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Abstract .  We present numerical results of the so-called Sitnikov-problem, a special case of the three- 
dimensional elliptic restricted three-body problem. Here the two primaries have equal masses and 
the third body moves perpendicular to the plane of the primaries' orbit through their barycenter. The 
circular problem is integrable through elliptic integrals; the elliptic case offers a surprisingly great 
variety of motions which are until now not very well known. Very interesting work was done by 
J.Moser in connection with the original Sitnikov-paper itself, but the results are only valid for special 
types of  orbits. As the perturbation approach needs to have small parameters in the system we took 
in our experiments as initial conditions for the work moderate eccentricities for the primaries' orbit 
(0.33 _< eprimaries ~ 0.66) and also a range of initial conditions for the distance of the 3 ra body 
( = the planet) from very close to the primaries orbital plane of motion up to distance 2 times the 
semi-major axes of their orbit. To visualize the complexity of motions we present some special orbits 
and show also the development of Poincar6 surfaces of section with the eccentricity as a parameter. 
Finally a table shows the structure of  phase space for these moderately chosen eccentricities. 
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1. Introduction 

A very interesting dynamical problem is known under the name Sitnikov- problem 
which is cited quite often as a model case for the appearance of chaotic motion. 
The dynamical model was first described by Pavanini (1907): a massless body 
is moving in the z-direction perpendicular to the plane of two equally massive 
primary bodies, which move on Keplerian orbits around their center of gravitation. 
The circular problem (where the primaries move on circles) was discussed in 
details by McMillan (1913) where he showed the integrability of the equations 
of motion with the aid of elliptic integrals which has been rediscussed in detail 
by K.Stumpff(1965). This is also evident from the fact that in this form it can be 
regarded as a special case of the Two-Body Fixed Center Problem, which is known 
to be integrable since Euler (1760). 

Much more interesting is the case, where the primaries move in eccentric orbits. 
Then we can observe periodic orbits, quasi periodic orbits and unbounded mo- 
tions and additionally the recently rediscovered chaotic motions (alrencly Poincar6 
mentioned such orbits, 1892) 

As first rough definition one can say that two originally very close orbits separate 
from each other hyperbolically. It is interesting to note that the whole complexity 
of phase space is already present for very small eccentricities e ~ 0.0001 of 
the primaries' orbit, although it is so close to the integrable circular problem. (J. 
Liu and S.Sun, 1991). First qualitative results were derived by Sitnikov (1960) 
himself for special orbits and later by J. Moser (1973). C.Marchal (1990) discussed 
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the problem also in a qualitative w a y .  H.Juranek (1991) developed a 1 st order 
perturbation theory valid for small eccentricities and small oscillations, while 
J.Hagel (1992) used a perturbation method up to the 3 rd order in the eccentricities. 
J.Hagel and T.Trenkler (1992) adapted a technique to find integrals of  motion for 
all eccentricity values of the primaries' orbit but only for small oscillation and 
derived interesting qualitative results. 

We were interested in the structure of phase space for cases not yet studied well; 
therefore we did the numerical experiments in the range of (0.33 < eprimaries < 
0.66). In what concems the other initial conditions they will be precised later. 

2. The  F o r m u l a t i o n  o f  the  P r o b l e m  

Let us know give the equations of motion: 

+ - 0  (1) 

1 - -  e 2 

r(v) = 2(1 + ecosv)  (2) 

where z is the distance from the plane of the primaries' orbit; the distance r of the 
barycenter to one primary varies with the time t according to Keplers 1 *~ law (v is 
the true anomaly). 

We used for integration a modified equation developed by K.Wodnar (1991) 
where T is defined through the following equations: 

z 1 + ecosv  
T := 2--r = z 1 - e 2 (3) 

dT  v/1 - e 2 e sin v 
:=  T'  =} z 1 e2 (4) dv 1 + e cos v - 

1 --  e 2 
z = T, (5) 

I + ecosv  

1 
~= iv/_f-~_j[Tesinv + T'(1 + ecos v)] (6) 

The T-value has the following geometrical meaning: it is half of  the tangent of 
the angle of view of the planet seen from one of the primaries. Finally we are lead 
to a differential equation of the following form: 

3 
/ i l / 4  + T 2 + e c o s  v 1 

T" + • T = 0 (7) 
1 + ecosv  
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This equation of motion was integrated with a Lie-integration method with 
variable step length (e.g.A.Hanslmeier and R. Dvorak, 1984). The time scale was 
1000 orbits of  the primaries for most of  the cases for;, then had enough points 
in the Poincar6 surfaces of section, which was defined as T versus T' for every 
pericentric position of the primaries. In exceptional cases, when we discovered a 
fractal structure of  islands we increased the integration time up to 5000 revolutions 
of the primaries. 

