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Abstract. Many tropical cnidarians living in shallow wa- 
ter contain a class of ultraviolet-A (UV-A, 320 to 
400 nm) and ultraviolet-B (UV-B, 280 to 320 nm) ab- 
sorbing compounds known as mycosporine-like amino 
acids (MAAs). These compounds may provide protec- 
tion from the deleterious effects of solar UV radiation. 
Using a novel application of reverse-phase high perfor- 
mance liquid chromatography, we find that the temper- 
ate sea anemone Anthopleura elegantissima (collected in 
1988 from Bodega Bay, California, and in 1991 from 
Santa Barbara, California) contains four major MAAs: 
shinorine, porphyra-334, and two new compounds, my- 
cosporine-taurine and mycosporine-2 glycine. Analysis 
of zooxanthellate (containing zooxanthellae) and natu- 
rally apozooxanthellate (lacking zooxanthellae) speci- 
mens acclimated in the presence and absence of UV for 
28 d in the spring of 1988 suggests that this anemone, 
unlike some other anthozoans, does not regulate the con- 
centration of its MAAs in response to UV radiation. The 
presence of similar concentrations of MAAs in apozoox- 
anthellate and zooxanthellate specimens indicates that 
symbiosis with algae is not required for these compounds 
to be present in the anemone. The total concentration of 
MAAs in the zooxanthellae is only about 12% of that in 
their host's tissues. 

Introduction 

The relative transparency of tropical ocean waters (Smith 
and Baker 1979, Fleischmann 1989) results in the routine 
exposure of reef-dwelling invertebrates from shallow wa- 
ter to high levels of solar UV radiation. Such radiation is 
a recognized biological hazard affecting the survival, 
growth, and physiology of marine invertebrates and al- 
gae (Jokiel 1980, Jokiel and York 1982). The effects in- 
clude damage to DNA and proteins, oxidation of mem- 
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brane lipids, and inhibition of algal photosynthesis and 
growth (reviewed by Harm 1980, Worrest 1982, Renger 
et al. 1986, Kyle 1987), which may involve toxic forms of 
active oxygen (Dykens et al. 1992, Shick 1993). 

One defense against the damaging effects of UV radi- 
ation involves filtering harmful wavelengths with UV-ab- 
sorbing compounds. One family of such compounds 
comprises the mycosporine-like amino acids (MAAs), 
which are characterized by a cyclohexenone or cyclohex- 
enimine chromophore conjugated with the nitrogen sub- 
stituent of an amino acid, and absorption maxima rang- 
ing from 310 to 360 nm (Hirata et al. 1979, Tsujino et al. 
1980, Nakamura et al. 1982). MAAs have been found in 
taxonomically varied symbiotic and non-symbiotic ma- 
rine invertebrates (Dunlap and Chalker 1986, Dunlap 
et al. 1991, Karentz et al. 1991, Shick et al. 1991, 1992), 
fishes (Dunlap et al. 1989), and algae (Takano et al. 1979, 
Carreto et al. 1990, Karentz et al. 1991). 

