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Abstract. A gain-switched semiconductor laser is shown to act as an optical gate with 
picosecond resolution and amplification for light pulses from another laser source. The 
amplification mechanism and the gate width change qualitatively when the gate laser 
undergoes a transition from a pumping rate slightly below the dynamic laser threshold to 
slightly above the dynamic threshold. If the gate laser is pumped below but close to its 
dynamical threshold, unsaturated amplification of an external signal pulse occurs over a 
delay time range between the external optical pulse and the electrical driving pulse of about 
100-200 ps which is equivalent to the optical gate width. The signal amplification is 
observed to increase by two orders of magnitude and the gate width decreases by one order 
of magnitude if the gate laser is pumped slightly above the dynamical threshold. 
Amplification then occurs for input signals injected much earlier. A detailed theory of 
coherent, time-dependent amplification including the nonlinear dynamics of the semi- 
conductor laser is shown to account for the observations. Both amplification regimes, below 
and above threshold, are reproduced in the numerical simulations. The extremely short and 
highly sensitive gate range above threshold is identified as being due to the gain maximum 
related with the first relaxation oscillation of the laser. 

PACS: 42.55.Px, 42.60.Da, 85.60.Jb 

Semiconductor laser amplifiers (SLAs) have recently 
attracted considerable interest due to their potential 
application in future optical communication systems 
[1, 2], in particular as all-optical repeaters. While the 
basic properties ofdc driven SLAs have been studied in 
detail during the last decade [3-6] theoretical and 
experimental work on SLAs under time-dependent 
conditions is rather scarce I-7-10]. Under dc injection 
the laser diode usually operates below threshold and 
acts as a linear optical amplifier for the incident 
coherent lightwaves. If the SLA is driven by short 
current pulses a time varying signal gain results 
making such a device suitable for fast switching and 
modulation applications [7, 8, 11]. 

Recently, some of us have demonstrated for the first 
time that a conventional Fabry-Perot type SLA 

excited by short current pulses acts as an ultrafast 
optical gate for external optical signals [11]. We 
observed the time averaged output power emitted by 
the SLA driven beyond its dynamical threshold to 
increase strongly if the optical input pulse enters the 
SLA within a certain time interval. Based on this 
finding, an all-optical boxcar with a time resolution 
better than 10 ps was developed. 

It is the purpose of the present paper to present 
additional and decisive experimental results together 
with a theoretical simulation of the gate effect in order 
to demonstrate that coherent amplification accounts 
for our observations. Section 1 summarizes the experi- 
mental results on the dynamics of gain-switched SLAs. 
The dependence of the optical gate effect and its 
temporal resolution on the electrical driving con- 
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ditions of the SLA and on the intensity of the input 
signal is studied in detail. Two completely different 
"gate regimes" are observed for the SLA slightly below 
and above threshold, respectively. The basic concept of 
a dynamic theory of SLAs which was developed 
recently by one of us 1-12] is outlined in Sect. 2. 
Coherent, time-dependent amplification of an incident 
optical pulse as well as the nonlinear dynamics of the 
semiconductor laser are taken into account. In con- 
trast to previous treatments of the dynamics of SLAs 
[10], this theory is not restricted to optical input 
signals of a duration shorter than the cavity transit 
time. Furthermore, its application is not limited to 
weak [10] or strong [9] input signals causing negli- 
gible reduction of the gain or gain depletion, respec- 
tively, but it takes explicitly into account the interac- 
tion of the time varying optical input signal and the 
time varying gain of the SLA. Therefore, this new 
concept has a much wider range of validity than 
previous simple dynamic models of SLAs [8-10] 
applying only to limiting cases that are seldom met 
under practical operating conditions. One important 
new prediction of this theory is that indeed a dramatic 
optical pulse shortening can be obtained if the time 
delay between the incident optical pulse and the 
injection current pulse which drives the SLA is adjus- 
ted appropriately. In Sect. 3 the results of the numer- 
ical simulations are presented and compared to the 
experimental results of Sect. 1, and the physical mech- 
anism which leads to the observed dependence of the 
integral optical output intensity upon the delay time 
under different operating conditions is explained in 
terms of the dynamic theory. 

