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S.P. Lalley* 

Department of Mathematical Statistics, Columbia University, New York, NY 10027, USA 

Summary. A renewal theorem is obtained for stationary sequences of the 
form ~,=~( . . . ,  Xn_ ~, X,, X,+I ,  ...), where X,, n~Z, are i.i.d.r.v.s, valued in 
a Polish space. This class of processes is sufficiently broad to encompass 
functionals of recurrent Markov chains, functionals of stationary Gaussian 
processes, and functionals of one-dimensional Gibbs states. The theorem is 
proved by a new coupling construction. 

O. Introduction 

Let ~1, ~2 . . . .  be a sequence of i.i.d, nonnegative random variables with finite 
expectation and a nonarithmetic distribution. A well-known consequence of 
Blackwell's renewal theorem is that if S n = ~ l + ~ 2 + ' " + ~ n  and r(b) 
= rain {n: S, > b}, then S~(b) - -  b converges in distribution as b ~ ~ .  

The main result of this paper is a generalization of the aforementioned 
theorem to certain stationary sequences of random variables ~1, 42,-.. .  The 
class of stationary sequences considered encompasses a large number of in- 
teresting special cases, including (a) ~,=~(X,),  where X, is a stationary, re- 
current Markov chain on a Polish space; (b) ~,=~(T"X),  where T is an 
ergodic automorphism of a compact abelian group and X is uniformly distrib- 
uted; (c) ~n a stationary Gaussian sequence with a C ~ spectral density; and (d) 
~,=~(T"X),  where T is the forward shift operator and X is distributed on 
{1, 2 . . . . .  k} Z according to a Gibbs measure. 

Renewal theorems for various classes of stationary sequences have been 
proved by a number of authors. For functions of Markov chains, renewal 
theorems have been established by Orey (1961), Jacod (1971), Kesten (1974), 
and Athreya, Mac Donald, and Ney (1978). For flows over the shift (example 
(d) above) a theorem much stronger than the renewal theorem has been proved 
by Ratner (1978). Berbee (1979) gives a number of renewal theorems for 
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stationary sequences, but under stringent Markov-like conditions which rule 
out most of the examples mentioned above. 

The approach taken in this paper is based on a coupling construction. The 
main thrust of the argument is similar to that of Lalley (1984); the primary 
novelty is in the construction of the coupling times. 

1. Statement of Principal Results 

Let X~, neZ, be a stationary, ergodic, x-valued sequence defined on a probabil- 
ity space (O, ~ P), where )~ is a complete, separable, metric space. We shall use 
the boldface notation X,, to denote the entire sequence X ,  shifted m units 
forward: thus the n th coordinate of Xm is Xm+ .. We shall also use the boldface 
notation for other z-valued sequences of random variables or constants, e.g., 

t X m, xm. 
Suppose ~ : Z z ~ N  is a measurable function. Define real-valued random 

variables 

(1.1) 

~. = ~(x.) (neZ) 
s .=~+ . . .+~ .  (n>O) 
S o =0  

Sn~---(~o~-~_l'-t-...~-~_n+l) (n<O) 
z(b) = inf {neTZ : S. > b} (beN). 

The main results of this paper will concern the quantities Sr and Xr as 
b--,oe. As in traditional renewal theory it is useful to allow for an "initial 
delay" in the system. Thus throughout the paper S* will be an arbitrary real 
random variable defined on (~2, ~ ) ,  and 

S.=S  o+S. (neZ) 
(1.2) z* (b) = inf {neZ: S* > b} 

= z ( b - S * )  (bMR). 
Let 

(1.3) 5P = {2: Zz~ [0, ~ )  Borel measurable, such that E2(X0)= 1}. 

For each 2 e 5  ~ define a probability measure Px on (f2, ~ )  

(1.4) dPx _ 2(Xo). 
dP 

The main results of the paper will be valid for all of the probability measures 
P~, 2eY.  

Special Flow under ~ > 0 :  If the function 3: Z z ~ ] R  in (1.10) satisfies ~>0  and 
E~(Xo)< oe, then the special flow under ~ is defined to be the process 

(1.5) (X~,(b); S~,(b~ -- b), b > 0 
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on the probability space (~2, ~,, Px.), where 

~,(Xo) = ~(Xo)/E ~(Xo), 
(1.6) S~ = ~o Uo, 

U o being independent of X,,  neZ,  and uniformly distributed on (0, 1). It is 
well-known (and easy to prove, cf. Cornfeld et al. (1982), Ch. 11, Lemma 1) that 
the special flow is stationary (in b) on the state space ~ (<)=  {(x, s): xe;~ z and 
O<s__<~(x)). 

Homology. Two functions f, g: ZZ~IR (both measurable) are said to be "homo- 
logous" if there exists a measurable (: g~-~ IR such that 

(1.7) f ( X o ) - g ( X o ) = ( ( X o ) - ( ( X 1 )  A.S. (P); 

they are said to be "LP-homologous '' if there exists ( e L  p satisfying (1.7). I f f  is 
LP-homologous to zero then f will be called LP-null homologous; if f is 
homologous to an integer-valued g, then f will be called Z-homologous. 

Notice that homology is an equivalence relation. Also, if f and g are 
homologous by (, then 

(1.8) f ( X , ) -  g(X,) = ( ( X , ) -  ((X,+ l) A.S. (P) 

for all neZ,  since {X,},~ z is stationary under P. 