A protective function for these compounds has been 
indicated by several studies. Jokiel and York (1982) 
showed that the concentrations of UV-B-absorbing com- 
pounds (280 to 320 nm) in Pocillopora damicornis in- 
crease in response to UV exposure. Shallow-water corals 
appear to be acclimatized to such potentially stressful 
conditions (Siebeck 1981, 1988) and contain higher con- 
centrations of UV-absorbing compounds than do con, 
specifics living at greater depths (Maragos 1972, Dunlap 
et al. 1986, Scelfo 1986, Stochaj et al. 1989). Transplanta- 
tion of corals to shallower depths may increase the tissue 
concentrations of these compounds (Scelfo 1986), al- 
though not all cnidarians respond in this manner. After 
an initial increase, attributed to the mechanical distur- 
bance of transplantation, Scelfo (1985) found no signifi- 
cant differences in the levels of UV-B absorbing com- 
pounds in the zoanthid, Zoanthus pacificus, acclimatized 
for 56 d in the presence and absence of UV at different 
fluxes of visible radiation. Similarly, no significant in- 
crease in the concentration of UV-B-absorbing com- 
pounds was found in Stylophora pistillata colonies 4 wk 
after tansplantation from 30 to 5 m (Gattuso 1987). Shick 
et al. (1991) found no significant difference in MAA con- 
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cen t ra t ions  over  a d e p t h  g rad i en t  o f  4 to 17 m in the 
oc toco ra l  Clavularia sp., and  on ly  a smal l  (but  signifi- 
cant)  response  o f  i nd iv idua l  M A A s  when  colonies  were 
acc l imat ized  with  and  w i t h o u t  U V  for  208 d, sugges t ing  
tha t  the  M A A s  m a y  by  cons t i tu t ive  in this  symbiosis .  The  
a p p a r e n t  lack  o f  effect o f  U V  r a d i a t i o n  in Z. pacificus 
and  S. pistillata m a y  be a t t r i b u t a b l e  to the  re la t ive ly  sho r t  
d u r a t i o n  o f  the  acc l imat ions .  However ,  Scelfo (1986) 
found  s igni f icant ly  h igher  concen t r a t i ons  o f  U V - B  ab-  
so rb ing  c o m p o u n d s  in spec imens  o f  the cora l  Montipora 
verrucosa acc l imat ized  in the presence  o f  U V  than  in 
those  acc l imat ized  w i thou t  U V  af ter  on ly  13 d. 

W i t h  the except ion o f  studies by  Scelfo (1985, 1988 a, b) 
and  Shick et al. (1991), m o s t  research  on cn ida r i ans  con-  
cern ing  the effects o f  U V  exposure  on  the levels o f  these 
c o m p o u n d s  involves  sc le rac t in ian  corals .  Some  ac t in iar i -  
ans  (sea anemones )  c o m m o n l y  f o u n d  in sha l low wate r  o r  
in te r t ida l ly  are  also exposed  to high levels o f  U V  rad ia -  
t ion  a n d  therefore  requi re  some means  o f  p ro tec t ion .  
Shick a n d  D y k e n s  (1984) r e p o r t e d  t ha t  aqueous  ext rac ts  
o f  the  t e m p e r a t e - z o n e  sea a n e m o n e  Anthopleura elegan- 
tissima exhib i t  a h igh a b s o r b a n c e  at  320 nm, ind ica t ing  
the presence  o f  U V - a b s o r b i n g  c o m p o u n d s .  The  p resen t  
s tudy  descr ibes  an  i m p r o v e d  c h r o m a t o g r a p h i c  m e t h o d  
for  s epa ra t ing  the m a j o r  U V - A -  and  U V - B - a b s o r b i n g  
c o m p o u n d s  in A. elegantissima and  ident i f ies  t h e m  as 
M A A s .  The  effects o f  exposure  to  U V  rad i a t i on ,  and  the 
presence or  absence  o f  a lgal  e n d o s y m b i o n t s  ( zooxan the l -  
lae) on the concen t r a t i on  o f  these c o m p o u n d s ,  were also 
examined .  

Materials and methods 

M a i n t e n a n c e  o f  sea a n e m o n e s  

Zooxanthellate and apozooxanthellate specimens (terminology in 
keeping with Schumacher and Zibrowius 1985) of Anthopleura ele- 
gantissirna (Brandt) were collected in the spring of 1988 from two 
distinct groups in the vicinity of Bodega Marine Laboratory, Bode- 
ga Bay, California, USA and shipped live to Orono, Maine, USA. 
Zooxanthellate specimens (harboring dinoflagellates, Syrnbiodini- 
urn sp.) from a fully illuminated site were maintained in a 250-liter 
aquarium receiving filtred sunlight (the UV component of the nat- 
ural solar spectrum being filtered out by the window and aquarium 
glass). Apozooxanthellate (zooxanthella-free) specimens collected 
from dark recesses within the jetty at Bodega Harbor were main- 
tained in aquaria in a temperature-controlled incubator under con- 
stant darkness except during feeding periods. Water temperature 
was maintained at 15 _+ 2 ~ for both groups. Anemones were fed 
minced squid once per week. 

