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Abstract. The general steady-state solution of the density matrix equations for a Doppler 
broadened three-level system irradiated by two resonant standing-wave laser beams of 
arbritrary intensity is analyzed. The solution is expressed in a matrix continued fraction 
form, that involves 4 x 4 matrices in important configurations and is convenient for 
numerical computations. Some representative cases including the absorption spectra for a 
probe laser of arbitrary intensity, the Doppler-free multiphoton resonances and the 
optically pumped lasers are analyzed numerically in connection with previous experimental 
investigations. 

PACS: 42.65, 32, 33 

In quantum optics and nonlinear spectroscopy the 
interaction of two electromagnetic fields with tran- 
sitions sharing a common level, i.e. a three-level system, 
is dealt with very often. The two-photon transitions, 
the optically pumped lasers, the double-resonance 
experiments, the sideband or multimode laser spec- 
troscopy are examples of the three-level configuration 
[1]. The electromagnetic fields may be composed by 
travelling waves (TW) or standing waves (SW), and 
different phenomena are encountered when these 
waves interact with homogeneously or inhomoge- 
neously broadened absorption lines. For homoge- 
neous lines the theoretical analysis is straightforward 
and the spatial inhomogeneity of a SW electric field 
may be included through a spatial integration [2]. For 
Doppler inhomogeneously broadened systems the 
presence of a velocity distribution produces new 
phenomena, but simultaneously leads to a more intrin- 
cate analysis. The TW configuration is well known 

with the solution of the three-level density matrix 
equations expressed in a closed analytical form. The 
Autler-Townes effect and the asymmetry for copro- 
pagating or counterpropagating waves are the main 
features well investigated experimentally [-3-6]. SW 
configurations occur typically in the experiments in- 
side the laser optical cavity. Velocity-tuned multi- 
photon transitions are the characteristic phenomena 
occurring in the SW, as analized in a few experiments 
[7-10]. The theoretical analysis for the SW interaction 
of moving absorbers leads to an infinite set of coupled 
difference equations for the spatial components of the 
density matrix elements, whose solution must be 
handled by a computer. A general solution of the three- 
level problem, valid for whichever TW and SW 
combinations of the electromagnetic fields, will be 
presented in this paper on the basis of the matrix 
continued fraction formalism. With such a numerical 
algorithm the amount of computation is greatly re- 
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Fig. la-d. Configurations treated with the formalism of this 
paper. The definition ofthe Rabi flopping frequencies c~ • and fi • 
depending on the configuration following (12), is shown in the 
figure on the basis of the travelling waves A~ and A~ choice 
presented in the top of the figure 

duced as compared to the straight numerical solution 
of the difference equations. 
The continued fraction solution applied for the first 
time to a single SW laser mode [11, 12] was extended 
by Sargent and coworkers [13] and generalized to 
matrices by Bambini [14] in the interaction between a 
multimode laser and a system of stationary absorbers. 
Recurrence relations for infinite dimensional matrices 
were introduced in [15] for multimode gas lasers. For a 
three-level system Feldman and Feld [t6] presented a 
continued fraction solution of complex numbers valid 
for a weak TW probe beam and an arbitrary intensity 
SW pump. However, important cases of the three-level 
laser spectroscopy as the optically pumped gas lasers 
or the gas lasers simultaneously oscillating on two 
transitions sharing a common level cannot be adequ- 
ately described by that solution. If in the case of an 
optically pumped ring laser the pump and the pumped 
laser are TW, in the most common lasers a SW pumped 
beam occurs, while the pump wave may be strongly 
attenuated in the forward-backward propagations. In 
the lasers simultaneously oscillating on two tran- 
sitions, two SW are present. This last case has been 
analyzed by Paxton and Milonni [17] through a 
numerical solution of the infinite set of difference 
recurrence relations satisfied by the spatial compo- 
nents of the density matrix. 

In this paper we show that in the most general case of 
an arbitrary relation between the wavelengths of the 
two electromagnetic fields the solution is expressed 
through matrices of infinite dimension, and this form- 
alism would not provide any real computational 
advantage. Instead, if we suppose, without loss of 
generality, that the wavenumbers of the electromag- 
netic fields are in the ratio of integer numbers, the 
solution depends on matrices of finite dimension. 
Moreover, it will be shown that the following import- 
ant configurations may be solved through continued 
fractions of 4 x 4 matrices: i) the electromagnetic fields 
have the same wavenumber; i i)a SW and TW of 
arbitrary intensity are applied; iii) the Doppler broad- 
ening of one of the transitions can be neglected. 
Because some features in the three-level absorption 
signals depend on the extension of the limits in the 
Doppler velocity integration, Kyr61/i and Salomaa in 
[18] have provided approximate solutions for the 
density matrix to be used in the Doppler integration. 
The continued fraction solution has allowed us to 
make a more detailed analysis of several features 
appearing in the three-level spectroscopy. 
In a set of recent experiments [19] the three-level 
saturation spectroscopy has been applied to probe 
with high accuracy the relaxation processes produced 
by the velocity-changing and phase-interrupting colli- 
sions. We will not include in our analysis the velocity- 
changing effects on the populations, but a decay rate of 
the coherences produced by the phase-interrumping 
collisions will be introduced. 
The paper is organized as it follows: after a schematic 
presentation of the theoretical problem, the matrix 
continued fraction solution is developped in Sect. 1. In 
Sect. 2 numerical calculations are presented with re- 
ference to experimental configurations of three-level 
systems. Thus we will analise the TW and SW probe 
absorption of an infrared molecular vibrational tran- 
sition, in presence of pumping on an adjacent vibra- 
tional transition [7]. The Doppler-free two-photon 
absorptions and three-photon cross-resonances for 
molecular electronic transitions will be examined 
[8, 9]. Finally an optically pumped Raman laser 
operating on excited levels of neon and the dips in its 
output power at high pump will be investigated [20]. 
The lineshapes of the absorption or emission spectra 
observed in those experiments will be reproduced and 
unexplored features will be presented. 