Functions with Fading Memories. The sequence ~ ,  neZ,  will be said to have 
fading memory if 

(1.9) 

and 

(1.10) 

lim E sup [(S.__ m -Sin)-E(S.+ m -Sin I ~~ = o  
m ~ o o  n > l  

lim E sup [(S . . . .  - S _ m ) - E ( S  . . . .  - S_m t 4 o o ) 1  = 0  
m ~ o o  n__>l 

where S. is as in (1.1) and 

(1.11) 
o~-oo 
~r =a(Xm, Xm+ l, Xm+ 2, "")' 

.~moo=O(Xm, Xm_ l, Xm_ 2, ...). 

Limiting Excess Distribution. If El~o[ < or, define the limiting excess distribu- 
tion H by 

(1.12) 

where 

(1.13) 

H(r; F ) :  G(r; F)/G(O; )~z), 

G(r; F)= ~ P { m a x S . < - s ; X o e F  } ds 
r n < O  
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for real r > 0  and Borel sets Fc~( z. Notice that for each F, H(r;F) is con- 
tinuous and nonincreasing in r. When ~ > 0, 

co 

(1.14) H(r; F)= j" P{(o>S; XoeF } ds/E~ o. 
r 

Theorem 1. Suppose that under P the random variables {Xn}n~ z are i.i.d. Suppose 
also that El~o[<Oo, E~o>0 , ~, has fading memory, and that no nonzero scalar 
multiple of ~ is Z-homologous. Then for every re[0, oo), all Borel cylinder sets 
F o, F 1 cX ~, every ~ . ~  and every initial delay variable S*, 

(1.15) lim Px{S~*(b)-b>r; X~.(b)GF1; XoeFo} =H(r;  F1) Pa{X0eF0}. 
b ~  

The implicit hypothesis that the random variables X,, take their values in a 
complete, separable metric space is probably extraneous. The only part of the 
proof where this is used is in Proposition 6 below; I suspect this may hold 
under the weaker assumption that (X, 5") is a separable measurable space. 

Although Theorem 1 applies directly only to functionals {(.) of i.i.d, se- 
quences X,,  it may be used indirectly to obtain renewal theorems for function- 
als of other ergodic sequences which contain "regeneration points". For exam- 
ple, a stationary, recurrent Markov chain on a denumerable state space may 
always be constructed by piecing together i.i.d. "words" of symbols from the 
state space. Athreya and Ney (1978) have shown that this may also be accom- 
plished for certain Harris-recurrent chains on nondenumerable state spaces. 
Thus some of the standard renewal theorems for functionals of such Markov 
chains (cf. Athreya, Mac Donald, and Ney (1978)) may be recovered from our 
Theorem 1. Moreover, Theorem 1 applies to a much larger class of functionals: 
the theorems of Athreya et al. and their predecessors stipulate that the func- 
tional {(.) depend on only finitely many coordinates of the sequence X,. 

Recently I have shown that regeneration points exist for a class of sta- 
tionary processes known as "chains with complete connections" (cf. Lalley 
(1986)). A chain with complete connections is a stationary sequence X,,  neZ, 
valued in a finite set X, whose distribution on X z is a Gibbs state in the sense of 
Bowen (1975). Many important dynamical systems, including ergodic automor- 
phisms of compact groups, certain Anosov and Axiom A diffeomorphisms of 
compact manifolds, certain measure-preserving maps of the unit interval, etc., 
may be "simulated" by chains with complete connections (cf. Bowen (1975) 
and Katznelson (1971)). Proposition 5 below shows that any function {: Xz-~IR 
which is H/51der continuous (cf. the discussion following Proposition 5 below) 
gives rise to a sequence {,= {(X,) with fading memory, provided X, is a chain 
with complete connections. Thus Theorem 1 applies to a large class of func- 
tionals on chains with complete connections, and, by extension, to functionals 
on those dynamical systems which may be simulated by a chain with complete 
connections. 

Under what circumstances will a function {:)~Z+lR not be Z-homologous? 
Suppose U 0 is a random variable on (~, ~ P) which is uniformly distributed 
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on (0, 1) and is independent of the stationary sequence {X,},~e. Let 

(1.16) U,+ 1 =(U~+ ~,+ 1) mod 1 V n~7Z. 

Then the sequence {(X,, U,)},~e is stationary, as is easily verified: it will be 
referred to as the skew product sequence for the function ~. 

Proposition 1. I f  {X,},~e is ergodic under P, then the skew product sequence is 
ergodic iff ~ is not Z-homologous. 

This result is due to Anzai (1951) (cf. also Petersen (1983), Ch. 2, Theorem 
4.8). For moving average processes, a sufficient condition is given in 

Proposition 2. Suppose {a.}.~ Z is a sequence of real numbers such that 

(1.17) ~la, l<oo and ~ a , : # 0 .  
n n 

Suppose {X,},~ z are i.i.d. N-valued random variables with a nonlattice distribu- 
tion (i.e., there do not exist ~ : 0 ,  fl such that P {aX,+ f iJZ}=I) .  Let 

(1.18) ~(Xo)= ~, a,x,. 
n ~ Z  

Then no nonzero scalar multiple of ~ is Z-homologous. 

Proposition 2 may be derived from Proposition 1: in fact it may be shown 
by a coupling argument that under the hypotheses of Proposition 2 the skew 
product sequence is mixing. Since this coupling argument is similar to the 
argument of Sect. 3 it is omitted. 

Sufficient conditions for a sequence ~,=~(X,) to have fading memory are 
given in the next three propositions. 