Iden t i f i ca t ion  o f  U V - B - a b s o r b i n g  c o m p o u n d s  

Freshly collected specimens of Anthopteura elegantissima were 
lyophilized and shipped to the Australian Institute of Marine Sci- 
ence (AIMS) for identification of UV-absorbing compounds. The 
extraction and separation procedures used in the initial acclimation 
experiments (see next section) provided insufficient material for the 
identification of new UV-absorbing compounds, so these proce- 
dures were modified accordingly. Dry specimens (5 g) were extract- 
ed successively in three volumes of 80% aqueous methanol (20 mI) 
with sonication on ice. The extracts were centrifuged and the super- 
natants combined and then filtered (Whatman GF/C glass fiber) 

and passed through a C 18 Sep-Pak cartridge (Waters, Milford, Mas- 
sachusetts, USA) to remove chromatographically intractable mate- 
rials. 

The organic solvent was removed under reduced pressure and 
the residue diluted to approximately 20 ml with double distilled 
water. This diluted extract was filtered and passed through a second 
C 18 Sep-Pak cartridge to remove non-polar and pigmented compo- 
nents, lyophilized, and reconstituted in 2 ml of high performance 
liquid chromatography (HPLC) mobile phase (75 : 24.9:0.1 metha- 
nol: water: acetic acid) for fractionation. 

The UV-absorbing compounds were fractionated by HPLC 
using a 25 cm Brownlee RP-8 column and guard connected to a 
Waters Model 440 dual-wavelength detector (340 and 313 nm) at a 
flow rate of 0.8 ml min-1. Fractions corresponding to individual 
UV-absorbing compounds were concentrated and further purified 
by HPLC on a 25-cm Brownlee silica column using the same mobile 
phase as a above. Final purification was achieved on a 25-cm 
Brownlee amino column using a mobile phase consisting of 40 mM 
ammonium acetate and 17.5 mM acetic acid in 80 % aqueous meth- 
anol. 

Aliquots (100 gl) of each purified fraction were hydrolyzed at 
room temperature for 6 h with 10 gl of 10 NNaOH and then neu- 
tralized with 10 p.1 of 10 N HC1. The hydrolyzed amino acids were 
identified by both the o-phthaldialdehyde (OPA) derivatization and 
HPLC method of Gardner and Miller (1980) and by the fluorenyl- 
methyl chloroformate (FMOC-C1) derivatization and HPLC meth- 
od of Einarsson et al. (1983). Hydrolyzed amino acids were con- 
firmed by co-chromatography with amino acid standards (Sigma) 
dissolved in 0.1 N HC1 and treated with OPA and FMOC-C1 
reagents as above. 

Mass analyses of purified fractions were performed on a Perkin- 
Elmer SciEx API III LC/MS/MS mass spectrometer with atmo- 
spheric pressure, electrospray ionization. Positive ion, parent ion 
(MS), and daughter ion (MS/MS) spectra were recorded. 

Effects  o f  a lgal  symbios is  and  exposure  to U V  r a d i a t i o n  

Zooxanthellate (n = 5) and apozooxanthellate (n = 5) specimens of 
Anthopleura elegantissima were acclimated in 20 cm diameter bowls 
of 30%o S seawater at 15 ~ for 28 d on a 8 h light: 16 h dark pho- 
toperiod in the presence of UV (measured visible irradiance 600 to 
620 gmol photons m 2 s- 1) and in the absence of UV (590 to 
620 ~mol photons m-2 s- 1). Irradiance was measured with a LiCor 
LI-185B quantum photometer fitted with a cosine corrected sensor, 
Model LI-1905B, for photosynthetically active radiation (PAR, 400 
to 700 nm). A Kratos 1 kW xenon arc solar simulator (Model 
SS1000X) equipped with an airmass 1 filter provided illumination 
having a spectral quatitiy approximating natural sunlight at the 
earth's surface at midday. UV wavelengths below approximately 
380 nm were absorbed by 1-cm thick acrylic Plexiglas (Rohm and 
Haas) (see Jokiel and York 1982) located above the culture bowls. 