1. Theory 

1.1. Three-Level System and Motion Equations 

The three-level configurations under consideration are 
shown in Fig. 1, with the common level 0 coupled to 
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levels 1 and 2 by electric dipole matrix elements go1 
and rx o2, respectively. Let denote the energy of level j by 
Wj and define W~-- WK = hWjk. If we introduce 

el = sign(~ol) (1) 

e2 = sign (O0o z) 

these quantities may be used to label each of the level 
configurations of Fig. 1, so that they will be treated by 
a single formalism. Thus for the inverted-V configur- 
ation (Fig. la) ~1= +1, e2= +1; for the V configur- 
ation (Fig. lb) e l = - l ,  e 2 = - l ;  for the cascades 
e a = + l ,  e 2 = - I  o re  1 = - 1 ,  e2= +1. 
The absorbers are subjected to relaxation processes 
which will be phonomenologically accounted for by 
damping constants. The total population relaxation 
rates 7j (] = 0, 1, 2) are composed by the decay rates Fj to 
levels not included in the three-level system under 
examination and the rates Fj~ for the spontaneous 
decay or collisional population transfer from level i to 
level j. Repopulation of level i from external levels to 
the system is described by the population rate 2~(v) 
which depends on the velocity v along the laser 
propagation axis z. For  the coherences, besides the 
above relaxation processes, we introduce a rate 7gcj in 
general a complex number, to take into account the 
influence of finite-bandwith laser effects and/or phase- 
interrupting collisions. Thus the time evolution of the 
ensemble-averaged density matrix ~(v, z, t) under the 
action of relaxation processes is described by 

relax. 
~jj(1),Z,~) = --TjQjj@" ~, I'jiQii+/~j(V), (2a)  

i , j  

relax. 
ff(Oi/v, z, t) = - 7J jOin, (2b) 

with i,j, k = 0, 1,2 and 

7j=F~+ ~2 F~ i, (3a) 
i:~j 

7,j = (7, + 7)/2 + 7~ ; 7~j = 7*. (3b) 

The equilibrium population densities G~ in absence 
of applied fields are determined by the steady-state 
solution of (2), and it results 

- Z (4) 
i , j  

The ~~ will be expressed as 

0 0 = N j 6 ( v )  (5) 

with G(v) a standard Maxwellian velocity distribution, 
whose most probable velocity is denoted u. 
The two monochromatic electromagnetic fields 
El(z, t) and Ez(z, t) propagating along the z axis with 

angular frequencies Ox, (~2 > 0, are described by 

Ei(z,t)= Z Af{eiexp[- i ( f2 i t -#kiz)]  
#=_+1 

+ c.c.}/2 (i = 1, 2), (6) 

where the index # describes the counterpropagating 
components whose intensities may be different one 
from the other. We shall assume that by the choice of 
the polarization vectors e 1 and e 2 or of the frequency 
difference [f21-f22[ the field E~ drives the 0-1 tran- 
sition only and Ez the (~2 transition only. We define 
the detunings for nonmoving absorbers by 

A~ = e~((2 i -  ICOo~l) (i = 1,2) (7) 

and in the solution we will introduce A o = 0. 
The time evolution of the density matrix elements is 
given by 

( ~  -}- I) ~Z) ~ij(U, Z, t) 

relax. 
= (ih) l[H(z, t), Q(v, z, t)]ij § ~ Oij(v, z, t) (8) 

with the following Hamiltonian matrix elements 

Hjj= Wj (]=0,1,2) 

Hoi (Z , t )=-  ~ Afgoi" {eiexp[-i( f2i t-#kiz)]  
#=_+1 

+ c.c.}/2 (i = 1,2). (9) 

The standard rotating-wave approximation (RWA) is 
applied to the solution of (8), and the leading terms in 
the electromagnetic field absorber interaction will be 
expressed through the following flopping frequencies, 
assumed to be real numbers without any loss of 
generality: 

~ = (2h)-~ftoa .(e~A~b~,~+e*A?U3~,,_~), (lOa) 

fl~=(2h)-~o2 - (e2A~b,~,~+e*AJ6~_~),  (p= +1). 
(lOb) 