1. Experimental: 
Amplification Below and Above Threshold 

In order to study the temporal behaviour of dynamic 
Fabry-Perot semiconductor laser amplifiers the ex- 
perimental setup shown in Fig. 1 is used. The transient 
optical input signal for the laser amplifier (ld2) is 
generated by a gain-switched GaAs/A1GaAs multiple 
quantum well laser (ldl) [13]. As laser amplifier (ld2) 
an A1GaAs twin-channel-substrate-mesa-guide laser 
[14] is utilized. Both laser diodes are excited by 
avalanche generators (agl and ag2). They provide 
voltage pulses of 40 V (at 50 f~ load). The voltage 
pulses have a full width at half maximum (FWHM) of 
240 ps. The electrical excitation level of the laser diodes 
is adjusted by microwave attenuators. The avalanche 
generators are driven by a common pulse generator 
running at a repetition rate of 100 kHz. A variable 
electronic delay unit driven by a sawtooth voltage is 
used to shift the delay time between the injection 
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Fig. 1. Schematic of the experimental setup 
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Fig. 2. Synchroscan streak camera record of the optical input 
signal emitted by ldt 

current pulses of ldl and ld2. The light pulses emitted 
by ldl are focused on the active area of the laser 
amplifier. The light intensity can be varied by means of 
neutral density filters. A slow integrating Si photo- 
diode monitors the time averaged intensity of the 
output signal emitted from the rear mirror of ld2. The 
resulting photocurrent is recorded by a picoamper- 
emeter and displayed versus the delay time on an x -  y 
real time oscilloscope. The z signal of the oscilloscope 
blanks out the return motion of the sawtooth voltage. 
Figure 2 shows a synchroscan streak camera record of 
the optical pulse emitted by ldl when ldl is driven by 
an injection current pulse such that exactly one 
relaxation oscillation is emitted. The FWHM of the 
optical pulse is approximately 56 ps. The measured 
width in such a synchroscan experiment is not domi- 
nated by the width of a single pulse, which is here of the 
order of 15-20 ps [13], but by the turn-on delay time 
jitter [15]. The SLA ld2 is driven by an injection 
current pulse of 160 ps FWHM. 

Typical experimental results are shown in Fig. 3. 
The integrated output intensity ~Io, t(t)dt is plotted 
versus the delay time "ca. The optical input signal from 
ldl is the pulse shown in Fig. 2. The relative maximum 
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Fig. 3. Integrated output intensity ~ lo.t(t)dt plotted versus time 
delay % in relative divisions of 50 ps for ld2 running just below 
the dynamic threshold and the optical input signal shown in 
Fig. 2. The attenuation factor of the input light intensity between 
a and b, and between b and e is about 20 
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Fig. 4. a Same as Fig. 3a, but ld2 is driven just above dynamical 
threshold, b Optical input signal attenuated by about a factor of 
20 relative to a. c Optical input signal attenuated by about a 
factor of 1000 relative to a 

Jo/Jt of the current pulse driving the SLA is chosen 
such that without an optical input signal from ldl no 
laser light is emitted by ld2. Jt is the cw threshold 
current density of ld2. This corresponds to electrical 
excitation conditions just below the dynamic "effective 
threshold" for the emission of laser pulses (relaxation 
oscillations). Note  that this dynamic threshold of Jo/Jt 
is pulse shape dependent, and is much higher than the 
cw threshold Jo/J t=l  [13, 16]. The three curves in 
Fig. 3 correspond to different optical input signal levels 
impinging on the laser amplifier. The attenuation 
factor of the light intensity between (a) and (b), and 
between (b) and (c) is about  20. The curves are scaled to 
equal maximum values. The absolute maxima decrease 
from (a) to (c). The F W H M  as well as the signal-to- 
noise ratio of the integral output intensity decreases 
with decreasing input light intensity. The delay time 
between the electrical excitation pulses ofld2 and ldl is 
defined in such a way that the larger values of Za 
correspond to earlier excitation pulses of ldl. The 
relative delay time is equivalent to the time difference 
between the electrical pulse ofld2 and the optical pulse 
emitted from ldl onto ld2, since the zero of the Zd axis 
may be shifted arbitrarily. 