After some test calculations with different initial conditions we fixed the fol- 
lowing ones: 
- the true anomaly vini = 0 °, that means the starting point was always when 

the primaries are at their pericenter. 
- we always set T '  = 0 and varied only T, which corresponds to a variation of 

the planet's distance to the barycenter. 
- as mentioned above eprimaries was chosen between 0.33 and 0.66 

It should be kept in mind that this is only a necessary restriction because of 
limiting computer time available at the moment. Nevertheless it is hoped that we 
have found the main structures of phase space for moderate eccentricities and the 
motions not too far away from the primaries' orbital plane. 

An appropriate method to find out the structure of phase space is to plot the dif- 
ferent surfaces of section and compare them for various values of the eccentricities 
and the initial T-value. The method was introduced for numerical experiments by 
Hrnon and Heiles (1964) for a simple model of  a galactic potential and it is still the 
most powerful tool to present such numerical experiments. A more rigorous way 
to determine regions of  chaotic motions in phase space is calculate the Liapunov 
characteristic exponents (e.g. Froeschl6 1984). But this is still a very "expensive" 
(from the point of  view of computer-time) procedure and therefore it was kept for 
a future project on the same topic. 

3. T h e  N u m e r i c a l  R e s u l t s  

Before we discuss the global results we want to give some interesting details: the 
dependance of the location of the periodic orbits (=PO) on the parameter of  the 
system (eccentricity of the primaries),  the decay of periodic orbits in form of  
bifurcations and the onset of  chaos close to a separatrix. 

3.1. THE CHANGE OF POs WITH THE PARAMETER 

Quite well known is the pitchfork-diagram studied extensively at first in the logistic 
equation. The phenomenon of splitting of l PO into 3 is shown in fig. 1 for invariant 
curves surrounding stable POs. 

We can see in fig. 1 the invariant curves in the SOS starting from the point T= 1.13 
(T'=0) for 6 different e-values. It is interesting to see the shift of  the location of 
the PO (generally at the center of  the island) outwards to greater T-values with 
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Fig. 1. Decay of a 1 PO to 3 PO with an increasing value of the parameter of the Sit- 
nikov-system 

increasing e-values. Then we suddenly observe a splitting from a 1 PO to a 3 PO 
(islands around them). The most interesting orbit very close to the separatrix is 
shown in fig.2. The accumulation of  points close to a hyperbolic point (an unstable 
PO) is also visible on this graph. The starting point was the same as in fig. 1, the 
eccentricity was chosen in between the eccentricity where we derived the last one 
and the one where we derived 3 islands in the surface of  section. 

As another example we show the decay of  an island around a PO into a chain 
of  islands. We fixed the initial conditions for T (T = 1.05, T' is always zero in 
our experiments) and varied the parameter e again. Fig.3a shows a well defined 
invariant curve (e=0.23) which decays for e=0.28 int o 7 islands (fig.3b). Then for 
e=0.33 we see even 17 islands replacing the one from fig.3a. Fig.3d shows the 2 
small islands on the left bottom comer of  fig.3c on a smaller scale. 

3.2. MOTION ON A SEPARATRIX 

Sometimes the initial conditions were chosen such that the motion is close to a 
separatrix, a curve connecting the hyperbolic fixed-points (unstable POs) in the 
surface of  section. On fig.4 we see such an example where the consecutive points 
of  intersection are surrounding tiny islands lying around stable POs. It is evident 
that the very complex shape on the SOS is difficult to derive with any analytical 
method. 
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Fig. 2. motion close to the separatrix surrounding the 3 PO 
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Fig. 3. The decay of an island: fig.3a (top,left) invariant curve for e=0.23; fig.3b(top, 
right): 7 invariant curves for e=0.28; fig.3c(bottom,left):17 invariant curves for e=0.33; 
fig.3d(bottom,right) 2 islands from the former graph on a smaller scale; all the plots show 
surfaces of section T - versus - T' 
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Fig. 4. chaotic motion "on" the separatrix close to multiple periodic orbits 

4 

3 

2 

I 

0 

- I  

-2 

-3 

-4 
-1500 

I I I t I 

-L000 -500 0 500 1000 1500 

700 

6 0 O  

5O0 

400 

300 

2 0 O  

100 

0 

-100 

/ \ 
/ \', . 

/ 
/ 

I I i 

4000 5000 6000 

i i I 

1000 2000 3000 7000 

Fig. 5. typical chaotic motion for e---0.66, (left side surface of section T versus T', right side 
z versus the true anamoly v 

3.3. A HIGHLY CHAOTIC MOTION 

Varying just a little bit the initial conditions of  the one orbit "on" the separatrix we 
have a full chaotic orbit which is shown in fig.5a in the surface of  section and fig. 
5b in a plot of  T (the distance from the barycenter of  the massless body) versus the 
time scaled in 2 7r corresponding to one whole orbit of  the primary bodies. 