X, ,  n~7Z, be i.i.d, real-valued random variables with Proposition 3. Let 
E IXo] < 0% and let 

(1.19) 

for constants a, satisfying 

(1.20) 

~(Xo)= Y. a.x~ 
n =  co 

InGI < oo. Then 
n =  - -  c o  

EIG-E(GIGCO)I+ ~ EIC.-E(~_.l~~ oo. 
n = l  n = l  

Proof An easy calculation shows that 

hence 

~.-~(r = E (G-EG)a~_., 
k _ < 0  

EIG-E(G[~CO)I~ ~, EIX~-EXkl ~ lak_.l 
n =  I k < O  n =  1 

<2EIXol  ~ nla_,l <oo. 
n = l  

A similar calculation gives the other inequality. [] 
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Proposition 4. Let f: P..~IR be any uniformly Lipschitz continuous function. 
Suppose 4~ = ~(X.) satisfies 

(1.21) ~ EI~.-E(~.I~)I+ ~ EI~_.-E(~_.I ~_~ ~. 
n = l  n = l  

Then 3" =f(~,)  has fading memory. 

Proof Since f is uniformly Lipschitz continuous, there is a constant C <  oe 
such that [f(x)-f(y)] < Clx-y[ for all x, yeP,. Hence 

Lf(~,) - E(f(~,) I ~ o ) [  

]f(~o) - f ( E ( ~ ,  I ~~ + IE(f(E(~, I ~ ) )  - f ( 4 , )  I ~t*)l 

so (1.9) follows easily from (1.21). A similar argument gives (1.10). [] 

Let 4: g z ~ l R  be Borel measurable; define 

(1.22) %(~)=sup {14(Xo)-~.(x;)l: Xo, xLzg z such that x~=x',, for Iml-<_n}. 

Proposition 5. Let X,, ne7Z., be any stationary, ergodic, x-valued sequence, and 

let ~,=~(X,). If ~ c~,(~)< m, then (1.21) is satisfied. 
n = l  

Proof. It is easily verified that 

In the study of one-dimensional Gibbs states (cf. Bowen (1975)), Z is finite 
and of particular importance are the "Holder  continuous" functions 4: Z g~IR,  
i.e., those for which ct,(~)~0 at an exponential rate. By Propositions 4 and 5, 
such functions give rise to sequence 4 ,=  4(X,) with fading memory. 

Notice that if ~ is any function on Z g which depends on only finitely many 
coordinates then 3 ,=  ~(X,) has fading memory. Thus Theorem 1 applies, pro- 
vided the homology assumption is satisfied. 

It follows from Propositions 2-4 that the hypotheses of Theorem 1 are 
satisfied for a large class of linear (moving average) processes. In particular, if 
a,, neZ  satisfy Y~lna~ 

nr 

and 

an=~O, 
n 6 Z  

and if X,,  n~Z, are i.i.d, real-valued r.v.s, with a nonlattice distribution, then 
(1.15) holds for 

~,,= ~ a,X,+,,, 
n~Z 
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provided E~0>0.  It is well known that every stationary Gaussian sequence ~, 
with C ~ spectral density has this form. 

The rest of the paper is devoted to the proof of Theorem 1. Null homology 
is characterized in Sect. 2; coupling times are constructed in Sect. 3; ergodic 
theorems for the first-passage process are obtained in Sect. 4; and the con- 
nection between the existence of coupling times and the ergodic theorems is 
made in Sect. 5, completing the circle. 

The hypotheses of Theorem 1 will be in force throughout Sects. 3-5. In 
Sect. 2 we assume only that X,,  neZ  is a stationary sequence with values in X, 
a complete separable metric space. 

2. Null Homology 

The notion of homology figures into the proof of Theorem 2 in two different 
ways. The fact that ~ is not homologous to a constant is crucial in proving the 
existence of a coupling (cf. Sect. 3, Lemma 1). The stronger assumption that ~ is 
not Z-homologous enables us to use the ergodic theorem (cf. Proposition 1 and 
Proposition 8). 

Proposition 6. Suppose 4: Z ~ ~ ~ is Borel measurable, satisfying 

El~(Xo)t--El~.01 < c~. 

Then ~ is Ll-null homologous iff the random variables Sn= i ~j, n>0,  are L 1- 
bounded, j :  1 

Proof It is obvious that if ~ is Ll-null homologous then the partial sums 
{Sn}.~ o are Ll-bounded, because if ~. =~(X.)-~(X.+ a) then 

E IS.I-- E I ((Xo) - ~(X.+ 1)[--< 2E I ~(Xo)l. 

Suppose now that q[S,[ll=<l for all n > l .  For real r, 0 < r < l ,  and me~,  
define 

(2.1) w~(r)= y~ ~m+~ 
n>O 

Notice that this sum converges absolutely with probability one, since 

E(Z 1r Z EIG+,,Ir"< Zr". 
n>__O n>0 n>0 

Thus by Fubini's Theorem it is permissible to sum by parts, whence 

W l ( r ) =  i Sn( rn-l-rn)" 
n = l  

Since I[S.][1__<1 for all n > l ,  it follows immediately that ][Wl(r)[11__<1 for all 
O < r < l .  Moreover, since for each r the process {W,.(r)},n~7 is stationary, it 
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follows that 

(2.2) IlW~(r)ll,~l Vm~Z, Vr, O<r<l .  