If the laser amplifier is excited just above the 
dynamic effective laser threshold an additional peak 
appears in a range of delay times corresponding to 
earlier optical input signals, as shown in Fig. 4a. The 
amplitudes of the two peaks in Fig. 4a reveal a different 
dependence on the input light intensity, as shown in 
Fig. 4a-c. Between curves (a) and (b), and between (b) 
and (c) the input light intensity is attenuated by a factor 
of 20 and 50, respectively. The intensities are again 
scaled to equal maximum values, and the absolute 
values decrease from (a) to (c). It is obvious from Fig. 4 
that the contribution of the correlation signal which is 
already observed when ld2 is below its dynamic 

threshold, i.e. the peak on the left-hand side, decreases 
much more rapidly than the peak on the right-hand 
side if the input intensity is reduced. At sufficiently low 
input intensities, the lhs peak can be almost neglected 
as compared to the rhs peak (Fig. 4c). A second 
important difference between the two peaks is the 
magnitude of the F W H M .  The F W H M  of the rhs peak 
is significantly smaller. The shape of this peak precisely 
reproduces the shape of the input pulse from ldl as 
measured by the synchroscan camera. 

2. Outline of the Theory 
of Coherent Dynamical Amplification 

First we briefly outline the fundamentals of a theory of 
coherent dynamical amplification [12]. The incident 
signal wave must be treated coherently to account 
properly for interference effects during its transmission 
through the laser amplifier, and its reflection at the two 
facets. The signal wave is thus described by space- and 
time-dependent electric field amplitudes E+(z, t) and 
E-(z, t)  travelling in the positive (forward) and the 
negative (backward) z direction of the SLA resonator, 
respectively 1. All the remaining laser modes, excluding 
the signal mode, may be treated incoherently and 
described by an axially averaged photon density N(t). 
This is a reasonable approximation for facet reflectiv- 
ities larger than 20% [17]. 

The dynamic equations for the signal fields E + and 
E -  are given by 

c~E • c~E -+ 
~t +_ vq ~zz = ~Fg(n)-- ~)E + - ikvgE +-, (1) 

1 Throughout this paper all fields will be normalized to the 
dimension of (length) 3/2, such that the square of the modulus of 
the electric field strength is equal to the corresponding photon 
density 
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Fig. 5. Schematic representation of the signal field amplitudes in 
the laser amplifier. R1 and R 2 a r e  the reflectivities of the facets 

where vg =-c/n o is the group velocity (c is the vacuum 
velocity of light), F is the optical confinement factor, 
g(n) is the modal gain function depending on the carrier 
density n, ~ is the optical loss constant for absorption 
and scattering in the actice and in the cladding region, 
and k is the wavevector of the signal in the cavity. The 
left-hand side of( l)  is the total time derivative of E -+ as 
seen by an observer moving with the travelling wave 
[5], and the factor 1/2 on the right-hand side of (1) 
results from the fact that the net gain of the field 
amplitude rather than the intensity is needed here 
[4, 5]. Equation (1) has to be supplemented by bound- 
ary conditions for the crystal facets at z = 0 and z = L 

E+(0, t) = tlEin(t ) + r l E -  (0, t), 

E- (L ,  t)= rzE+(L, t), 

Eout(t ) = tzE+(L, t). 

(2a) 

(2b) 

(2c) 

Here tt, t 2 and r l , r  2 are the amplitude transmission 
and reflection coefficients of the two facets, respec- 
tively; they are related to the reflectivities R~, R 2 by 

R x = r 2 = l - t l  2, 
(3) 

= r 2 = l - - t  2 . R2 2 2 

Ei,(t ) and Eout(t ) are the incident and the outgoing 
signal field amplitudes at the facets. The underlying 
geometrical configuration is represented schematically 
in Fig. 5. 

