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Abstract.  In this paper various aspect of symplectic integrators are reviewed. Symplectic integrators 
are numerical integration methods for Hamiltonian systems which are designed to conserve the 
symplectic structure exactly as the original flow. There are explicit symplectic schemes for systems 
of the form H = T(p) + V(q), and implicit schemes for general Hamiltonian systems. As a 
general property, symplectic integrators conserve the energy quite well and therefore an artificial 
damping (excitation) caused by the accumulation of the local truncation error cannot occur. Symplectic 
integrators have been applied to the Kepler problem, the motion of minor bodies in the solar system 
and the long-term evolution of outer planets. 

Key words: Numerical integration methods - long time evolution - symplectic mapping 

1. Introduction 

1.1. MOTIVATION 

For a given system of differential equations, 

dz  
d-t = f ( z ) ,  (1) 

we try to get an approximate solution from z at t = 0 to z' at t = r in the form 
z' = !b(z, r) ,  where r is called the step size and assumed to be small. The most 
primitive one is called the Euler method which makes use of the mapping 

z' = ¢(z ,  r) = z + r ' f(z) .  (2) 

This Euler method has the 1st order accuracy, since (2) agrees with the Taylor 
expansion of the true solution, 

T 2 T 3 

z ' =  z + rS ( z  ) + ,:-a-S'(z)f(z) + -~ ( f " ( z ) f ( z )  + f ' ( z )  2) S(z) + o g o  (3) 

up to the 1st order of r. We call a mapping z' = ¢(z ,  r )  an n-th order integration 
scheme (integration method, integrator), if it agrees with the Taylor expansion (3) 
up to the order of  r n. The well-known classical Runge-Kutta method, which avoids 
the evaluation of higher derivatives of f ( z ) ,  is the 4th order in this sense. 

When we apply these conventional integration methods to Hamiltonian systems, 
there occur an artificial excitation or damping which comes from the integration 
method itself. For example, for the one-dimensional harmonic oscillator with the 
Hamiltonian 

H = (1/2)(p 2 + q2), (4) 
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we know the exact solution 

(5) 

On the other hands, the Euler method (2) approximates (5) as 

(6) 

One finds easily that at each step, the value of the energy is multiplied by (1 + T 2) 
with the Euler method (6), i.e., 

(7) 

which leads to an indefinite increase of the energy. When we use the 4th order 
Runge-Kutta method we find, on the contrary, an artificial damping, 

This artificial excitation or damping makes the result of  long-time integration quite 
unreliable. Therefore it is desirable to use some special integration scheme for 
Hamiltonian systems. 

For autonomous Hamiltonian systems 

(8) 

(9) 

(1o) 

in general, we know that (i) the value of energy (Hamiltonian) is conserved, and 
that (ii) the mapping from (q, p) at t = 0 to (q', p') at t = 7- along the solution is 
symplectic (canonical), 

i.e., the symplectic structure is conserved. The Euler method and Runge-Kutta 
method violate not only the conservation of energy but also the conservation of 
symplectic structure. 

Then it is quite natural to search a numerical integration scheme which keeps 
the above two properties, (i) H = const, and (ii) dp A dq = const.. Unfortunately, 
according to Ge and Marsden (1988), there cannot exist such an integration scheme 
for non-integrable Hamiltonian systems in general. They claims that if such a 
scheme z' = ~b(z, 7-) exists then it should coincides with the exact solution up to a 
reparametrization of the independent variable v. 

Now as a compromise, one may search schemes which keep one of the con- 
servation properties. As for the Hamiltonian-conserving methods, there have been 
a lot of  works by now and they will not be discussed in this paper. See Itoh and 
Abe (1988, 1989) and references therein. A scheme which conserves the symplec- 
tic structure (10) exactly is called a symplectic integration method (symplectic 
integrator) which will be reviewed from now on in detail. 
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1.2. HISTORY OF SYMPLECTIC INTEGRATORS 

The research on symplectic integrators originates from three independent groups. 
The first one is by Feng and his collaborators in Beijing who developed implicit 
symplectic schemes based on the generating function. See Feng and Qin (1987) for 
a review. This implicit method was later applied by Channell and Scovel (1990) 
extensively. 