Now the set of L 1 random variables measurable with respect to a(. . . ,  X 1, 
X 0, X, ,  X 2 . . . .  ) may be considered a subspace of M(zZwA), the set of finite 
signed Borel measures on )fwA, the one-point compactification of )~z. Because 
of (2.2) and the separability of )~, Helly's Selection Theorem implies that there 
exist wM(zZwA) and a sequence rk]'l such that for every continuous function 
f :  ( ) fu  A)--+ ~ ,  

(2.3) Ef(Xo) Wo(rk)--+ ~ fdv. 
ZZw A 

Furthermore, according to the Lebesgue Decomposition and Radon-Nikodym 
theorems there exist a Borel-measurable ~: Xg~]R and a measure vlEM(~ZuA) 
such that 

(2.4) E [((Xo) I < oo, 

v 1 is singular w.r.t. @(Xo) , and 

S fdv=Ef(Xo)((Xo)+ ~ f dvl 
x~A zz~ 

for every continuous function f :  ()~ZwA)~IR. We will conclude the proof by 
showing that 

(2.5) ~,0 = {(Xo) = ~(Xo)- ~(X,) A.S. 

Observe that 

Wo(r) - w, (r)= 4o + ( r -  1) Wl (r) 
L 1 

' 40 as rT1, 

in view of (2.2). Consequently, for any continuous f :  (zZwA)--,R, 

(2.6) E [f(Xo) - f ( X _  1)] Wo (r) = Ef(Xo)[ W o (r) - W 1 (r)] 

--+ Ef(Xo) 4o 

as r]'l. Now the map x 0 ~ f ( X o ) - f ( x  0 (A~0)  is a continuous function on 
~ u A ,  since the backward shift map x o ~ x 1 is a homeomorphism of Z Z which 
extends to a homeomorphism of ) f u A  by A--,A, so we may apply (2.3) to 
LHS (2.6) to obtain 

E [f(Xo) - f ( X _ l ) ]  W0 (rk) 

S [ - f ( X o ) - f ( x  1)] v(dxo), 
ZIZw A 

Combining this with (2.4) and (2.6) yields 

k ~ o e .  
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(2.7) Ef(Xo) 3o = E [f(Xo) - f i X _  1)] -~(Xo) 

+ ~ [ f (Xo) - f (x_ l ) ]Vl (dxo)  
g~u A 

= Ef(Xo) [~(Xo)- ~(X~)] 

+ ~ f(Xo)[vl(dxo)-vl(dxa)]  
z~a  

for all continuous f :  zZuA--,IR. But v 1 (dxo) , and hence also v 1 (dxo)-v l (dx l ) ,  
are singular with respect to ~(Xo): thus (2.7) implies vl(dxo)= v 1 (dxi) and 

Ef(Xo) r = Ef(Xo) [((Xo) - ((X,)] 

for all continuous f :  zZwA ~IR.  This proves (2.5), by the Riesz Representation 
Theorem. [] 

There is a similar characterization of U-null homology: 

Proposition 6'. Suppose ~: Zz--*lR is Borel measurable, satisfying E[~o[2<oo. 

Then ~ is L2-null homologous iff the random variables S ,=  i ~,, n>0,  are L 2- 
bounded, j = 1 

The proof is similar to that of Proposition 6, but easier, since one may use 
the L 2 weak topology and avoid the singular part v I altogether. 

3. Construction of Coupling Times 

The purpose of this section is to construct "coupling times", i.e., random times 
at which two random walks with different initial conditions meet and there- 
after coalesce in some approximate sense. This construction differs from cou- 
pling constructions for Markov and semi-Markov processes (cf., for example, 
Lindvall (1977), Ney (1981), and Lalley (1984)) in that the Markov property 
cannot be used to arrange "coalescence" after meeting. 

Recall that under the hypothesis of Theorem 1 Xn, nE2g, are i.i.d.r.v.s, and 
that ~ = ~(Xn) where 

(3.1) El~o[< oo; 

(3.2) ~ is not Ll-null homologous; 

(3.3) Cn has fading memory. 

Proposition 7. There exists h > 0  such that for every integer k, every integer 
mo>=O , and every real ~>0 there exist sequences X'n, X'~' of z-valued r.v.s, and a 
nonnegative, integer-valued random time T= T(hk; ~) satisfying 

(3.4) the sequences {X',}n~ z and {X~'},~ are each identical in law to {Xn},~; 

(3.5) X'~=X~ V m > T ,  Vm<m0; 

( 3 . 6 )  n ) - ~ ( X . ) ) - h k  >e  for some m> <a 
n 
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The random walks Z ~(X;) and Z ~(X'~')+hk are coupled at time T in the 
n = l  n = l  

sense that with high probability they stay within e of each other after time T. 
The rest of this section is devoted to the proof of Proposition 7. 

Suppose ._,Y(o), nJZ,  and ~v(b),, n ~ Z ,  are independent copies of the sequence 
X,, n~Z. For each A c Z  define 

(3.7) X , ( A ) = X ' h  b) if n e A ,  

-X.-  (") if nq~A; 

(3.8) ~.(A) = ~ (X.(A)). 

Observe that for every A c Z  the sequence X . ( A )  has the same distribution as 
the sequence X.. 

For m > 0, define 

(3.10) 

provided 

~ m  (3.9) tim- E sup I(S.+ m -- Sm) -- E((S.+. ,  - Sm) I ~o~)l, 
n > l  

tim - E  supl(S . . . .  - S _ m ) - E ( ( S  . m-S-m) l~ ) l ,  
n = > l  

/L=~*+fim. 