The main assumption of our theory is that the 
electron concentration n(t) is approximated in (1) by a 
constant during a single-pass transit time of the signal, 
which is 4ps  for the SLA used (cavity length 
L =  300 gm, optical group index no= 4). This appro- 
ximation is well justified since the time-scale over 
which n varies appreciably is generally slower than that 
of the photons; it is of the order of ns, the spontaneous 
recombination time, as long as we are close to or below 
threshold. Note, however, that n(t) may, and in fact 
does, change from one single-pass to the next. 

In this approximation, we can integrate (1) from 
z = 0 to z - -L  for the forward or the backward propa- 
gating signal wave. The result yields the single-pass 

intensity gain 

Gs--[E +(L, t)/E+(O, t - z ) l  2 

= [E-(O, t ) /E-(L,  t--z)[ 2 

to be 

Gs = exp {[Fg(n(t))-  . ]z} ,  (4) 

where z = L/vg is the single-pass transit time. The total 
outgoing signal amplitude Eout(t ) is obtained by summ- 
ing over all forward and backward propagating waves 
with appropriate time delays and phase factors using 
the boundary conditions (2) 

Eout(t ) = (1 -R1)X/2(1 -R2)X/2 exp( - ikL)  

{m~__0 Ein X [t -- (2m + 1)~] (R 1R2) m/2 

x ~[ [G~(t - lz)] t/2 exp ( -  2mikL) . (5) 
/=0 

The corresponding normalized output intensity is 

[Eout(t)l 2 = (1 - R1)(1 - R2)Gs(t) ~ (t), (6) 

where the memory function ~ (t) contains all the delay 
and interference terms. The field distributions E~:(z, t) 
inside the cavity can be computed by integrating (1) 
from z to L using the boundary conditions (2b, c) and (5) 
[12]. 

The nonlinear dynamics of the carrier density n and 
of the photon density N in the cavity modes excluding 
the signal mode are described by rate equations [12, 
16-18] 

an~at = riJ(t)/(ed) - R~v(n ) - g(n) (N + S), (7) 

dN/d t  = [Fg(n)- ~c]N + flR~p(n), (8) 

where d(t) is the externally given time varying injection 
current density of ld2, t/ is the electron injection 
efficiency, d is the thickness of the active layer, R~p(n) is 
the spontaneous recombination rate, ~c is the total 
inverse photon lifetime including absorption, scatter- 
ing, and mirror losses of the cavity modes, and fl is the 
spontaneous emission factor into the laser modes. The 
coupling with the coherent signal wave occurs through 
the last term in (7) which represents the recombination 
rate due to stimulated emission into the signal mode. 
Here S is the axially averaged photon density corre- 
sponding to the travelling signal wave 

L 
S(t) = L -  I f [IE+( z, t - ( L - z ) v 2 1 ) 1 a  

o 
+ I E -  (z, t + (L--  z)v; 1)12] dz. (9) 

It is given explicitly by [12] 

S(t) = [Gs(t)-  1] [1 + n2G~(t)] 

x ( 1 - R 1 ) ~ (t)/ln G~(t). (10) 
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Equations (7, 8, 10) constitute a complicated system of 
delay differential equations due to the occurrence of 
the delayed carrier densities n(t-z), n(t-2z), 
n(t -  3z), ... in (10). They can be integrated numerically 
for given injection current pulses J(t) and incident 
signals E~,(t). The result gives the electron density n, the 
amplified spontaneous emission N, the output signal 
IEo~t] 2, and the single-pass gain G~ as a function of time. 

In the special case of a time independent input 
signal Ein and time independent injection current J, the 
stationary solutions of (7, 8, 10) reduce to the familiar 
result of an active Fabry-Perot cavity [4] with a static 
single-pass gain G~. 