Depending on the level configuration the e-+, fi-+ 
frequencies are associated to the different waves in the 
form indicated in Fig. 1. 
The steady state solution of (8) can be obtained 
introducing for the density matrix elements a two- 
index Fourier expansion with ka and kz fundamental 
spatial frequencies [17]. However, this expansion can 
be simplified if we suppose, without loss of generality, 
that two integers a and b can be defined such that a/b is 
a rational number and 

k i =ak ,  k2=bk ,  ( l l )  



76 R. Vilaseca et al. 

where k is a reduced wavenumber. Then the steady- 
state solution of (8) becomes the one-index expansion: 

+co 
O~j(v, z, t) = exp [i(ef2 i -  @2)t] Y. P~j(v) exp(iqkz) 

q=--oO 

( i , j=0,  1,2), (12) 

where e0=0 has been introduced and an infinite 
number of two-index coefficients have been grouped in 
each P~j(v) coefficient. From the Hermitian conjugate 
relation for the density matrix elements it turns out 
that 

P~j = (Pj~ q)* (13) 

for any integer q. Furthermore, by substituting (12) 
into (8) it results 

Pj~ = 0 for any j, ifq is an odd integer number. 

P~o-Polq - q =0  if q and a are not both even or odd 
numbers. 

P~0=P~2=0 if q and b are not both even or odd 
n u m b e r s .  

P{ z = P~ 1 = 0 if q and a + b are not both even or odd 
numbers. 

As standard in the steady-state solution of laser 
problems the relations between the Fourier compo- 
nents P~: are obtained by picking out the same spatial 
dependence at the right- and left-hand sides of (8). In 
the resulting relations we introduce the Fourier com- 
ponents of the population differences 

D~- q - -  q (14) - Poo Pii, 

and we eliminate the optical coherences making use of 

P]o=iL~o Z (~"D]+"-fiuP{-~ ub) 
#-_+1 (15)  

q �9 q 
P2o=1L2o Y (/3~'D~2+"b--o:Pq2~*'"), 

#=-+1 

where 

(L~,) -1 = y j, + i [ (Aj-  A,) + qkv]. 

Thus we get a set of recurrence relations involving D~, 
Dq2, Pq2, and P~I only. From these variables through 
(15) the Fourier components of the optical coherences 
are derived. The complexity of the problem has been 
greately reduced by this procedure. The Fourier com- 
ponents of the population differences 0oo-  0u or of the 
~12 and ff21 coherences only cannot be eliminated 
anymore without destroying the simplicity of the 
recurrence relations. 

The recurrence relations for D~, D~, P~ 2, and P~ 1 may 
be written as 

F ~  Z (GqX" q+2Ua+HqX, q+Z,b 
~=--1 

Af_ K ~ X  q + 2#(a - b)) ~- jOOq, o ,  (16)  

where the four-components vectors X q and jo are 
defined by 

q- -  q q 
X = (D1, D2, *12Pq+a-b, a21Pq-a+b" I) 

(17) 
j O ~ ( A 1  , A 2  , 0 , 0 )  

and where 

Ai o o = Mi 20 - Mo 2i (i = 1, 2) 

M~ = ? j -  Y. Fit + iqkv (j = 0, 1, 2). 
j*l  

The elements of the 4 x 4 matrices Fq ~ G~ 1 H~ 1, and 
K + 1 are reported in the appendix. The X q are different 
from zero only for q even integer numbers. 
In interpreting the numerical results it is convenient to 
make use of a property that extensively applied in 
previous analyses of the three-level spectroscopy, may 
be generalized to the case of four strong electromag- 
netic waves. The source terms A~ can be expressed as 

A, = A,(N ~ - N~ + B,( N ~ - N~ (1 S) 

with the coefficients Ai and B,, independent from ~" 
and fl", presented in the Appendix. Thus the solution of 
(16) may be obtained summing up the solutions with 
(N o - N  ~ = 0 or (N o - N  ~ = 0. Finally, note also that 
for given values of the parameters N o - - N  o, N o _ N 2  , o  o 
~+, fl-+, A1, A2 and the relaxation rates, a three-level 
solution can be applied to any configuration depicted 
in Fig. 1 by interpreting the A 1 according to (7) and 
using the relation (10) between the a-+ (/3 -+) and the 
TW A~ (Af), schematically shown in Fig. i. 