The second group of research starts with Sanz-Sema (1988) and Lasagni (1988). 
They found a condition for implicit Runge-Kutta methods to be symplectic. As a 
result, the family of Gauss-Legendre Runge-Kutta methods (Dekker and Verwer, 
1984) are shown to be symplectic. The simplest one is known as the implicit 
midpoint rule. 

As for the third group, Ruth(1983) developed an idea of explicit symplec- 
tic schemes for Hamiltonian of the form / /  = T ( p )  + V(q) .  Along the line of 
Ruth(1983), higher order integrators were presented by Forest(1987), Neri(1988) 
and Yoshida(1990) later on. 

In the next two sections, these implicit and explicit schemes will be explained 
in more detail. For a general review of symplectic integrators, see MacKay (1991), 
Sanz-Sema (1991) and Scovel (1991). 

One important topic which will not be described in this paper is related to 
multistep methods. In fact, Eirola and Sanz-Sema (1990) proposed a multistep 
method which conserves the symplectic structure. On the other hand, Quinlan and 
Tremaine (1990) worked out with the symmetric multistep method which shows a 
good behavior on the conservation of energy, and might be understood as a kind 
of symplectic method. For this method, see also Kinoshita and Nakai (1991), and 
Quinlan and Toomre (1991). 

2. Implicit Schemes 

2.1. GENERATING FUNCTION METHODS 

For an arbitrary function of mixed variables W = W ( q ,  p~), the mapping (q, p) 
(q~, pt) defined implicitly by the relations 

O W  O W  
, q ' =  (11) 

P = Oq Op I ' 

is symplectic (canonical transformation). The function W is called the generating 
function (of Von-Zeipel type). If we take 

W = qp' + r H ( q , p ' ) ,  (12) 

then (11) implies 
OH pp OH 

q' = q + r--~p,, = p - "r o q , (13) 
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which gives a 1st order implicit symplectic integrator. For the 2nd order integrator, 
take 

W(q,p') = qp' + rH(q,p')  + (r2/2)Hp, Hq. (14) 

and the implicit scheme 

ql = q + rHp, + (r2/2)(Hp,p, Hq + Hp, Hp,q), 

p' = p -  rHq - (r2/2)(Hp,qHq + Hp, Hqq). (15) 

follows. Higher order integrators (n > 2) are similarly obtained by choosing the 
generating function W(q, p') properly so that the mapping (q, p) --+ (q', p') agrees 
with the Taylor expansion of the solution up to the order of r '~. 

Feng and Qin (1987) derived the generating functions W(q, p') and the corre- 
sponding symplectic schemes up to the 4th order, and Channell and Scovel (1990), 
up to the 6th order. Since it becomes very difficult to write down the computer 
program by hand for these higher order integrators, Channell and Scovel (1990) 
developed a preprocessor to generate the FORTRAN source code. 

2.2. IMPLICIT RUNGE-KUTTA METHODS 

For the system of differential equations (1) in general, an s-stage Runge-Kutta 
method (generally implicit), which is a natural generalization of the classical 4-th 
order one, is defined as follows. First, vectors ki are determined by solving the 
simultaneous algebraic equations 

8 

ki = f ( z  + r ~ aijkj), (16) 
o4-=1 

(i = 1, ..., s), then the mapping z ~ z' is 

8 

z' = z +  r y~bjk j .  (17) 
j=l 

Here aij and bj are scalar constants which characterize the scheme. The so-called 
Butcher table which lists aij and bj as an s + 1 by s matrix is often used to specify 
a given Runge-Kutta method. Note that if aij = 0 for i _< j ,  then the scheme is 
explicit. These constants aij and bj are determined by the order conditions which 
are derived by the postulate that the mapping z ~ z I should agree with the Taylor 
expansion of the solution up to the desired order of 7-. 

Suppose now that (1) is Hamiltonian. For general Runge-Kutta methods, the 
mapping (17) is not symplectic. Sanz-Sema(1988) and Lasagni(1988) found that 
if the constants satisfies the conditions 

Mij : = b i a i j + b j a j i - b i b j = 0 ,  (1 < i , j < s )  (18) 
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identically, then the mapping is symplectic. Notice that for (18) to be satisfied, the 
scheme must be implicit. 