A different theoretical approach was taken by 
Ikeda [SJ, and Mukai et al. [-2, 3] who considered 
incoherent optical amplification. In order to compare 
our results with their model, we introduce the total 
photon density 

S : - N + S  (11) 

which includes both the amplified spontaneous emis- 
sion and the amplified signal. Incoherent optical 
amplification is then described [-2, 3, 8] by 

dS/dt = [Fg(n)-  K] S + fiRsp(n) + Pi,(t) (12) 

where Pie(t) is the given optical pumping rate, i.e., the 
number of injected photons per unit time and volume. 
Comparing (8)and (12) we find 

dgdt-  (13) 

In the present theory S(t) is calculated self-consistently 
from the coupled equations (7, 9, i0). Therefore, the full 
nonlinear feedback of the electrons upon the signal 
wave, and vice versa, is included, incorporating the 
effects of dynamic gain and of signal transit time 
delays. These feedback effects are ignored if Pin(t) is 
used as a fixed given input function [-2, 3, 8]. The latter 
amounts to assuming that the rhs of (13) is, up to a 
proportionality constant, equal to [E~n(t)[ z. 

3. Numerical Results 
and Comparison to Experiment 

We shall now apply the theory to the experimental 
setup of Sect. 1. In the following numerical simulations 
the injection current is modelled by an asymmetric 
Gaussian 

J(t)= ~ J~176 for t <t o (14) 
~Joexp{-L(t-to)/ty] 2} for t>=t o 

and the optical input signal is approximated by a 
simple Gaussian 

Ei,(t) = Eo exp { - [ ( t -  t o + Zd)/ts] 2} (I 5) 

Table 1. Numerical parameters used in the simulations 

tr= 72ps B=1.6  x 10-a~ crn3 s -1 c~--0.15 ps -~ 
ty=145 ps go=4X 10-6 cm3s-1 R t = R 2 = 0 . 3 3  
to=500ps  no=1.25 x 1018 cm -3 L=300  gm 
t~ ~- 50 ps F = 0.2 ng = 4 

f l= 10 -3 k = 2 ~ n o / 2  o 

~=1 ps -1 2o =0.8 gm 

The resulting cw threshold carrier density is rt t = 2.5 x 1018 cm-  3. 
S(t) has been varied in the simulations in discrete time steps of 
0.5 ps 

where % measures the time delay between the maxima 
of the electrical and optical input pulse. The numerical 
parameters are given in Table 1 ; they lead to a FWHM 
of [Ein(t)l 2 of 60 ps. These input functions closely 
approximate the experimentally used pulses. The 
spontaneous recombination rate and the modal gain 
are modelled by 

R s p  = B n  2 , (16) 

g --- go(n - n o) (17) 

with material constants B, go, no. All material para- 
meters used in the calculations are summarized in 
Table 1. In view of the large uncertainties in these 
parameters, we have not attempted to reach a best fit, 
but have used typical parameter values from the 
literature. In particular, the total loss coefficient ~c [-13] 
of the cavity modes, the absorption coefficient ~ [-5] of 
the signal mode, and the reflectivity R [-4] have been 
chosen as independent quantities, cf. the critical dis- 
cussion about the different approximations involved in 
the rate equations versus Fabry-Perot approach [17, 
19, 20]. It has been checked by varying some of these 
parameters that the qualitative features of the numer- 
ical solutions are widely insensitive to the choice of the 
particular values. Here our main concern is to under- 
stand the physical mechanism. 

Figure 6 shows the results of the simulations for an 
injection current pulse (14) with Jo/Jt= 10 where Jt is 
the cw threshold, and for optical input signals (15) of 
peak values Eo decreasing from (a) to (c). For the 
injection current shape chosen, Jo/Jt = 10 corresponds 
to excitation conditions below the dynamic effective 
threshold, i.e., no laser emission (relaxation oscillation) 
N(t) is obtained for Ein =0. The total optical output 
intensity 2 ~(N+[Eout]2)dt integrated over l ns is 
plotted versus the time delay ~d- Under these injection 
conditions, iN  dt is negligible. Amplification of the 
input signal occurs when it falls within a time window 
after the peak injection current. It can be seen that the 
maximum of the curves decreases and the FWHM 

z For the field units chosen, N and IEoutl 2 both have the 
dimension of a photon density rather than intensity 
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Fig. 6. Integrated total optical output intensity ~ (N + IEout[2)dt in 
arbitrary units versus time delay Td in ps between the electrical 
and the optical pulse under current injection conditions below 
dynamical threshold (Jo/Jt = 10) for a sequence of decreasing 
peak optical input singnals, a Eo=4 x 10 -8, b Eo=2 x 10 9, c 
Eo---t0-~o. The unit of E o is n~/Z; the numerical parameters are 
given in Table 1 

decreases from 220 to 100 ps with decreasing input 
intensities, in very good agreement with the experi- 
mental results (Fig. 3). 