1.2. Continued-Fraction Solution 

The system of Eq. (16) with a recurrence relation 
connecting seven vectors X q, may be written as 
connecting three vectors if we introduce vectors and 
matrices of dimension 40, 0 being the largest one of the 
a and b numbers. 
We have found that several important configurations 
may be solved through a recurrence relation involving 
vectors and matrices with the minimum dimension, i.e., 
dimension 4. An important case is when the wave 
numbers k 1 and k 2 may be supposed equal. This occurs 
in laser spectroscopy on V or inverted - V  configur- 
ations when the splitting o~12 lies in the radiofrequency 
or microwave regions. In effect, if ]kl-k2[ is much 
smaller than the inverse of the distance Az covered by 
the absorbers with velocity v during the interaction 
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time with the electromagnetic fields, the difference in 
the spatial modulations of the two electromagnetic 
fields can be neglected. With k l = k  2 (16) may be 
written as 

Wq 1 x q - 2 - I - W q ~ 1 7 6  O, (19a) 

where 

Z 
u:+_I (19b) 

Wq-+ 1 = G ?  1 --l-H? 1 

This recurrence relation is formally identical to those 
derived in [11] for complex numbers and in [14, 15] 
for matrices, and the solution may be written as 

x o = ( W o l  Z -  lz + WO + W 1  + 1 - 1 j o ,  Z + 2) (20a) 

X q ~-- Z q  1 xq-T- 2 (20b) 

with the matrix continued fractions Z~ (/.t = + l) given 
by 

ches the coupled field. For instance, the absorbed 
power from the fi -+ component of the E2 field, space-, 
time- and velocity-averaged, is given by 

P ~  = - 282hQ2fi -+ (Im {P~o b} )~ v, (23) 

where ( )v denotes the velocity integration. Notice that 
if the two-index Fourier expansion would have been 
used instead of (12), then the infinite number of 
coefficients grouped in P~0 b should have been cal- 
culated explicitely. 
For two SW with k~/k2 attaining a nontrivial value the 
above formalism would be not manageable as high- 
dimension matrices must be handled. However a first 
insight into the basic physics of the phenomena could 
be get by approximating the actual kx/k 2 ratio by a 
similar a/b ratio with small a and b integers. The 
conditions for the validity of this approximation are 
that the changes introduced in the Doppler shifts 
experienced by the absorbers and in the phase match- 

zg= -(wo~ Wzg+20 -* �9 W " :  
o # Wq - Wq 

WOo2._ WO~2. o 1 W~&. 
Wq+,4.1.~-- ~.~.. 

--# 
w;".  (2Oc) 

Similar recurrence relations are obtained if we suppose 
that an electromagnetic field is composed by a travel- 
ling wave, i.e. for instance fi- = 0. Thus it results, for 
any value of kl/k2, 

/V=K :0 Vq (21) 

and the recurrence relation becomes 

Gg * X q- 2" + F o X  q + G + I X  q+ g" -  J~ (22) q --  Vq, 0 

to be solved with the formalism of (20). 
Another important particular case appears for k2-~0, 
i.e. when the spatial modulation of the E 2 field is not 
experienced by the absorbers. Thus the Doppler 
broadening of the 0-2 transition is negligible, as for a 
radiofrequency, microwave or long-wavelength far- 
infrared transition. If k2~-0 the two counter- 
propagating components fl+ and fi- cannot be distin- 
guished and this case is formally equivalent to that of a 
travelling wave with an amplitude such that its flopp- 
ing frequency is fl+ +fi- .  
The continued fractions (20) are evaluated numerically 
by truncation to a finite number of terms in the 
denominator. It is a standard procedure in the calcul- 
ation to check if the addition of one term in the 
denominator modifies the numerical value within the 
required accuracy. In calculating space-averaged ob- 
servables, nonvanishing contributions arise only from 
the Fourier coefficients whose spatial oscillation mat- 

ing conditions existing between the waves be negli- 
gible, i.e. A k~ < 7/u and A k~ < rc/2L respectively, where 
A k~ represents the error introduced in the wavenumber 
k~ and L the cell length. 

2. Numerical Results 

The solution of Sect. 1 allows to compute numerically 
the absorber response in any three-level experiment, 
and a few applications of the theoretical analysis will 
be here presented. 

2.1. Probe Spectroscopy 

A large amount of spectroscopic information has been 
derived from the experiments where the influence of a 
strong pump laser on a Doppler-broadened transition 
is monitored on a three-level scheme by a laser 
resonant on an adjacent transition. The weak-probe 
spectroscopy in the case of a SW pump is interpreted 
within the Feldman and Feld [16] treatment where a 
series expansion of the density matrix elements in the 
probe intensity is restricted to the lowest order. 
However, in order to analyse properly the probe 
response it is important to derive the influence of the 
probe intensity, as it may be obtained on the basis of 
the matrix continued fraction solution. 
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Fig. 2a~:l. The fi- relative absorbed power (measured in the same 
arbitrary units)plotted versus the A a detuning at different values 
of the probe field. From top to bottom figures, the following/~ 
values have been chosen: 0.005, 0.25, 1, and 5 MHz, respectively. 
The dashed lines correspond to a TW probe, the continuous lines 
to a SW probe. Parameters are in the text. Notice that for 
A 2 < - 6 MHz, on the right side of the horizontal axis, a different 
horizontal scale was used in order to make more evident the 
features of that region 