The simplest solution (1-stage, 8 = 1) which satisfies the conditions (18) is 
given by 

1 
a l l  = ~ ,  bl -" 1, (19) 

and we have the scheme, 

7" 
~1 = f ( z  + ~ k  1), Z' = Z + 7"IC 1 ( 2 0 )  

or, more concisely, 
r / z  "~ ZI 

z '  = z + 7 " ] [ ~ ) ,  (21) 

which is known as the implicit midpoint rule, and has order 2. For the 2-stage 
method we have, for example, 

(aij) 
+ 6 

and the order is 4. Pullin and Saffman (1991) applied this 4th order implicit Runge- 
Kutta method to the motion of four vortex motion successfully. These schemes 
are simplest examples of the family of Gauss-Legendre method and the s-stage 
Gauss-Legendre method has order 2s (Dekker and Verwer, 1984). This family has 
a good stability property. For further references in this direction of research, see 
Sanz-Sema(1991), Sanz-Sema and Abia (1991), and Saito et al. (1992). 

3. Explicit Schemes 

3.1. RUTH(1983) 

For Hamiltonian systems of the form 

H = T ( p ) +  V ( q ) ,  (23) 

there exist explicit symplectic algorithms. As for the 1st order one, a small change 
of the Euler method (2) makes it exactly symplectic. In fact, take 

q' = q + 7- , = p - 7" (24) 
p=p q=ql 

This mapping is symplectic because it is composed of two symplectic mappings 
(q,p) ~ (q',p) and (q',p) ~ (q ' ,p ' ) .  

The idea to construct higher order schemes is simply to approximate the original 
Hamiltonian flow by a composition of trivial symplectic mappings, 

ST(CiT") " q' = q +  CiT" , = p, 
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and 
q ' = q ,  p,=p_dir(O_~q). .r . ,  (26) Sv(  dir) " 

repeatedly. Here numerical coefficients ( ci, di ), ( i = 1, ...k ) are determined so that 
the composed mapping (q,p) --+ (q',p') coincides with the Taylor expansion of 
the solution up to the order of r n. Thus an n-th order explicit symplectic integrator 
is obtained. For example, a second order scheme (q, p) --+ (q', p') is attained by 

, = p - r  = q + ~  (27) q* = q + -~ p=p q=q. p=p' 

which corresponds to the choice Cl = c2 = 1/2, dl = 1, d2 = 0, and this scheme 
has been known as the leap-frog method. Ruth(1983) first derived the algebraic 
equations of (ci, di) for the 3rd order integrator and obtained a solution, 

7 3 1 2 2 
Cl = ~-~,c2 = ~,c3 = - ~ , d l  = g ,d2  = - 5 , d 3  = 1. (28) 

Candy and Rozmus (1991) directly extended the idea of Ruth to obtain the coef- 
ficients of the 4th order integrator, and demonstrated the advantage of symplectic 
schemes in various examples. 

3.2. NERI(1987) 

The above problem to derive explicit symplectic integrator was reformulated by 
Neri(1987) in terms of Lie algebraic language. First rewrite the Hamilton equation 
in the form 

dz 
d--t = { z , H ( z ) } ,  (29) 

where braces stand for the Poisson bracket, { F, G } = Fq G p -  Fp Gq. If we introduce 
a differential operator Do by D c F  := {F, G}, then (29) is written as ~ = DHZ, 
so the formal solution, or the exact time evolution of z(t) from t = 0 to t = r is 
given by 

z(r)  = [exp(rDH)]z(O). (30) 

For a Hamiltonian of the form (23), DH = DT + D v  and we have the formal 
solution 

z(r)  = exp[r(A + B)]z(0). (31) 

where A := DT and B := D r ,  and these operators A and B do not commute in 
general. 