This behaviour can be understood by considering 
the electron density n and the single-pass gain G~ as a 
function of time. Without an optical input signal the 
electron density rises to a maximum which occurs 
200 ps after the peak of the injection current pulse, and 
then slowly decreases via spontaneous recombination. 
The maximum n is still below the threshold value 
n~ = no + ~/(Fgo) such that no self-generated laser ac- 
tion (relaxation oscillation) occurs, see (8). However, 
amplification of an incident signal is possible, since the 
single-pass gain G,(t) is greater than unity as long as 
n > no + ~/(Fgo) with ~ < ~:. The condition RG~(t) > 1 
defines a gain window in the time regime. A measurable 
output signal is produced if the input signal expe- 
riences a sufficient number of roundtrips during this 
gain window. The largest net amplification is obtained 
if the input signal is injected somewhat before the 
maximum ofn (and thus of Gs) occurs, in order to allow 
for the finite build-up time of the signal wave inside the 
cavity. This explains the position of the peak integral 
output in Fig. 6 at about 100 ps after the peak injection 
current (~d oc - 100 ps). If the signal is injected too early 
or too late the signal wave cannot build up sufficiently 
fast inside the cavity to produce an output. For smaller 
initial signal input intensities, more round trips of the 
signal are required to fall within the gain window in 
order to reach the same output signal intensity. The 
width of the effective optical gate in the delay time 
regime is thus decreased. The narrowing of the optical 
gate with decreasing input intensity in Fig. 6a-c, and 
Fig. 3a-c is thus understood. 
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Fig. 7.(a)Electron density n/n,,(b)single-pass gain Gs,(c)photon 
density N/n t versus time in ps for Jo/Jt= 15 and Eo =0, and the 
parameters of Table i 

The photon densities corresponding to the input 
signal of Fig. 6 are many orders of magnitude smaller 
than the photon densities of the relaxation oscillations 
emitted above threshold. Under these conditions the 
effect of the signal wave upon the electron density, i.e., 
the gain depletion by the enhanced stimulated emis- 
sion of the amplified signal, is slight. At larger input 
intensities, this effect drastically reduces the falling 
shoulder of the single-pass gain [12]. 

Next, we consider current injection conditions 
slightly above the dynamic effective threshold, such 
that just a single relaxation oscillation is emitted for 
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Fig. 8a-c. Integrated total optical output intensity 
(N + tEouJ2)dt in arbitrary units versus time delay ze in ps under 

current injection conditions above dynamical threshold (Jo/J~ 
= 15) for a sequence of decreasing peak optical input signals: (a) 
E o = 10- 2, (b) E o = 5 x 10- 6, (c) E o = 10 - 7. The numerical para- 
meters are given in Table 1 

Ein =0 (Fig. 7). The electron density reaches a max- 
imum n > nt, and the single-pass gain Gs(t) is given by a 
very narrow peak superimposed to a much lower and 
broader background peaking at later times. In Fig. 84 
the total optical output intensity ~Ndt+S[Eoutl2dt 
integrated over Ins  is plotted versus the time delay za 
for three different input signal intensities. In addition 
to the main peak, a smaller peak appears to its right 
(Fig. 8a) corresponding to input signals injected ear- 
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Fig. 9. a Integrated amplified signal output S IEou, I zdt (left scale), b 
Integrated amplified spontaneous emission S Ndt (right scale) 
versus time delay za in ps for Jo/Jt= 15 and Eo= 10 -2 and the 
parameters of Table 1 