By hypothesis, ~ has fading memory, so fim~O as m~oo .  By the triangle 
inequality and the stationarity of X~, 

E sup ~ (r162 <16flm 
n l  <~k=<n2 O =r l  1 

n I --m, n I - - r e+ l ,  n I - -m+2  . . . .  , n z + m ~ A A A * .  

(Here A denotes the symmetric difference of the two sets. It is possible that the 
constant 16 might be improved.) 

Let A m = { -  m, - m + 1, ..., m -  1, m}. 

Lemma 1. There exis ts  a nonnegat ive integer m ,  such that 

k 

(3.11) ( = D -  lim ~ (~,(qS)-~,(Am,)) 
k~oo  n - - - - k  

exists  and is not a.s. zero. 

Notice that E~=0,  because each of the sums in (3.11) has a distribution 
which is symmetric about zero. 

Lemma 1 depends heavily on the hypothesis that ~ is not homologous to a 
constant. This is where the characterization of D-null homology given in 
Proposition 6 will be used. 

Proof. By (3.10), 
EI ~ (~.(qS)- ~.(Am.)) I < 32ilk _ , . ,_1 ,  

k<n<=m 

provided k > m , .  Since f i ~ 0  as n ~  it follows that the sums in (3.11) 
converge in D regardless of how m, is chosen. 
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To prove that ~ is not a.s. zero it suffices to show that E[~I>0. First, 
observe that there is an integer m I sufficiently large that 

E .=~_~ (~.(Am, + ~ ) -  ~.(Z)) <i  

for every nonnegative integer m 2" this follows from (3.10) and the fact that 
ft,-+0 as n~oo .  Next, notice that by the triangle inequality and Fatou's 
Lemma, together with (3.10), 

E[ ~ (~,(A,.,+,,~)-{,((o))l<16m1E[~ol+ 32fio 
I,,l >r,,~ 

(write ~, = ~, + Z + Z )" The important feature of this 
Inl > m 2  n<-ml-m2 mz<lnl<ml+m 2 n>=ml+m2 

inequality is that  the bound doesn't depend on m 2. Finally, observe that 

E n=m2 lim ~ (~,(~b)- ~,(2g)) = oe 
m 2 ~  co rn 2 

by Proposition 6. Hence, by choosing m 2 sufficiently large and setting m, =m~ 
+m 2 we force El( I>0.  [] 

Proof of Proposition 7. Let {(X(,")(k), X~)(k))},~z, k = l , 2 ,  ..., be independent 
sequences satisfying 

(3.12) X(,")(k)=X~)(k) V In[ > m , ;  

X~)(k), neZ, and X~b)(k), [n[<m,,  are i.i.d.; 

~(x~)(k))=~(x~)(k))=~(Xo) v n~Z, 

where m, is the integer provided by Lemma 1. Lemma 1 implies that the r.v.s. 
(k, k = 1, 2, ..., defined by 

~k = ~, (r 
t l ~  - c o  

are i.i.d., with mean zero, but with nondegenerate distribution. 
The plan is to construct X'n, X~' by splicing together segments of the 

X. (k), sequences (") X~ )(k). Let 

5Pk = a (X(,")(j), X~)(j), neZ,  1 <j=< k), k = 1, 2, ..., 

and let t be a stopping time relative to the filtration 5~ k. Choose integers 
O<mo<mx<mz<.. .  (where m o is as in the statement of Proposition 7) such 
that flmk ~ (~k 

for a small 3>0 :  this is possible because by hypothesis in has fading memory, 
hence fim--~0. Define integers nl, n 2 . . . .  , and i(1), i(2), ... by 

n 1=4m 1 + 2 m , + 1 ,  

nk+ 1 =nkq-4mk+ 1 + 2 m ,  + 1, 

i(k) = n k -  2m k -  m.. 
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(o) (b) 

2m~ 

2m 2 2m 2 

'~ I _ ~ _ _ , ~  

2m~ 2m t 
. . . . .  

(c) 

JJ , " ,  - 

(t.l) 
Fig. 1 

Finally, define 
, _ (a) 

Xn-Xn_i(I)(1), n<na, 
_ (a) -X,_i(k)(k), ng_l<n<=nk, k<=t, 

= X(~a)(t + 1), nt<n; 

X~'=X~)i(1)(1), n<n 1, 

=X~)ir nk_l<n<nk, k<t, 

= x(,a)(t + 1), nt<n 

(cf. Fig. 1). Observe that  X',=X" for n<m o and n>n r 
It is easily verified, using (3.12) and the fact that  t is a stopping time 

relative to the filtration 5~k, that  the sequences X', and X" are each identical in 
law to the sequence X, .  Moreover,  since the sequences X', and X" were created 
by independent substitutions, inequality (3.10) is applicable. Thus, 

nl--ml --~l 

(3.13) E ~ (~(X',)-~(X")) <32tim,; 
n = O  

,j+l-mj+l (~ (X , ) -  ~ (X , ) ) -  ~j+ 1 E ~ ' " __<64fimj+ 1 if t > = j + l  a.s.; 
n=nj--mjq- i 

sup nk~+~--, 
E (~(X',)-~(X~)) <32fl,,k if t=k  a.s. 

j > l  n=nk--mk+l 

It follows that if t is any stopping time satisfying t __> 1 a.s., then 

(3.14) E .j+l~mj+l , ,, l { t>=j+l}<-64f lmj+~,  . = . j -  mj+ 1 (~ (X . ) - -  ~ (X . ) ) - -  ~j+ 
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and 

"~- ~"~+; -- ~ (X~')) (3.15) E sup Z (~(X;) 
j = l  n=nt_mt+l 
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< 32 ~ tim/ 
j = l  

To finish the construction we must specify the stopping time t. Recall that 
by Lemma 1 the r.v.s. ~ ,  ff2 . . . .  are i.i.d., with mean zero, and with a nonde- 
generate distribution. Let G be the smallest closed subgroup of F, such that 
P{~k~G}=I; for g~G and e , > 0  define 

t = t ( g , e , ) = m i n { n > l :  k~= (k--g < e , } .  