Suppose (ci, di), (i = 1,2, ..., k) is a set of real numbers which satisfies the 
equality 

k 

exp [ r ( a  + B)] = I ~  exp(c lrA)exp(dirB)  + o(r"+l),  (32) 
i=1  
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for a given integer n, which corresponds to the order of integrator. Now consider 
a mapping from z = z(0) to z' = z ( r )  given by 

z ' =  e x p ( c i r A ) e x p ( d i r B )  z. (33) 

This mapping is symplectic because it is just a product of  elementary symplectic 
mappings, and approximates the exact solution (31) up to the order of 7- n. Fur- 
thermore (33) is explicitly computable. In fact (33) gives the succession of  the 
mappings 

qi = qi-1 q- 7-ci , Pi = Pi-1 - T d i  , 
P = P i - 1  q=qi  

(34) 

for i = 1 to i = k, with (q0,p0) = z and (qk,Pk) = z'. An n-th order symplectic 
integrator (integration scheme) is thus realized. For example when n = 1, a trivial 
solution is Cl = dl = 1, (k = 1), which corresponds to the identity 

exp[T(A + B)] = e x p ( r A ) e x p ( r B )  + 0(7-2). (35) 

and gives the 1st order symplectic integrator (24). When n = 2, we find easily a 
solution cl = c2 = 1/2, dl = 1, dE = 0, (k = 2), which comes from 

exp[T(A + B)] = e x P ( 2 A ) e x p ( T B ) e x P ( 2 A  ) + 0(7-3). (36) 

and implies the 2nd order integrator (27). Forest(1987), Forest and Ruth(1990), 
Candy and Rozmus(1991) obtained a 4th order integrator in a rather straightforward 
way with the result, 

1 1 - 21/3 
Cl = c4 - 2(2 - 21/3) , c2 = c3 - 2(2 - 21/3) ' 

1 -21/3 
dl = d3 - 2 - 21/--------~' d2 - 2 - 21/3' d4 = 0. (37) 

Notice that this 4th order integrator requires the evaluation of force function only 
3-times in a step, although the classical 4th order Runge-Kutta method needs 
4-times. 

3.3. YOSHIDA(1990) 

Yoshida(1990) first noticed that the 4th order integrator found by Forest (1987) is 
composed of the 2nd order ones. With use of the notation 

7" 7- 
$2(7-) := e x p ( ~ A ) e x p ( r B ) e x p ( ~ A ) ,  (38) 
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the 4th order integrator S4(r) can be written as 

where 

s4 (T )  = 

- - 2 1 / 3  1 
x o  - -  _ _  x 1 - -  2 - 21/3, 2 -- 21/3" 

In fact, zo and Zl are determined as the solution of algebraic equations, 

z 0 + 2 z l = l ,  z g + 2 z  3 = 0 ,  

(39) 

(40) 

(41) 

and this interpretation gives the simplest derivation of the 4th order integrator (37). 
Forest et al.(1991) noticed that this idea of composition can be used also to obtain 
higher order implicit integrators in the previous section. 

The above fact was found independently, and even earlier, by Suzuki (1990) 
from a completely different motivation which shares the same mathematical prob- 
lem (32). Suzuki (1991) further proved the very strong statement that there cannot 
exist any solution of (32) with all positive (ci, di) when n _> 3. Therefore, the 
presence of some negative numbers in (28) and (37) is unavoidable. For the 6th 
order integrator, Yoshida (1990) put 

~6(T) = S2(w37)S2(w2r)S2(wlr)~2(woT),.q2(Wlr)S2(w2r)S2(w37-) ( 4 2 )  

and three sets of (w0, Wl, w2, w3) were obtained numerically. Five sets for the 8th 
order integrator were also found. This construction of higher order integrators with 
minimum number of force evaluation was recently generalized to arbitrary orders 
by Suzuki (1992). 

For other researches on finding explicit symplectic integrators, see Abia and 
Sanz-Sema (1990), McLachlan and Atela (1991) and Okunbor and Skeel (1991, 
1992, 1992a). 

4. General Property 

4.1. C O N S E R V A T I O N  O F  E N E R G Y  

The original Hamiltonian flow conserves the Hamiltonian (Energy) exactly and it 
is desirable that numerical integration methods respect this fact. 