A significative example of the three-level probe spec- 
troscopy is represented by the infrared laser intracavity 
experiments on methyl-fluoride molecules by Reid and 
Oka [7] where two CO2 lasers oscillating on the same 
line but with orthogonal polarizations were used as 
pump and probe beams. Multiphoton processes and 
other peculiar features produced by the SW pump laser 
were observed, as discussed in [21]. In this experiment 
the same wavenumber k results for the pump and 
probe fields, so that a 4 x 4 matrix continued fraction 
solution applies. The values of the parameters, appro- 
priate to the experimental conditions and expressed in 
true, not angular, frequencies were: 70=71=72 
= 0.2 MHz, 7i~ = F~j = 0 (Vi, j), intensity for the pump 0-1 
transition ~ + = c ~ - = 5 M H z  and pump detuning 
A 1 =26 MHz. However at variance with the experi- 
ment in our numerical analysis we have introduced the 
initial population N o - N  o = 0, N ~ - N  o = - 1 and the 
Doppler width Ku= 104MHz. This choice of the 
initial population allows a direct study of the coherent 
effects, and the inclusion of a very large Doppler 
broadening allows to analyse in the spectrum the 
features produced by absorbers with large Doppler 
shift, thus extending the investigation of Kyr61fi and 
Salomaa [183. Figure 2 represents the power PaZs 
absorbed from the fi of the E2 probe field [23], 

normalized to the (fi-)2 incident power. From 
Fig. 2a-d the intensity of the probe beam takes pro- 
gressively higher values. In the figures the dashed lines 
represent the case of a TW probe (fi+ =0) and the 
continous lines describe the case of a SW probe 
(U 
For the case of a weak probe laser (Fig. 2a) the 
resonant features which appear at A2-~0 and 
Aa=A1/(2n+l), n = 0 , 1 , 2 , . . ,  for a TW probe are 
produced by multiphoton processes involving fi- 
photon: the fi-c~-+e -v three-photon process (among 
others of higher order) for the A a -~0 feature, the fl-~ 
two-photon one for A2~_A1, the f i -a  a+a - four- 
photon one for A 2 -~ A 1/3, etc. For each feature the two- 
peaks structure is a consequence of an increase in the 
number of resonating absorbers, whereas the dip is 
produced by the absence of such absorbers, as ex- 
plained in detail with the model of the dressed atom 
applied to the SW pump case [22]. In the case of a SW 
probe it appears that one peak in every feature 
increases its intensity by a factor 2, whereas the other 
peak disappears, leading to a dispersive shape of the 
signals. This behaviour arises from an interference 
effect either constructive or destructive between the 
polarizations induced in the medium by each counter- 
propagating component of the SW probe wave. 
Figure 2b-d show that by increasing the probe inten- 
sity the background signal in the probe absorption 
decreases, as in absence of the pump laser, with a 
(1 + G)- 1/2 dependence, G = 4(fi )2/7o72 being the sat- 
uration parameter of the 0~2 transition. Moreover, all 
the resonant features associated with the SW character 
of the pump are smeared out, except that correspond- 
ing to Az=A 1. This behaviour cannot be described 
through the dressed-system energy diagram of [22], 
which is applicable at weak probe intensity only, but 
that analysis allows us to interpret qualitatively this 
dependence on the probe intensity when probe satur- 
ation is also considered. The A2-~0 and A2~-A1/3 
features and the second peak of the A 2-~A 1 feature 
disappear at medium probe intensities because they 
are created by low-velocity absorbers near-resonant 
with fl- wave and suffer strong saturation broadening. 
On the contrary, the first peak of the A 2 ~- d i feature is 
produced by a two-photon Raman process involving 
high-velocity absorbers not resonant with the fl- 
wave. In effect the strenght of this peak is strongly 
dependent on the extension of the Doppler width. This 
Raman peak is less affected by the power broadening 
and in consequence it emerges clearly from the back- 
ground and its center approachs to Az=A 1, with 
increasing the probe intensity. All this behaviour with 
the probe intensity applies also for the SW case, 
because it is independent from the presence of the 
interference phenomena described above. 
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This overall saturation behaviour applies also to the 
A z -~ - A, and A 2 -~ A 1/3 resonances, clearly noticeable 
in Fig. 2b. They are produced by the /~-e+ and 
/~- ~ + c~- c~ + multiphoton processes, respectively, and 
are supported by a very limited velocity group of 
absorbers. 
In the SW case at large probe intensities a Lamb dip 
centered at A 2 = 0  would be expected to appear, but 
due to its small contrast and high width [12] it is 
completely masked by the features induced near A 2 = 0 
by the SW pump field. 
Finally it should be mentioned that adopting a limited 
Doppler width all the spectral structure shown in 
Fig. 2 remains almost unchanged except the first peak 
of the A2 ~-A1 feature, which will be significantly 
reduced because only absorbers with [kv[>>e con- 
tribute to it [22]. 