By the well-known recurrence theorem for one-dimensional random walks, 
t < oo a.s. For a suitably small value of e, > 0, define 

T=  T(g; ~) = nt(g ' ~,)-mt(g ' ~,)+ 1. 

It is evident from the construction that (3.4) and (3.5) are valid. To verify (3.6), 
we observe that by (3.13)-(3.15) 

t ca3 

Int--mt+j X' ~=1~ k <96j~=1fimj<=966/(1-6); Esup  ~o (4( , ) -~(X~' ) ) -  k 
j_>-i n 

therefore, if 3 > 0  and ~ , > 0  are chosen sufficiently small, (3.6) must hold. []  

4. Ergodic Theorem for First Passages 

Recall that z(b), r*(b) are the first passage times to (b, oo) by S,, S* respectively 
(cf. (1.1) and (1.2)). Recall also that by Anzai's theorem (Proposition 1) the 
skew product sequence (X., U,), n>0,  is ergodic under the hypotheses of 
Theorem 1. Finally, recall that s is the set of "likelihood ratios" with respect 
to P (cf. (1.3)-(1.4)). 

For real r>0 ,  beN,  and Borel measurable F e Z  z, define 

J(b)=J(b; r, F ) =  1 {S~(b)- b > r ;  X~(b)~F}, 
(4.1) 

d*(b)=J*(b; r, F ) =  1 {S**(b ) - b  > r ;  X~,(b)~F}. 

The object of this section is to prove 

Proposition 8. Suppose that under P the skew product sequence (X n, U,) is 
ergodic, that E]~0]<oo, E ~ 0 = # > 0 ,  and that S*>O a.s. Then for each 2 ~ ' ,  
r>0 ,  6>0 ,  and Borel measurable F e Z  z, 

I } (4.2) lim supP~ m 1 ~" J* (b+k;r ,F) -H(r ;F)  >6 =0. 
r a~m b_->O I I  k = l  

The proof will proceed in two stages. First, it will be shown that the proposi- 
tion is true under the additional assumption that 3 , > 0  a.s. Then it will be 
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shown that by breaking the process up into "ladder epochs" one may deduce 
the general case from the case of positive increments. 

4A. Positive Incremems 

Assume that ~ ,>0  a.s. Recall that in this case H(r; F) is given by (1.14). The 
ergodicity of the skew product will be used to establish 

Lemma 2. Let S* = U o. Then for every r=0 ,  5 > 0, and every Borel measurable 
F c Z z, 

(4.3) lim P m -~ ~ J * ( k ; r , F ) - H ( r ;  >~5 =0. 
m ~  oo L [  k = i 

Proof. Since S,/n-- ,#>O a.s., it follows that z * ( m ) / m ~ #  -1 a.s. Let e>0;  then 
on the event { (1 - e) # -  1 < z* (m)/m < (1 + e) # -  1 }, 

m -~ y~ [[~.+~+ w.-r]]+ I{X.+I~F} 
n: 1 =<n+ 1 < m ( 1 - D / ~ -  1 

<__m -1 ~ J*(k ;r ,F)  
k = l  

<-~m-1 E [[~n+l-[-Un-Yl]+ i {Xn+ 1 EF}' 
n: l = < n +  1 - < m ( l + D , u  - 1  

where [ [ . ] ]  denotes the greatest integer function. This is because in making a 
jump of size ~,+1 at time n the random walk S* jumps over [[~,+a + U , - r ] ] +  
points k by a distance of at least r. 

Now, by the ergodicity of the skew product sequence and Birkhoffs ergodic 
theorem the extreme sides of the last inequality converge, as m - ~ ,  to (1 
- 0 t t  -~ E[[~ 1 + U o -  r]]+ 1 {X 1 eF} and (1 + 0  #-  a EliZa + Uo - r ] ] +  1 {X 1 eF}, 
respectively. Since U o is independent of X o and is uniformly distributed on 
(0, 1), 

E [ [ ~  + U o - r ] ] +  1 {XleF } =#H(r ;  F), 

as an easy calculation shows. This proves (4.3). [] 

Lemma 3. Let S*= U o. Then for every r>O, 6>0,  and b>=O, and every Borel 
measurable F c Z ~, 

(4.4) l i m P  m -~ ~ J * ( b + k ; r , F ) - H ( r ; F )  >6 =0. 
m ~  oo k l  k = 1 

Proof. For x~lR let <x> denote the fractional part of x, i.e., <x) = x -  [[x]]. Let 
U , =  <b-U0};  since U o is independent of X o and is uniformly distributed on 
(0, 1), so is U,. 