At the end of the acclimation period, tentacle squashes from 
both zooxanthellate and apozooxanthellate specimens were exam- 
ined for the presence of zooxanthellae using visible light and UV 
microscopy. Each individual was then frozen and tyophilized. A 50 
to 120 mg subsample was ground in 2 ml of deionized, double dis- 
tilled water in a Brinkman Polytron tissue grinder, sonicated for 
5 min on ice, and extracted for 16 h at 4 ~ (Shibata 1969, Jokiel and 
York 1982). 

Samples were centrifuged (270 x 9 for 10 rain) and 25 I~1 aliquots 
of the supernatant were injected onto a 25-cm Brownlee RP-8 re- 
verse phase HPLC column protected with a 3-cm Brownlee RP-8 
guard column connected to a Hewlett-Packard diode array detector 
(Model 1040M). The mobile phase consisted of 90% 5 gM acetate 
buffer (pH 3.0) and 10% methanol at a flow rate of 0.7 ml min -1. 
Detection was by UV absorbance at 313 nm. Chromatographic 
peaks of known MAAs were identified by UV-speetral comparison 
and by co-chromatography with authenticated standards. New 
MAAs were isolated by chromatography and were chemically iden- 
tified (see preceding section). 
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The chromatographic peak area for each UV-absorbing com- 
pound was converted to molar concentration using purified fraction 
(see preceding section). Purified fractions were quantified using 
published extinction coefficients at the wavelength of maximum 
absorbance (porphyra-334, ~334=43300: Takano etal. 1979; 
shinorine, s334=44668: Tsjuino et al. 1980) and corrected for ex- 
traction efficiency using the method of Dunlap and Chalker (1986). 
Because extinction coefficients for the new compounds, my- 
cosporine-2 glycine and mycosporine-taurine (see below), have not 
yet been determined, the values for the structurally similar com- 
pounds shinorine (see above) and mycosporine-glycine methyl ester 
(~31o=28000; Ito and Hirata 1977) were used, respectively, to 
quantify the novel compounds. 

All data on UV-absorbing compounds were evaluated for treat- 
ment effect by two-way ANOVA (P=0.05; Sokal and Rohlf 1981; 
S tatView 512 +, Brainpower Inc., Calabasas, California, USA), with 
the fixed effects being UV (present or absent) and type of anemone 
(zooxanthellate or apozooxanthellate). Concentrations of individu- 
al compounds in the various groups were compared using the Stu- 
dent-Neuman-Keuls multiple comparison test (Zar 1984). 

Pa r t i t i on ing  o f  mycospo r ine - l i ke  a m i n o  acids  
be tween  hos t  and  zooxan the l l ae  

Zooxanthellate specimens of Anthopleura elegantissima were col- 
lected from Santa Barbara harbor, California, in January 1991 and 
immediately carried to Orono, Maine. An entire large anemone was 
bisected longitudinally. One-half of the anemone was immediately 
frozen and lyophilized, and the other half was homogenized in 
calcium-free artificial seawater (MBL formula 2: Cavanaugh 1975) 
to yield its contained zooxanthellae, which were cleaned and recov- 
ered quantitatively as described in Lesser and Shick (1989), then 
frozen and lyophilized. This method of cleaning and concentrating 
zoxanthellae yields intact algal cells. An aliquot of the crude ho- 
mogenate was removed for determination of total symbiosis (ani- 
mal host + zooxanthella) protein. Both the first half of the anemone 
and the zooxanthellae isolated from the other half were sonicated 
and thrice extracted in 80% methanol on ice, and the clarified 
extracts were analyzed by HPLC using a mobile phase containing 
55 or 75% methanol, as described in "Materials and methods - 
Identification of UV-B-absorbing compounds". The protein con- 
tents of the extracted anemone and of the zooxanthella sample were 
measured by the method of Bradford (1976) using Coomassie Bril- 
liant Blue and bovine gamma globulin standards (Bio-Rad Labora- 
tories). Protein content, and hence MAA concentrations (nmol 
rag- 1 protein), in the host animal tissue were calculated by differ- 
ence (see Dykens et al. 1992). 