2.2. Doppler-Free Mul@hoton Resonances 
in a Standing-Wave 

In the previous subsection we have analized the signals 
produced by the velocity-tuned multiphoton tran- 
sitions with the frequency of the pump laser fixed and 
the frequency of the probe laser swept-over  the 
Doppler broadened absorption profile. Three-level 
velocity-tuned resonances occur also in the experi- 
ments where a single laser is coupled to both 0-1 and 
0-2 transitions, and by tuning the laser frequency the 
populations and coherences of both transitions are 
simultaneously modified. In the experiments of this 
kind reported in the literature [8, 9] the laser was 
composed by two counter-propagating waves and this 
configuration will be analised here. In the framework 
of our description this case corresponds to the equa- 
tions of Sect. 1 assuming (21 = f22 = ~2, k 1 = k 2 = k and 
both c~ -+ and ~-+ different from zero. The flopping 
frequencies e,1, p~2 depend on the intensity of one TW 
component  of the laser, while e-~,/~ ~2 depend on the 
other one. 
The general solution of Sect. 1 with 4 x 4 matrices is 
required when none of these flopping frequencies is 
small enough to be teatred as a perturbation. This 
applies for instance to a Doppler-free two photon 
absorption with the two counterpropagating waves 
equal in intensity, as in the experiment on Na z by 
Woerdman and Shuurmans [8]. In that work a three- 
level cascade configuration, as in Fig. ld, has been 
involved. As typical of Doppler-free two-photon tran- 
sitions we define 

COo 1 =COo-6,  C%o=COo+6 , 

where co o is the laser frequency for the two-photon 
transition, - 3  and +3  are the detunings from that 
frequency for the one-photon 0-1 and 2-0 transitions, 

I C~/(~ = 3.4~10 "2 

~/(~ = 2.7~10 "2 

>,,oo 

1 

" " " i . . . . . . .  -~ . . . . .  -~ . . . . .  
(~-wo)l~ 

Fig. 3. The velocity integrated o <P2z> and <Po~ populations 
versus (f2-COo)/3 , the normalized laser detuning from the two- 
photon resonance for the conditions of the experiment of [8]. 
Different arbitrary units have been used for the <P~ and <Po~ 
populations. Fine details of the <po) population have been 
reported on the upper curve on a scale expanded vertically by 100 
times 

respectively. We have obtained a numerical solution of 
the density matrix equations with the following values 
of the parameters, taken from [8]: Fo/6= 1.4 x 10 -2, 
cl/a = 1.0 x 10 -3, r2/a=3.1 x 10 -3, 7;1/6=1.1 x 10 -2, 
7;2/6 = 1.0 x 10 -2, 712/6 = 3.5 x 10 -2 and ku/6 = 0.84. 
The relaxation rates 7i~ for the coherences have been 
introduced to describe the finite-bandwith laser exci- 
tation, and the initial population has been concentrat- 
ed in the lower level. Because 6 is comparable to the 
Doppler width the one-photon and two-photon tran- 
sitions are nearly simultaneously resonant. In the 
experiment the space-averaged fluorescence intensity 
originated from the levels 0 and 2 was observed versus 
the laser frequency, and as these signals depend on the 
populations (P~  an (P~  , we have reported these 
quantities in Fig. 3. The (Po~ spectrum shows a 
Doppler profile produced mainly by the one-photon 
transition 1 ~0 ,  with a Lamb dip at the center of the 
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Fig. 4. Representation of the Raman laser output power versus 
tuning for a pump laser on resonance in the conditions of [20]. 
Curves from bottom to top are obtained for C = 3.13, 4.40, 5.50, 
and 6.76, respectively 

Doppler profile produced by the simultaneous satur- 
ation of the 1~0  transition by the eounterpropagating 
waves. The (P~ population, created by the two- 
photon 1 --* 2 transition, presents a Doppler-broadened 
pedestal superimposed by the narrow Doppler-free 
signal originated at O = co o by the absorption of two 
counterpropagating photons. The (P~ spectrum 
presents also two dips at ~2 = coo- 6/2 and ~2 = co 0 + 6/2 
produced by three-photon cross-resonances between 
one- and two-photon processes. 
By a comparison of Fig. 3 with the experimental curves 
of [8] it appears that our numerically constructed 
lineshapes provide a precise description of the whole 
experimental results. While a perturbation analysis has 
been used previously to describe the position of the 
saturation resonances observed in the experiment and 
their main features [23], the lineshape can be obtained 
only through an high intensity treatment as our matrix 
continued fraction solution. 

2.3. Optically Pumped Gas Lasers 

In this important case of the three-level A-folded 
system, laser pumping occurs on a transition and laser 
emission is originated from a transition sharing the 
upper level with the first one. The Raman process, 

which is inherent in this coherently excited system, is a 
convenient method to achieve a continuous tunability 
of the laser output. Baklanov et al. [20], who to our 
knowledge reported the first operation of a resonant 
Raman laser, investigated theoretically the output 
characteristics, with an analysis that was restricted to 
the hypothesis of low gain and they did not reproduced 
the experimental conditions. Moreover most laser 
analyses reported in the literature were restricted to the 
calculation of the gain in the TW case. 
We will analyse the experimental results of [20] on the 
basis of the matrix continued fraction solution. In the 
A-folded configuration of Fig. 1 for the 2 p 4 - 2 s z -  2pa 
levels of Ne atoms, the 2~3 transition was pumped by a 
TW beam at 1.52 gm with a constant amplitude/3-, 
and the SW emission (c~+=cC) at 1.15gm was ob- 
served on the coupled 0-1 transition. In the experiment 
a narrow resonance dip was observed in the output 
power of the laser versus the frequency tuning, and it 
was interpreted on the basis of the saturation of the 
two-quantum 2-1 transition, with a width (h  +72)/2 
typical of the Raman process. 
In the A-folded configuration a well known anisotropy 
exits for the 0--1 gain of the SW components parallel 
and antiparallel with respect to the TW pump laser. If 
we impose that the laser oscillation at the f21 frequency 
occurs in a SW configuration, the self consistent 
equations for the steady state regime of the laser system 
are written as [24]: 