For the family of symplectic Runge-Kutta methods with condition (18), all the 
quadratic integrals are conserved exactly (Sanz-Sema, 1988). Thus for linear sys- 
tems with a quadratic Hamiltonian, the symplectic Runge-Kutta scheme conserves 
the Hamiltonian and the symplectic structure at the same time. This is possible 
because linear Hamiltonian systems are integrable. For general non-integrable sys- 
tems one cannot expect the conservation of energy exactly at each step (Ge and 
Marsden, 1988). Nevertheless there is an advantage for symplectic schemes. 
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Let us apply the 1 st order explicit symplectic scheme (24) to the one-dimensional 
harmonic oscillator (4). Then we have the symplectic mapping 

( q : )  = (_1 r 1 5 r 2 )  ( q ) .  (43) 

One finds easily that although the value of energy is not conserved exactly by the 
iteration of symplectic mapping (43), the error has no secular increase and it is 
bounded of the order of r for moderate small values of r. 

For the one-dimensional harmonic oscillator case, this phenomenon is explained 
by the existence of a conserved quantity (integral of motion) of the mapping (43), 
which has the expression 

~(p2 + q2)+ 2p q = const. (44) 

If one starts with the initial condition (q,p) = (1,0) with a fixed small value of 
v, the points obtained by iterating the mapping (43) must lie on an ellipse in the 
(q, p) plane, q2 q_ p2 q_ 7pq = 1, which differs from the trajectory of the exact 
solution, q2 q_ jo 2 = 1, only of the order of 7- permanently. Thus the error of the 
energy caused by the local truncation error cannot grow. Indeed, we have a more 
general statement; 

THEOREM 1. The symplectic mapping (24) exactly describes the time-7- evolution 
of an associated Hamiltonian system [I, which is close to the original Hamiltonian 
(23) and has the expression of a formal power series in 7", 

/1 = H + vH1 q- 7.2H2 + 7"3113 -t- .... (45) 

where 11 is the original Hamiltonian (23), and 

1H l(HppH2+HqqH2p), t13 1HppHqqHpHq, (46) H1 = ~ p11q, //2 = lz  = "'" 

In particular, (24) conserves [1 in (45) exactly. 

As far as the author knows, this fact was first mentioned by Dragt and Finn 
(1976) without any motivation on numerical integration methods. See also Dragt 
et al.(1988). The series (45) reflects on the Baker-Campbell-Hausdorff (BCH) 
formula (Varadarajan, 1974) for the product of two exponential functions of non- 
commuting operators X and Y; 

exp X exp Y = exp Z (47) 

with 

z = x + r + 5[x; Y] + ]7 ([x, [x, y]] + [Y, [r, x]]) + [x, [r, [r, x]]] + . . .  
(48) 
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and [X, Y] := X Y  - YX ,  etc. For the 1st order symplectic integrator (24), one 
can apply BCH formula (47) to obtain 

(exp rDT)(exp rDv) = exp r D 9 .  (49) 

where 

T 7" 7 -2 T 3 
= +V+g{V,r}+-ff  ({{T,V},V} + 

T 3 
T £(12 ~'~*pp~*qH H 2 HqqH 2) -~ HppHqqHpHq ( 5 0 )  = H + ~HpHq + + + + ... 

which proves the theorem. For the 2nd order integrator (27), one obtains 

(exp = (51) Dr)(exp r rDv)(exp-~OT) exp rD&,,d, 

w h e r e  

1-12nd: T + V + rz ( ~-~{{T,V},V}-  ~--~{{V,T},T}) + o(r 4) 

1 2 

In general, for an n-th order integrator, one has the associated Hamiltonian 

ftnth = H + r'~Hn + o(r~+l), 

(52) 

so that the error of the energy remains of the order of r n. Notice, however, that the 
rigorous convergence of the series (45), (52), (53) are not guaranteed for nonlinear 
systems in general. Some related works are found in Auerbach and Friedman 
(1991), and Friedman and Auerbach (1991). 

As for the implicit schemes by the generating function method, i.e., for (13) and 
(15), a similar argument is possible. A near-identity symplectic mapping defined 
by the generating function, (12) or (14), can be written into the explicit form 

z ' =  (exp rD[/)z ,  (54) 

by the equivalence of von-Zeipel and Hori perturbation methods (Mersman 1971, 
Giacaglia 1972). Thus/}, which is again a formal power series in r, is conserved. 