Results 
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Fig. 1. Anthopleura elegantissima. (a) UV-visible light absorption 
spectrum of crude methanolic extract of a lyophilized zooxanthel- 
late specimen. (b) UV-visible absorption spectrum of crude aqueous 
extract of a lyophilized zooxanthellate specimen 

Iden t i f i ca t ion  o f  U V - a b s o r b i n g  c o m p o u n d s  

Crude  me thano l i c  ext rac ts  o f  Anthopleura elegantissima 
showed  a b s o r p t i o n  m a x i m a  at  270 and  327 n m  (Fig.  1 a), 
the la t te r  o f  which  sugges ted  the presence o f  M A A s .  
In i t ia l  s epa r a t i on  o f  c leaned me thano l i c  ext rac ts  o f  
A. elegantissima resul ted  in the i so la t ion  o f  four  m a j o r  
c o m p o u n d s  (peaks  1, 2, 3, and  4; Fig.  2 a). Two M A A s  
f rom A. elegantissima were ident i f ied  by  c o - c h r o m a t o g -  
r aphy  with au then t i ca t ed  samples  and  two new M A A s  
were con f i rmed  by  mass  spec t romet ry .  Ex t r ac t ion  effi- 
ciencies for  M A A s  in aqueous  m e t h a n o l  were 95% or  
higher.  

C o m p o u n d  1 had  an  a b s o r p t i o n  m a x i m u m  o f  309 n m  
and  the sulfonic  a m i n o  ac id  t aur ine  was the  sole a m i n o  

acid  to hydro lyze  f rom the m y c o s p o r i n e  c h r o m o p h o r e .  
This  new c o m p o u n d  therefore  was sugges ted  to have  
s t ruc ture  1 (Fig.  3) and  was n a m e d  mycospo r ine - t au r ine .  
The  s t ruc ture  o f  m y c o s p o r i n e - t a u r i n e  [ M t t +  = 296] was 
conf i rmed  by  posi t ive  ion  mass  spec t romet ry .  

C o m p o u n d  2 h a d  an  a b s o r p t i o n  m a x i m u m  at  333 to 
334 nm and  con ta ined  serine and  glycine as the  a m i n o  
acids  a t t ached  to the m y c o s p o r i n e  c h r o m o p h o r e .  These  
charac ter i s t ics  m a t c h e d  those  o f  sh inor ine  (s t ruc ture  2, 
Fig.  3) i so la ted  f rom the red a lga  Chondrus yendoi (Tsuji- 
no  et al. 1980). 

C o m p o u n d  3 had  an a b s o r p t i o n  m a x i m u m  o f  334 nm 
and  c o - c h r o m a t o g r a p h e d  wi th  a s t a n d a r d  o f  p o r p h y r a -  
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Fig. 2. Anthopleura elegantissima. (a) High performance liquid 
chromatography (HPLC) chromatogram of mycosporine-like ami- 
no acids from an 80% methanolic extract of a lyophilized zooxan- 
thellate specimen. Brownlee Spheri-5, RP-8 column and guard; mo- 
bile phase 75% methanol and 0.1% acetic acid (V:V); flow rate 
0.8 ml min-1; detection by absorbance at 340 rim. (b) HPLC chro- 
matogram of mycosporine-like amino acids from an aqueous ex- 
tract of a lyophilized zooxanthellate specimen. Brownlee Spheri-5, 
RP-8 column and guard; mobile phase 10% methanol and 0.1% 
acetic acid (V:V); flow rate 0.7 ml min-1; detection by absorbance 
at 313 nm. 1: mycosporine-taurine; 2: shinorine; 3: porphyra-334; 4: 
mycosporine-2 glycine; ui: unidentified 

334 (extracted from the alga Porphyra tenera, "nori" ;  
Takano et al. 1979), which structure was assigned to com- 
pound 3 in Anthopleura elegantissima (structure 3 in 
Fig. 3). The absence of  porphyra-334 from samples ex- 
tracted with distilled water in the acclimation experiment 
(see next section) was attributed to the different chro- 
matographic method used in the acclimation experiment, 
which was conducted before the improved method was 
discovered. Separation with only 10% methanol in the 
mobile phase caused porphyra-334 to co-elute with 
shinorine (Fig. 2 b). 
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Fig. 3. Anthopleura elegantissima. Structures of mycosporine-like 
amino acids isolated from methanolic extract of lyophilized zooxan- 
thellate specimens, l: mycosporine-taurine; 2: shinorine; 3: por- 
phyra-334; 4:mycosporine-2 glycine 