Q-1 = - 4 n  Im{Zl} 

~"21- ~C~c = - 27zf21 Re{zi}, 
(24) 

where Q and Oc represent respectively the quality 
factor and the resonant frequency of the laser cavity, 
and where Zl, the electric susceptibility of the Ne atoms 
at the laser frequency, is given by 

a - - a  

~1( ~+ =-~- ,  ~'~i) =- ~01 "ei  <Pol +P0i  ) j A 1 ,  (25) 

where ( )v denotes an integration over the velocity 
distribution. Forward-backward anisotropy in the 
gain is included in the laser resonant conditions 
through this definition. A numerical analysis of(24, 25) 
was performed for the following parameters, derived 
from [20] and typical of this Raman laser operation: 
7o/~ol = 1.5, ~11/701 =0.5,  ~2/701 =0.7,  ~ijc ---- Fij= 0 (Vi,j), 
kl/k2=a/b=4/3 , klu/?ol=36, fl-/7o1=1.5. In the 
analysis we have assumed that the incoherent pumping 
mechanism of the discharge populates the level 2 only: 

0 0 0 N2 + 0 and N1 =-No =- 0, because in the Raman laser 
oscillation is achieved in the absence of population 
inversion. Moreover we have verified that the Raman 
gain requires N~ ~ < 1. The selfconsistent Equations 
(24, 25) were solved introducing the appropriate sus- 
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ceptibility function derived from the density matrix 
equations. 
For the range of parameters introduced into the 
numerical analysis the frequency pulling resulted negli- 
gible and the laser frequency Qz equal to (2c, the cavity 
fl'equency. The other relevant laser quantity, the laser 
output power, was plotted in Fig. 4 versus the laser 
detuning from the atomic transition frequency. The 
curves represent the output power for a resonant pump 
laser (A 2 = 0) at different conditions of the cavity losses 
and the medium gain. The gain on the 0-1 transition 
with the forward-backward anisotropy has an awk- 
ward expression, but in the analysis of [20] a SW gain 
parameter was introduced, appropriate to the case of 
7o >> 71, 7z and weak pumping on the 24) transition. We 
have classified our numerical results introducing the 
following laser parameter: 

3/2 2 0 /qoNa~o72Q k~ G 
C:- DklU~ 2 (k 2 -  k~) 1 + G' (26) 

where, as introduced in Sect. 2.1 above, 
G = 4(/~-)2/7oy 2 is the pump saturation parameter. At 
low G values the C parameter is equivalent to the SW 
gain parameter introduced in [20] multiplied by the 
cavity losses. The G dependence in the C definition 
reproduces the dependence of the X1 susceptibility 
obtained in the numerical results corresponding to 
threshold conditions (e+= c~-~-0). The C parameter 
represents a generalization, to the three-level Raman 
laser, of the laser parameter introduced in the two-level 
laser theory [24] that is equal to 1 at the laser 
threshold. In the case of Fig. 4, where the hypothesis of 
70>>7~,y2 is not satisfied, the threshold condition is 
C=  1.27 and the different curves are obtained for C 
values in the 3-7 range. 
The curves of Fig. 4 have a frequency tuning deter- 
mined by the Doppler width of the transition and by 
the parameter (k~-k2)/kt, but at large pump inten- 
sities they present a central dip. The theoretical treat- 
ment of [20], based on a perturbation approach and 
neglecting the high-order saturation effects, interpret- 
ed this dip as the simultaneous saturation of the v =0  
absorbers by the (/~-, ~-) and (/3-, c~ +) two-photon 2-1 
processes, with a width (?'1+~2)/2. However other 
saturation processes may contribute to the dip form- 
ation, and the Lamp dip process, i.e. the population 
saturation of the 0-1 transition, is an important one. 
The width of the Lamp dip, for the parameters of the 
experiment reported above, is comparable to the two- 
photon width. Making use of the matrix fraction 
solution we have calculated the dip width on the two 
limiting cases of large 7o or ~2 rates, i.e. when the 
Raman scattering or the Lamp dip are respectively the 
only existing processes, and we have verified that for 

the parameters introduced in the numerical results of 
Fig. 4 the Raman process is dominant in the dip 
formation. Thus our treatment provides for the experi- 
mental features a precise description that could not be 
obtained through the perturbative analysis of [20]. 