Now for any b > O, 

x ~ J * ( b + k ; r , F ) - m  1 ~ J ( k - U . ; r , F )  < m - l [ [ 2 b + 2 ] ] ,  m 

k = l  k = l  
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because the two sums differ only in the [ [ 2 b + 2 ] ]  boundary terms. 
Lemma 2 applies with S* = U., giving 

l i fnP{m-lk~=lJ(k-U.;r,F)-H(r;F) > 3 } = 0  

for all 6 > 0. The result (4.4) follows. [] 

Lemma 4. Let 2 ~  and let S~ be any nonnegative random variable. Then 

(4.5) l imPz tm- l~ j* (b+k;r ,F) -H(r ;F)>6}=O 
m ~  oo L[ k = 1 

Vr>0 ,  7 3 > 0 ,  Vb>O 
/if 

(4.6) 

Similarly, 

(4.7) 

~f 

(4.8) 

But 

f 
lim P; ~ m i 

l k = l i  J(b+k;r,F)-H(r;F) >6}=0 

Vr>0,  V6>0 ,  Vb>0 .  

t " F ) >  } lim supPz m -1 ~ J * ( b + k ; r , F ) - H ( r ;  6 = 0  
m~oo b=>O (.I k = l  

Yr>0 ,  Y 6 > 0  

t m F) } lim s u p P  a m -1 ~ J(b+k;r,F)-H(r; > 6  = 0  
,.~oo b_->o LI k=l 

Vr>0 ,  V6>0.  

Consequently, if (4.5) (or (4.7)) holds for some nonnegative r.v. S*, then it holds 
for every nonnegative r.v. S*. Observe that by Lemma 3 (4.5) holds for every 
S~ > 0  when 2 - 1 .  But clearly if (4.5) holds for 2 - 1  then it holds for every 2 e ~ .  
Thus we have 

C o r o l l a r y  1. Let 2e<LP and let S8 be any nonnegative random variable. Then (4.5) 
holds. 

Proof of Lemma 4. This is an easy consequence of the continuity in r of 
H(r; F). The idea is to partition the probability space into the events 

G(i; n)= {i/n<S~ < ( i +  1)/n} 

where n is so large that H(r+2/n; F)-H(r-2/n; F) is small compared to 3. On 
G(i; n) the random variable J(b; r, F) is bounded above and below by J*(b+(i 
+l)/n;r-1/n) and J*(b+i/n; r+l/n,F), and similarly J*(b;r,F) may be 
bounded above and below. The equivalence of (4.5) and (4.6), and of (4.7) and 
(4.8), follows by routine arguments based on these bounds. [] 

The proof of Proposition 8 in the special case ~ , > 0  is now easily com- 
pleted. By Lemma 4, to prove (4.2) it suffices to consider the special case S* 
=30 Uo. Moreover, to prove (4.2) for arbitrary 2 ~  ~ it suffices to consider the 
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special case 2 , = ~ o #  -~ since Px~P~, for all 2 e S .  But if S*=r  U o then under 
P;., the process (S~,(b) b; X~,(b)), b>0 ,  is stationary (it is the "special flow under 
~" defined in Sect. 1); thus, 

b>=oSUp Pz*{ m-l  ~ J*(b+k; r 'F)-H(r; F) 

=P~,{m-lk~lJ*(k; r ,F) -H(r;F)>5} .  

Therefore, (4.2) for 2 = 2 ,  and S~=~0 U o follows from Corollary 1. [] 

4 B. The General Case 

We shall reduce the general case to the special case considered in 4A. Define 
ladder indices v(k), kEZ, ladder increments ~ ,  k~7Z, and ladder states (X~, U~), 
k~7Z by 

v(O)=max{n<O: S,,>Sn_ i V i > l } ;  

v(k+ 1)= min {n>v(k): S. > S.(k)}, k>O; 

v(k-1)=max{n<v(k):S.>S._ i V i<I} ,  k<O; 

~ = Sv~k) - Sv~k- 1); 

vs v~k,; 
Xk~--- (X1 +v(k- 1), Xz+v(k-  t), " " ,  Xv(k))" 

Observe that the ladder indices are well-defined, because by the ergodic theo- 
rem S,--, + oe as n ~ oo and S. ~ -  oe as n - -* -  oe. Observe also that U o is 
uniform (0, 1) and is independent of {X~}k~Z, because U o is uniform (0, 1) and is 
independent of {X,},~ z. 

Next define a new probability measure P' on (f2, ~ )  by 

dP'/dP = (v(1)-  v (0))- liE(v(1) - v (0))- 1; 

since l < v ( 1 ) - v ( 0 ) <  ~ ,  E ( v ( 1 ) - v ( 0 ) ) - l < ~ ,  hence P' is well-defined, and the 
measures P and P' are mutually absolutely continuous. Moreover, since the 
likelihood ratio dP'/dP is a function of the sequence {X,}n~ Z, 

P'(Uo6dulXn, nEZ)=du , 0<u_<l .  

Lemma 5. Under P', the sequence Xk, kEZ, is stationary, and the skew product 
(Xk, Uk) is ergodic. Also, E' 4o < ~. 

The proof is fairly routine and is therefore omitted. 
It follows from Lemma 5 and the result of Sect. 4A that Proposition 8 is valid 

for the sequence X k, ~k, since r But the first passage times z*(b) for the 
sums S* = S * + ~ 1 + ~ 2 + . . . + ~  . lie in the sequence of ladder indices v(k)! Thus 
the general case follows from the special case. [] 
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5. Proof of Theorem 1 

The bulk of the argument will consist of showing that for every re[0, oo) and 
all Borel cylinder sets F o, F 1 c Z e, 

(5.1) lim P {St(b) - b  > r; X,o)eF 1 ; XoeFo} = H(r; F1) P {XoeFo}. 
b--+ co 

This uses the existence of coupling times and the ergodic theorem in a fashion 
similar to that in Sect. 3 of Lalley (1984). 

