The angle-like variables xo are fixed. If we take some initial conditions y, we can 
carry out the frequency analysis for the orbits corresponding to initial conditions 
(x0, y) (at t = 0) over the time span [t, t + T]. We thus define a map 

FT : Rn x R ~ R '~ 
( y , t )  ) f ( y , t )  

For a given value of t, let us denote F~ the restriction of FT to R '~ x {y}, and 
let A be the set of y-values which correspond to invariant tori of dimension n. 

a) If y E A then FT(y ,  .) is constant on R (up to the precision of the determi- 
nation of the frequencies). 

b) In the case n = 1, for a monotone twist map and for a given value of  t, 

F , ~ : A  ~ R 
y .... ~ f ( y , t )  

is monotone. 
The property a) was already used to study the stability of the solar system 

(Laskar, 1990); b) was used to study the destruction of golden tori for the two 
dimensional standard map (Laskar et al., 1992). 

The frequency map is exactly defined on the Cantor set of the invariant tori. It 
can be thought of as a diffeomorphism on this set, which could be extended in some 
sense to a diffeomorphism on R 2 (cf. PSschel, 1982). Chaotic zones will therefore 
appear as a loss of regularity for the frequency map. This can be clearly seen around 
the golden curve for the two dimensional standard map (Fig . l ) .  As the parameter 
increases, there are some distorsions in the frequency curves. These distorsions 
permit statements about the non-existence of KAM tori, but these distorsions also 
eventually produce complete loss of regularity of the frequency map, which can be 
taken as an indication of chaotic motion. Moreover, this loss of regularity of the 
frequency map can be generalized to higher dimensions. 

4. Application to the 4D Standard Map 

We will use the frequency analysis to study the global dynamics of a 4 dimension 
symplcctic map which was first studied by Frocschl~ (1972). 

{ 1 
X~ = xl  + al sin(xl  -t- yl)  -t- bs in (~(x l  + Yl + X2 -t- y2)) mod(2~)  

y{ = Xl + Yl mod(27r) 

mod(2~r) 

mod(2~r) 

1 
X~ = X 2 --~ a2 sin(x2 + Y2) + bsin(~(Xl + Yl + x2 + Y2)) 

y2 "~- X2"~ Y2 
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Fig. 2. Visualisating in the frequency plane (ft, fz) 
al = a2 = -1.3, b = 0.01. 
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of the frequency application 

We shall carry out the frequency analysis for the parameter value al = a2 = 
-1 .3 ,  b = 0.01and we shall consider orbits with initial conditions on the plane 
Zl = z2 = 0. We can visualize the complete frequency map -PoT which is a map 
from R E to R 2. In the regular regions, the behavior is not very wild, and it will be 
possible to visualize the map by drawing the images of  the lines of  initial conditions 
R × Yl for various values of fll (Fig 2). For each initial condition (Yl, Y2), the two 
main frequencies f l  and f2 of  the orbit are determined with the frequency analysis 
over 516 iterations, and the point of  coordinates ( f l ,  fz) is indicated on the graph. 
In a regular region, the image of  a line will appear as a smooth curve, which will 
not be the case in chaotic regions. 

In fact, what is pictured here is the Arnold web of  the mapping, with the 
description of  the actual strength associated to each of  the resonant lines. Resonant 
lines exist on a dense set of  frequencies, but most of  them have a negligible effect 
and are not visible here. Different zones appear on these plots. The first ones are 
the regular zones, with very smooth, non-distorted frequency curves. The motion 
will be very regular in these regions. Next are some resonance regions, such as 
the top of  the vertical f l  = 1/6 zone, where the points are regularly spaced 
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in f2, but more erratically in fl .  This corresponds to the product of a chaotic 
motion in fl with something more regular in f2. In these zones, Amold diffusion 
is probably possible. There are also zones of the pictures where the points seem to 
be erratically distributed in all directions, which ought to correspond to completely 
chaotic motion. This is the case for example, in the outside zone, for small fl  
and f2, which corresponds to the large-scale chaotic motion where most tori are 
destroyed, even in the uncoupled problem. 

The analysis of the regularity of the frequency application presented here allows 
one to obtain a global picture, in two dimensions, of the dynamics ofa 4 dimensional 
symplectic map, or a 3 degrees of freedom hamiltonian system. This method can 
also be applied in higher dimensions, and I am convinced that this new method of 
frequency analysis will become an important tool for the study of many kinds of 
conservative dynamical systems. 
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