3. Conclusions 

For a three-level system interacting with two electro- 
magnetic fields (in a arbitrary combination of SW and 
TW) the density matrix solution has been expressed 
through matrix continued fractions. By assuming that 
the kl and k2 wavenumbers of the fields are in the ratio 
of two a and b integer numbers, the matrix dimension 
results four times the largest one between the a and b 
numbers. 
It is clear that except the particular cases with a and b 
very low integers the matrix continued fraction so- 
lution for two SW becomes very involved and requires 
a large amount of computer time. However the numer- 
ical analysis of simple configurations, e.g. ks =k2/2, 
etc., will provide useful information on the most 
general cases. 
Furthermore several important cases of the three-level 
spectroscopy are solved through four-dimension ma- 
trices, as shown in our detailed numerical analysis. On 
the basis of this formalism we have treated configur- 
ations of SW electromagnetic fields with k s =k  2 in 
infrared spectroscopy within molecular vibrational 
transitions and in two-photon spectroscopy on mole- 
cular electronic spectra. The four-dimension solution 
applies also to the case ofa SW plus TW configuration, 
as in the TW laser pumping combined with a SW laser 
oscillation on an adjacent transition occurring in 
infrared transitions of neon atoms. The main features 
in the lineshapes of absorption or emission spectra 
observed in the experiments involving these configur- 
ations have been obtained and unexplored features 
have been presented. Thus the theoretical treatment of 
this paper provides an appropriate description for 
analysing or predicting lineshapes appearing in a large 
variety of experiments in nonlinear spectroscopy of 
three-level systems. 
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Appendix 

The elements of the 4 • 4 matrices F ~ G~ 1, H~ 1, and K~ 1 
appearing in (16) verify useful relations based on the symmetry 
condition (13). If we define the following permutation ~: 

(1,2) ; (3,4) 
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it results that for any integer q: 

F~ = [F~ a(]))]* 

G~(i,j) = [G_-~(er(i), a(j))]* 
H~(i,j) = [H:~(~(i), G@))]* (A.1) 

K~(i,j) = [K :~(~(i), ~(j))]*. 

Moreover if we introduce the following permutation ~ for indices 
and Rabi frequencies: 

(1,2); (3,4); (a,b) ; (c~, fl) 

it results 

H lq( i'J) = n[ G lq( n( i)' n(J))] (A.2) 
F~ = rc[F~ x(J'))]. 

Thus the following matrix elements are obtained 

G~(1, 1) + - q q q + a  q + a  =~ o~ (M~+Mo)(Llo  + L o l )  

G~(1, 4) = - a + f l - [ ( M  q .a_ a~q~rq+~ J_ a~arq +bq ~zv x O / X a0 1  ~ ' a 1 ~ 2 0  d 

G](2,1) + -  q "+" "+" =7 o; Me(Lol + L l o )  

= q q + b  q q + a  

GqX(3, 1) + - q + a  q + a - b  =c~ fl Llo L12 
1 - -  + q + 2 a - b  q + a - b  Gq(3,2)-c~ fl Lo2 L12 

G~(4, 4) = -~"+~ ~2orq+~ + b ~ z t  

1 - -  + + q q q + a  c t ct--b K q ( 1 , 4 ) - - c ~  fl E(MI+Mo)Lol +MiL2o ] 

KqX(2, 4) = - c~ + fl + [M~L~ +" + (M~ + Mqo)L~o b] 

K~(3, n + R + f q + a - 2 b l q  + a - b  

Kq~(3, + + q + 2 a - b  q + a - b  2)=~ fl L02 Liz 

F~ 1) = M~M I + 1" 01M] + (1"1o + 1"12)M~ 
q + a  - 2 q + a  +(M~+M~)  [(c~+)Z(L~o"+Lol ) + ( a  ) (Llo 

+ L~")]  

-1"~2Mo+M~[(fl ) (L2o +Lo2 ) FO(1,2)=Fo2Mq ~ ~ + z ~-b ~+~ 

+(/~-)~(L~+~+L~)]  

3)=-c~  fl [ (MI+Mo)LIo +M1Lo2 ] Fo(1, - _ q ~ q+. q q-~ 

F~ 4) = - ~-  fl-  [(M] + M~) L~ ~ + M~ L~; ~] 

FqO(3, - -- q + a  q + a - b  1)=a  fi Llo Llz 

2 ) - .  fl Loz Lt2 F~ - - _ ~_~ a+~-~ 

- - ~ - - ~ 1 2  LI, ~ ! ~ 0 2  T k ~  ) ~ 0 2  

+ 2 q + a - 2 b  - 2 q + a  +(3 ) L~o +(~ ) L~o ]. 

The remaining matrix elements, not defined by (A.1,2), are 
identically zero. 

The coefficients Ai and B i appearing in (18) are defined by: 

A1 = Co(r1 +to1 +1"20 +rl(r~o+r2o-ro2) 

A 2  = 1"2Fol  - -  ~ o F 2 1  

B~ = r f o 2 -  roq2 

B2=ro(r~ + ro2 + q 9  + r2(r2o + r~o-rol). 
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