It is evident, that the moments of  the passage of  the third body through the 
barycenter are very important. The time interval of  such events is more or less 
periodic on an invariant curve and it is practically undistinguishable from a motion 
in a thin chaotic layer. Great differences of  such time intervals can occur for 
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Fig. 6. Overall picture of the Poincare surface of section for e=0.37; T is plotted versus the 
velocity T' 

motions in the global stochastic zone. One example is shown in fig.5b, where we 
can recognize small variations in T after quite a large one, and then again a very 
large one. This kind of  motion is excluded in Simikov (1960), but is in principle 
included in Moser's book (1973). Although the qualitative picture of  the variety 
of  orbits which exist in the Simikov problem is quite interesting and complete no 
method of  finding such special initial conditions is given explicitly. 

3.4. G L O B A L  R E S U L T S  

In table I we have plotted the main characteristics of  the motions for the initial 
conditions of  the primaries for the eccentricities e of  the primaries for which the 
experiments have been undertaken. The interval in the T-direction was AT = 0.01 
from T=0o4 to T= 1.1, covering the most interesting parts of  phase space. Note that 
we started always in the pericenter position of  the primaries. A careful inspection 
of  the Poincar6 surface of  section lead to the following results o f  the structure of  
phase space given in table 1. We marked there the qualitatively different orbits in 
the following way 

- "o" orbit on an invariant curve 
- "a" orbit on an invariant curve with some accumulation of  points, indicating 

that the motion is close to a separatrix 
- "n" marks the number of  islands of  the respective orbit 
- "s" states that the motion is (on or) very close to a separatrix 
- "k" orbit has a chaotic character 
- "*" 10 and more islands 
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TABLE I 
Results of the systematic research of the Sitnikov-Problem 
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TABLE II 
The last invariant curve 

e 0 . 3 3  0 .37  0 .41  0 .44  0 .47  0 .51  0.55 0 .61  0.64 0.66 
T 0.99 0.98 0.98 0 .97  0.92 0 .91  0.92 0.80 0.80 0.80 

At first sight we can see that invariant curves exist for greater values of T when 
the eccentricity e is smaller. As a consequence from low eccentricities on towards 
higher ones the appearance of the 1 ~t island is shifted more and more outwards; 
also the area (meaning here number of initial conditions) where islands can be 
observed is becoming more extended with increasing initial T values. The onset of 
global chaos is in contrary shifted more and more towards smaller T-values. But 
we should keep in mond that the transformation from T to z and vice versa given 
in eqs. (3) - (5). 

In table 2 we listed the last island for the specific e-value; from here on global 
chaos can arise. But it is also visible from fig.1 that in this zone of chaoticity 
there are still regions of regular motions visible through (sometimes very strange 
formed) islands. Their existence is due to high order resonances. 

3.5. CONCLUSIONS 

What can be said from the systematic numerical study of the Sitnikov problem? 
First of all we emphasize that this problem of Celestial Mechanics is the most simple 
problem after the integrable two body problem and the integrable Two-body-Fixed 
center problem. In this sense it can be regraded as a generic problem! In fig.6 we 
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see a complete picture of  the SOS for e=0.33. From that results we can deduce 
the following: Close to the linear problem, for very small oscillations around the 
barycenter, we can observe closed invariant curves which were expected to exist 
because of the KAM-theorem. These closed curves exist up to a certain value of 
the initial conditions and then they break and unbounded and chaotic motion is 
possible. But already in the domain of dosed invariant curves we can observe 
islands which exist around stable periodic orbits of  the problem. It is known since 
years (e.g. Henon and Heiles, 1964 Contopoulos, 1968) that in between such island 
we will have hyperbolic points - separatrices and sometimes only very thin layers of 
chaotic motion (e.g. Lichtenberg and Lieberman, 1983). Nevertheless this motion 
is bounded and can never lead to an escape: it is therefore quite important having 
determined the "I s t  chaotic orbit" which will be close to the last "KAM-Torus". 
Well visible in fig.6 is the island in the chaotic sea which is also due to motion close 
to a stable periodic resonant orbit. The structure of such islands is very complicated 
as on sees from fig. 4. 

Finally it has to be said that this first systematic numerical study of  the Sitnikov 
problem has to be extended to smaller Ae and sometimes - in interesting areas 
to a smaller AT. Another point is that for some orbits in the chaotic zone we 
should calculate also the Liapunov-characteristic exponent; this tool is especially 
important to determine the zone of the onset of  global chaotic motions. 

But we emphasize, that the purpose of this paper was to show for the first time 
explicitely the great variety of possible orbits in the Sitnikov-Problem. 
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