Before proving (5.1) we shall indicate how one may deduce (1.15) from it. If 
(5.1) holds, then by an easy approximation argument it follows that for every 
2 e s  o 

(5.2) lim Pa{S~(b)-b>r; X~(b)eF1 ; XoeFo}=H(r;  F1) P~{XoeFo}. 
b ~ o o  

This proves (1.15) in the special case S~-0 .  If S~ is a function of only finitely 
many of the r.v.s. X,, then one may break up the probability space into the 
events 

G(i; n) = {(i/n) < S* < (i + 1)/n} 

and use (5.2) together with the continuity in r of H(r; F1) to get (1.15) (notice 
that each of the events G(i; n) is a cylinder set). Finally, in the general case, one 
may approximate S* by random variables depending on only finitely many of 
the r.v.s. X,, and exploit again the continuity in r of H(r; F1) to deduce (1.15). 
The details of these arguments are quite routine. 

Thus, it remains to show (5.1). Observe that if the function ~ satisfies the 
hypotheses of Theorem 1 then so does 54, for any constant 5>0.  Thus it 
suffices to prove Theorem 1 for some scalar multiple 54, 5>0.  In particular, 
we may (and shall) assume that { has been rescaled so that h =  1 in Proposi- 
tion 7. 

Proposition 7 (the existence of coupling times) will now be used to establish 

Lemma 6. For each real r >=0, each integer k, each g>O, and all Borel cylinder 
sets Fo, F 1 c Z  2', there exists bo< oo sufficiently large that whenever b >=b o 

(5.3) P{S~(b_k_~) - (b -k -e )>r+2e;  X~(b_k_~)eF1 ; XoeFo} 

-P{S~(b_k_~)-(b - k -  e)__< 2e} - 2 e  

NP{S~(b)-b>r; X~(b)eF1 ; XoeFo} 

<=P { S~(b_k_~)-(b--k-- ~) > r-- 2e; X~(b_k_~)~F1; XoeFo} 

+P{S~(b_k_~)--(b -- k -  e)__< 2g} +2e. 

Proof. Assume that the event {XoeFo} depends only on the coordinates X,, 
n<m o. By Proposition 7 there exist X'., X~', and T= T(k; ~) such that (3.4)-(3.6) 
hold; hence 

P(F1)> l - e ,  
where 

FI= X ' . ) -{ (X, ) ) -  ~ g m >  T . 
n 
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Notice also that because of (3.5) 

Define 

and let 

{Xo +Fo} = {X; eV0}. 

r ' (b)=inf  m__>0: {(X,)>b , 
n = l  

- c " ( b ) = i n f { m = > 0 : ~ n = l ~ ( X ~ ) > b - k } ,  

F 2 = { r + m  1 <min(z'(b),  z"(b)) V b>-_b o-~} .  

Here m I should be chosen sufficiently large that {XosFx} depends only on X,,  
In] <ml ,  and b o should be sufficiently large that 

Hence by (3.5) 
P(F2) > 1 - ~. 

t t t ~  {Xk6Fa} = {Xk Fa} V k > T + m l .  

Now on F 1 ~F2, r' (b)=-c" ( b -  e) except possibly when 

~'" (b - ~) 
(~(X~'))- b + k <2~. 

n = l  

Consequently, on Fa c~F 2 

and 

,=1 ~ ( X ~ ' ) - ( b -  k -  

,--~1 ~ (X',) - b > r =~ 

( (X' , ; )  - (b - k - e) > r 

~(X ' . ' ) - (b -k -e )<=2e  ; 
I n = l  

! i t  , 
{Xo~Fo} = (XoeFo}, 

o r  

{X'~,(b)eF1}={X'~',,(b_~)eF1} on {r '(b)=~"(b-e)}.  

The inequalities (5.3) now follow from (3.4) and the fact that P(FI~F2)>I  
-2~.  [] 

The proof of (5.1) now proceeds as follows. Choose b o so large that the 
inequalities (5.3) hold for all b>-_b o and k=  1, 2 . . . . .  m. Average these inequali- 
ties to obtain 
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E m -1 ~ , d ( b - k - e ; r + 2 e ; F 1 )  l{Xo e 
k=l 

- - E  rn -1  ~ ( 1 - d ( b - k - e ;  2e;  Zz)) - 2 e  
k = l  

<=P{S~(bl-b>r; X~(bleF1 ; XoeF0} 

<-_E ( b - k - z ;  r - 2 e ;  F1) 1 { X 0 ~ F  

+ E m  -~  ~ ( 1 - d ( b - k - e ; 2 e ; Z z ) )  + 2 e ,  
k = l  

where  J(" ; -;  ") ts def ined  by  (4.1). N o w  it fol lows f rom P r o p o s i t i o n  8 tha t  if m 

is large t hen  the  ex t r eme  of this  i n e q u a l i t y  are a p p r o x i m a t e l y  

H ( r  + 2e;  F1) e {Xo eFo} + (1 - H ( 2 e ;  )~z)) _ 2e, 
and  

H ( r - 2 e ;  F1)P{Xo~Fo} + (1  - H ( 2 s ;  ),~)) + 2e. 

Le t t i ng  z - - ,0  a n d  us ing  the  c o n t i n u i t y  in  r of  H(r; F), we o b t a i n  (4.1). 
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