lier. With decreasing input signal intensity the central 
peak becomes lower (Fig. 8b) and disappears (Fig. 8c), 
while the rhs peak remains. This behaviour reproduces 
our experimental findings quite well (Fig. 4). It can be 
understood by considering the contributions of the 
amplified signal S ]Eout[ 2dr and of the amplified sponta- 
neous emission ~ N dt separately (Fig. 9). The central 
peak in Fig. 8a corresponds to the peak of the ampli- 
fied signal (Fig. 9a), which occurs for input signals 
impinging after the maximum of the injection current 
pulse. This peak decreases with decreasing input signal 
intensities. The mechanism is similar to that which is 
operative below the dynamic effective threshold 
(Fig. 6). The additional rhs peak in Fig. 8a which 
occurs for input signals impinging before the maximum 
of the injection current pulse is due to the competition 
of the amplified signal and amplified spontaneous 
emission. The dip between these two peaks is due to the 
sharp quenching of the amplified spontaneous emis- 
sion for delay times za< 100 ps (Fig. 9b). This quench- 
ing is the result of the dynamic gain depletion by the 
amplified signal as discussed previously [12]. The 
pronounced step-like reduction of the amplified 
spontaneous emission is retained at lower input signal 
intensities. This explains the weak dependence of the 
rhs peak in Fig. 8 upon the input signal intensity. The 
gain depletion is illustrated in Fig. 10a-c by plots of 
n(t), Gs(t), and [Eout(t)[ 2 for the same parameters as in 
Fig. 7, but with E o = 10 -2 and z a = 0. The amplified 
signal wave reduces the carrier density by strongly 
enhanced stimulated emission such that the threshold 
density nt is not reached (Fig. I 0a) and the relaxation 
oscillations of N(t) are heavily quenched. The single- 
pass gain Gs (Fig. 10b), however, is still high enough to 
allow for signal amplification (Fig. 10c). 

Figure 10d shows the electron density for a value of 
the delay time za corresponding to the rhs peak in 
Fig. 8a. Since the input signal occurs earlier than in 
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Fig. 10. (a) Electron density hint, (b) single-pass gain G~, (c) Photon 
density IEo.tl2/nt of the amplified output signal versus time in ps 
for Jo/Jt = ]5, Eo= 10 -z, "ca=0, and the parameters of Table 1. 
(d) Same as (a), but for %= 120ps 

Fig. 10a, the initial gain is smaller, and the signal wave 
cannot build up fast enough to inhibit the rise of the 
electron density and of the single-pass gain. Therefore, 
n exceeds the threshold density nt, and both the 
amplified spontaneous emission (relaxation oscill- 
ation) and the amplified signal wave contribute to the 
output signal (Fig. 9). 

The additional shoulder for large negative delay 
times in Fig. 8 is probably caused by the slight 
overestimation of the signal amplification in the pre- 
sent theory, an effect which accumulates during the 
slow decay of the electron concentration n(t) (Fig. 7a). 
This allows for amplification of the input signal even if 
the input signal impinges very late after the injection 
current pulse. 

4. Conclusion 

A detailed experimental and theoretical investigation 
of the dynamical optical boxcar effect which was 
recently discovered for gain switched semiconductor 
lasers is reported. Amplification by the gate laser 
driven slightly below and above dynamical threshold is 
investigated. The integral optical output intensity as a 
function of the delay time ~a is studied under different 
operation conditions of the laser amplifier, viz. electri- 
cal injection currents, and for different optical input 
intensities. The physical mechanism which leads to the 
observed optical gate in the delay time regime is 
explained in terms of a recently developed theory of 
coherent time-dependent optical amplification which 
includes the nonlinear dynamics of the semiconductor 
laser. The narrowest gate width is observed if the laser 
amplifier is driven slightly above its dynamical thres- 
hold, and if the optical input is attenuated sufficiently. 
This is shown by the simulations to be caused by the 
narrow single-pass gain maximum associated with the 
first relaxation oscillation of the gate laser. This effect 
can be used to detect optical pulses with a time 
resolution better than 10 ps [-11], which is similar to 
that of synchroscan streak cameras. A wide range of 
applications is evident for such sensitive optical gates. 
This is another example for the great importance of 
nonlinear dynamic behaviour in semiconductors [-21]. 
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