Compound 4 had an absorption maximum of  331 nm, 
indiciative of  an N-substituted iminomycosporine. Since 
fractionation and alkaline hydrolysis of  compound 4 
yielded only glycine (in approximately twice the molar 
yields as that from mycosporine-glycine), this new com- 
pound was named mycosporine-2 glycine and suggested 
to have structure 4 (Fig. 3). The structure of  my- 
cosporine-2 glycine [MH + = 303] was confirmed by posi- 
tive ion, electrospray mass spectrometry. 

Effects of  algal symbiosis and exposure to UV radiation 

Zooxanthellate specimens of  Anthopleura elegantissima 
had dense populations of  algal endosymbionts, whereas 
apozooxanthellate anemones had none. Since no 
"blooming" of  any vegetative zooxanthellae that might 
have been present in apozooxanthellate specimens of  
A. elegantissima occurred during their acclimation to vis- 
ible light and UV, we concluded that these anemones 
were functionally free of  zooxanthellae. 

Aqueous extracts of  both zooxanthellate (Fig. 1 b) and 
apozooxanthellate (data not shown) specimens acclimat- 
ed in the laboratory had an absorption maximum at 
326 nm and showed seven UV-absorbing peaks (Fig. 2b): 
compounds 1, 2 + 3, 4 (•max 310, 334, and 332 nm, respec- 
tively) and four unidentified peaks as minor constituents. 
Based on UV spectral analysis and co-chromatography 
with authenticated samples (see "Results - Identification 
of  UV-absorbing compounds") ,  compounds 1, 2 (+3 )  
and 4 were identified as mycosporine-taurine, shinorine 
(+  porphyra-334) and mycosporine-2 glycine. Extraction 
efficiencies in double distilled water for these compounds 
(including porphyra-334, which was determined in subse- 
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Fig. 4. Anthopleura elegantissima. Concentrations of major my. 
cosporine-like amino acids (MAAs) (mean_+ SD; n = 5) in specimen 
from Bodega Bay, California, acclimated for 28 d in light with and 
without a UV component. Zooxanthellate specimen have signifi- 
cantly higher concentrations of shinorine (+porphyra-334) and 
mycosporine-2 glycine than do apozooxanthellate anemones 
(P=0.010 and 0.023, respectively) 

(Table 1). All four MAAs identified in this species at 
Bodega Bay were found in the Santa Barbara specimens 
in approximately the same concentrations and ratios. In 
the animal tissue, mycosporine-taurine was the most con- 
centrated, followed in order of decreasing concentration 
by mycosporine-2 glycine, shinorine, and porphyra-334. 
In the zooxanthellae, mycosporine-2 glycine replaced 
mycosporine-taurine as the most abundant MAA, and 
porphyra-334 was present only in trace amounts. Total 
MAA concentration in the zooxanthellae was only about 
12% of that in the animal tissue (Table 1); since zooxan- 
thellae in this specimen made up 11.2% of the protein 
biomass of the whole anemone, it follows that the zoo- 
xanthellae contained only about 1.5 % of the total MAAs 
present in the intact symbiosis, based on tissue protein 
weights. Subsequent trials on zooxanthellae freshly iso- 
lated from the coral Acroporaformosa and cleaned and 
concentrated in the same manner as those from A. elegan- 
tissima showed that MAA concentrations in the coral 
zooxanthellae did not change for at least 2 h post-clean- 
ing (Shick and Dunlap unpublished data), so the MAA 
concentrations reported for zooxanthellae probably are 
representative of those of zooxanthellae in hospite. 