For the symplectic Runge-Kutta method with condition (18), the present author 
does not know any similar statement how to write down the associated Hamiltonian 
/1 from the original Hamiltonian//. 

(53) 
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5. Application to Specific Problems 

5.1. KEPLER PROBLEM 

Kinoshita et al.(1991) applied the 4th order explicit symplectic integrator (SI4) to 
the Kepler problem 

1 2 a (55) 
/7 = 2P r '  

with the eccentricity, e = 0.1, and compared with the results obtained by the 
classical 4th order Runge-Kutta method (RK4). 

For a short time (10 orbital periods), the errors in the semi-major axis zLa and in 
the eccentricity ~ e  by SI4 are much bigger than those by RK4. The superiority of 
SI4 over RK4 can be seen after a long time (2000 periods), since A a  and/X,e by RK4 
grow secularly in time. The errors in the inclination Ai  and the longitude of node 
A ~  come from the round-offerror only, since these elements are conserved exactly. 
As for the error in the mean anomaly Al, RK4 allows the quadratic increase in time 
although SI4 allows only the linear growth. This difference becomes significant 
for a long time integration. There is one problem with the error in the argument 
of pericenter Aw. Both integrators give linear growth of ~w,  and the error by 
SI4 is much larger than that by RK4. RK4 is too good by some unknown reason 
for Aw, since the 6th order symplectic integrator (SI6) and the 6th order explicit 
Runge-Kutta method (RK6) give almost the same error in /kw (Kinoshita and 
Nakai, 1991). 

Gladman et al.(1991) also applied SI4 to the Kepler problem and obtained 
similar results. 

5.2. SOLAR SYSTEM 

The idea of explicit symplectic integrator can be applied also to the system of the 
form 

H = H0(q, p) + Hi(q, p) (56) 

where/70 and H1 are integrable in the absence of other parts. A Hamiltonian of the 
form, H = T(p) + V(q), is the simplest case of this situation. Since H0 and HI are 
integrable, exp vDHo and exp fDH1 can be computed without error by introducing 
the action-angle variables, (I0, 00) and (11,01) for each part. Sometimes, however, 
the change of variables between these two sets of action-angle variables is really 
time-consuming (Kinoshita et al. 1991) and may decrease the advantage of this 
treatment. 

Wisdom and Holman (1991) write the Hamiltonian of the n-body problem (outer 
planets) 

n-1 2 G m i m  j 
/7 = ~ P---/--~ - ~ , (57) 

2mi i = 0  i<j I'iJ 
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into the form 

H = Ho + HI = HK~pl~,. + HInteraction (58) 

using the Jacobi coordinates and applied the 2nd order symplectic integrator (27) 
in the sense above with the step size, r = 1 year to integrate for 109 years. For the 
computation of exp rDHo, the f and g functions of Gauss were used. The authors 
claimed that they reproduced all the principal results of  Sussman and Wisdom 
(1988) and confirmed that the motion of  Pluto is chaotic with much fewer CPU 
time. 

Gladman and Duncan (1990) simulated the evolution of test particles in the 
outer solar system using the 4th order explicit symplectic integrator (37) to explain 
the apparent absence of a large number of  minor bodies between the giant planets. 

6. Miscellaneous Problems 

6.1. VARIABLE TIME STEP 

When integrating, for example, a very eccentric orbit in the Kepler problem, one 
often uses a variable time step to obtain better accuracy. What happens if symplectic 
integrators are used with a variable step ? The result is, unfortunately, a decrease 
in efficiency, and the error of  energy starts to increase without any bound like the 
result by a traditional integration method. 

Let us define the new independent variable s, for example, by 

adt = rds (59) 

where a is the semi-major axis of  elliptic orbit. This introduction of  new variable 
s implies that when r < a (i.e., near the pericenter where the motion is fast), ds is 
bigger that dt and more steps are used than the average. On the other hand when 
r > a (i.e., near the apocenter where the motion is slow), fewer steps are used to 
integrating the orbit. 

If one compares the constant step and the variable step using RK4, there is 
an obvious advantage in the variable step method (Figure 1). The error of energy 
(although it grows linearly) decreases one order using the variable step while 
total number of steps are kept constant. On th other hand, with use of symplectic 
integrator (SI4), one finds the secular grows in the error of  energy which did not 
exist with the constant step integration. The argument in the previous section to 
ensure the lack of secular increase in the error of  energy has assumed a constant 
step size r ,  or just an iteration of mapping, and is not valid when the step size is 
changed. Thus one must say that there is no advantage to use a variable step when 
integrating by known symplectic methods. 

More detailed analysis on this subject can be found in Calvo and Sanz-Serna 
(1991, 1991a). See also Gladman et a1.(1991). 
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Fig. 1. (a) : The error of energy in the Kepler problem (55) by RK4 and by SI4 
(a = 1, e = 0.5). The constant step size is r = 0.05 and the number of iteration is 
10000 (80 orbital periods). The error growth by RK4 is almost linear and periodic by SI4. 
(b) : The same couple as in (a) using the variable step size (59). The scale of ordinate is 
1/10 of that of (a). The energy growth by SI4 is no more periodic. 

6.2. LARGE TIME STEP AND CHAOS 

With a constant time step, symplectic integrators do not produce any secular growth 
in the error of  energy. This fact allows one to use a relatively large step size. Of 
course, if the step size is too large so that the series (45), (52), (52) really diverge (or, 
far from convergent) the associated Hamiltonian J9 never represents the numerical 
solution and the good conservation of energy is no more guaranteed. 

Take an example of  the simple pendulum 

1 2 
H = ~ p  + c o s q .  (60) 
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Fig.  2.  (a) : Points  generated by the iteration o f  symplec t i c  mapping  (61)  when  r = 0 .2 .  
(b) : Contour  l ines o f / t  = const, given  by  (63)  when  r = 0 .2 .  (c) : S a m e  as (a) when  
r = 0 .7 .  (d)" S a m e  as (b) when  r = 0 .7 .  (e) : S a m e  as (a) when  r = 1.0. (f) : S a m e  as (b) 
when  r --- 1.0. 
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The 1st order explicit symplectic integrator, the dual of  (24), gives the mapping 

pt = p + 7- s in q, qt = q + 7-p~, (61) 

which is equivalent (unless v = 0) to the so-called standard mapping (Greene 
1979) 

P '  = P + k sin Q, Q' = Q + P'. (62) 

In fact, (60) and (61) are related by the change of  scale rp  = P, q = Q and 7 -2 = k. 
The associated Hamiltonian (45) has the expression 

1 2 T 7 . 2  ~ ~ 7-3 
R = ~p +cos  q+~psinq+ ~ ( s i n "  q-p~ cos q ) -  -i-~psinqcos q + o ( v 4 ) .  (63) 

Figure 2 shows the comparison between the points generated by the iteration of  
the mapping (61) and the contour lines of  H(q,  p) = const, given by (63) for the 
values 7- = 0.2, 7- = 0.7, and 7- = 1.0. To draw contour lines, only the terms 
of  up to the order 7-3 are used in (63) and higher terms are neglected. The good 
agreement of two pictures when 7- = 0.2 indicates (but not proves) that the series 
(63) practically converges for this value of 7- and in the range of (q, p) shown. When 
7- = 0.7 there are already some discrepancy between the iterated points and the 
contour lines H = const. This discrepancy becomes larger when 7- = 1.0. For this 
value of  v, the series (63) never represents the conserved quantity of  the mapping 
(61) except for the small region around the elliptic fixed point (q, p) = (Tr, 0). For 
most  initial conditions, the iterated points show chaotic behaviors, which calmot 
be approximated by the perturbation series (63) at all. 

These phenomena reminds us of a famous result of Gustavson on the Hdnon- 
Heiles Hamiltonian (Gustavson 1966). He showed that the set of points (obtained 
by the Poincar6 map) on the surface of section has a good agreement with the 
truncated formal integral obtained by the perturbation series for small energy 
(small perturbation) but not for large energy, where the Poincar6 map becomes 
chaotic. 
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