Table 1. Anthopleura elegantissima. Concentrations of mycosporine- 
like amino acids (MAAs) in the symbiosis (host + zooxanthellae) and 
in zooxanthellae quantitatively isolated from one-half of the same 
individual from Santa Barbara, California. Concentrations in the 
animal tissue were calculated by difference, with the information 
that animal tissue constitutes 88.8%, and zooxanthellae 11.2%, of 
the total symbiosis protein in this specimen 

MAA Concentra- Concentra- Concentra- 
tion in tion in tion in host 
symbiosis zooxanthellae (nmol mg- t 
(nmol rag- 1 (nmol rag- 1 animal 
total protein) algal protein) protein) 

Mycosporine-taurine 12.54 0.98 J4.12 
Shinorine 1.70 0.24 1.91 
Porphyra-334 0.62 trace 0.70 
Mycosporine-2 glycine 6.73 1.70 7.58 

Total 21.59 2.92 24.31 

quent analyses) were 99 to 100%. The remaining four 
compounds were in concentrations too low to allow iden- 
tification. 

There was no significant effect of UV exposure on 
the concentration of shinorine (+porphyra-334), my- 
cosporine-2 glycine or mycosporine-taurine (Fig. 4). 
Shinorine (+porphyra-334) and mycosporine-2 glycine 
had significantly higher concentrations in zooxanthellate 
than in apozooxanthellate specimens (P=0.010 and 
0.023, respectively), while mycosporine-taurine showed a 
non-significant trend toward higher concentrations in 
apozooxanthellate specimens (Fig. 4). 

Partitioning of MAAs between host and zooxanthellae 

Concentrations of individual MAAs differed in the ani- 
mal and algal moieties of Anthopleura elegantissima 

Discussion 

We have used mixed-mode, reverse-phase and ion-ex- 
change chromatography to isolate the major mycosporine- 
like amino acids present in Anthopleura elegantissima, 
which were identified as mycosporine-taurine, shinorine, 
porphyra-334, and mycosporine-2 glycine. Of these, my- 
cosporine-taurine and mycosporine-2 glycine have not 
been previously described. 

When the methanol concentration of the mobile phase 
was increased to greater than 40%, the polar MAAs in- 
teracted with the weak anion exchange properties of silica 
(Secreast 1991), or the silica bed of a reverse phase col- 
umn, to give an improved chromatographic separation of 
MAAs. Increasing the methanol content of the mobile 
phase increases the retention of the highly polar my- 
cosporine-like amino acids. This technique allows the iso- 
lation of compounds that are not separated using previ- 
ously published methods (see Nakamura etal. 1982, 
Dunlap et al. 1986) and should allow further investiga- 
tions of other MAAs that cannot otherwise be clearly 
resolved. 

The association of taurine with a mycosporine is note- 
worthy. Taurine constitutes more than 90% of the free 
amino acid pool in Anthopleura elegantissima (Stochaj 
unpublished data) and in the congeneric A. xanthogram- 
mica (Male and Storey 1983). Thus, in addition to being 
an important osmolyte (see Shick 1976, 1991, Kasschau 
et al. 1984), this sulfonic amino acid is also incorporated 
into the predominant MAA in A. elegantissima. By incor- 
porating taurine into a UV-absorbing compound, the 
anemone may be exploiting the ready availability of the 
most concentrated component of its free amino acid 
pool. 

There was no significant effect of UV on the concen- 
tration of MAAs in Anthopleura elegantissima after 28 d 
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of  acclimation (Fig. 4). Similarly, Scelfo (1988 a, b) found 
no significant effect of  visible (full solar spectrum vs com- 
plete darkness) or UV radiation on the levels of  unidenti- 
fied UV-absorbing compounds in this species following 
6 mo of  acclimation. Thus, neither visible light nor  UV 
radiation regulated the levels of MAAs in A. elegantissima. 
Moreover,  we found no significant difference in the 
concentration of  mycosporine-taurine (the most concen- 
trated MAA in this species) between zooxanthellate spec- 
imens from exposed areas and apozooxanthellate 
anemones that normally inhabit deeply shaded habitats, 
and similar concentrations of  shinorine (+porphyra -  
334) and mycosporine-2 glycine in these groups. 

In absolute terms, the concentrations of  the individual 
MAAs in the animal tissues and in the zooxanthellae of  
Anthopleura elegantissima are somewhat lower than in 
the tropical sea anemone, Phyllodiscus semoni (cf. Shick 
et al. 1991). A. elegantissima lives at higher latitudes and 
in relatively turbid waters, and therefore experiences less 
UV exposure than do tropical cnidarians (see Frederick 
et al. 1991). Although some tropical cnidarians vary their 
MAA concentrations according to UV exposure, not all 
do so (see references in "Introduct ion") ,  and the response 
of  A. elegantissima is more like that of  P. semoni, which 
shows only slight increases in MAA concentration during 
long-term acclimation to solar UV, the increase being 
more pronounced in the zooxanthellae than in the animal 
tissue (Shick et al. 1991). Further  studies on the UV pho- 
tophysiology of  cnidarians are necessary to determine 
whether latitudinal differences in solar UV exposure can 
affect tissue concentrations of  these UV-absorbing com- 
pounds and to clarify the ability of  the organisms to 
regulate them. Rather  than regulating the concentrations 
of  its UV-absorbing compounds,  A. elegantissima seem- 
ingly maintains them at a given level, relying on behav- 
ioral mechanisms to protect  against short-term increases 
in UV radiation. This anemone retracts its tentacles in 
response to peak irradiances, moves to less stressful 
photic conditions (i.e., shaded areas) and attaches debris 
to its column, possibly to shield exposed surfaces (Clark 
and Kimeldorf  1971, Pearse 1974, Shick and Dykens 
1984, Shick 1991). 

The source of  MAAs in cnidarians has yet to be iden- 
tified. Favrt-Bonvin et al. (1987) report  that the closely 
related mycosporines in fungi are synthesized via the 
shikimic acid pathway, which occurs only in higher 
plants, algae, bacteria, and fungi (Yoshida 1969, Towers 
and Subba Rao 1972, Floss 1979). Thus, Dunlap and 
Chalker (1986) infer that the MAAs in cnidarians may be 
produced by the endosymbiotic algae and transferred to 
the host. The identification in Anthopleura elegantissima 
and Phyllodiscus semoni (Shick et al. 1991) of  the same 
MAAs in the zooxanthellae as in their respective hosts' 
tissues is consistent with this hypothesis. 

The present study also suggests that symbiosis with 
algae is not  a requirement for the presence of  MAAs in 
cnidarians. All of  the MAAs isolated from zooxanthel- 
late specimens of  Anthopleura elegantissima are also 
found in naturally apozooxanthellate individuals. MAAs 
likewise are present in the apozooxanthellate actiniid 
anemones, Actinia bermudensis (Stochaj 1989) and A. 

tenebrosa (Shick unpublished data). Therefore, these 
compounds, or their precursors, might be of  dietary 
origins, be synthesized by the anemones themselves, or 
come from bacteria harbored in the anemone's coelen- 
teron (see Herndl and Velimirov 1985) or ectodermal tis- 
sue (see Palincsar et al. 1989). 

The diet of  Anthopleura elegantissima in the laborato- 
ry consisted solely of  squid, which contained UV-ab- 
sorbing compounds, two of  which showed chromato- 
graphic retention times similar to MAAs present in 
A. elegantissima (data not shown). Thus, a dietary source 
of  MAAs or related compounds in A. elegantissima in the 
acclimation experiments was possible. Dunlap etal .  
(1991) presented evidence that the MAAs present in a 
variety of  tropical holothuroid echinoderms are of  di- 
etary origin. Grant  et al. (1985) suggested that the brine 
shrimp, Artemia sp., is capable of  synthesizing gadusol 
(structurally similar to MAAs), perhaps via an acetate 
pathway (Grant  et al. 1980, Favrt-Bonvin et al. 1987). It 
is unknown whether cnidarians possess a similar pathway 
for the synthesis of  MAAs. 

Our data on naturally apozooxanthellate specimens 
indicate that the presence of  MAAs in the animal tissue 
is not absolutely linked to the presence of  zooxanthellae, 
but the data do not rule out a dietary or bacterial source 
of  MAAs. The finding of  the same complement of  MAAs 
in the zooxanthellae as in the animal tissue from which 
the zooxanthellae were isolated suggests some exchange 
of  these compounds between host and symbionts, al- 
though the direction of such transfer is unknown. The 
much higher concentration of  MAAs in the animal than 
in the zooxanthellae suggests that, in this symbiosis, the 
host tissue is the first line of  defense against solar UV. 
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