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Abstract. The application of the resonant light pressure created by an axially symmetrical 
light field for collimating atomic beams has been considered. As an example, consideration 
is given to the possibility of collimating an atomic beam by the light field produced by the 
reflection of a plane wave from the internal surface of a metal cone. It has been shown that 
the radiation pressure can reduce the atomic-beam transverse velocities to the value of the 
order of 100 cm/s which corresponds to effective temperature of about 10-3 K. A method 
for producing collimated beams of cold atoms based on simultaneous deceleration and 
collimation of atomic beams by resonant laser radiation pressure is proposed. 

PACS: 42.65 - k 

It has recently been shown that the use of resonant 
light enables effective control of the velocity distri- 
bution of atomic ensembles. One important example of 
such a control applied to a beam of neutral atoms is 
deceleration and monochromatization of atoms along 
the beam axis [1-6]. Due to the use of the velocity 
monochromatization effect it is possible to produce 
beams of cold atoms with longitudinal velocities from 
102 to 103 cm/s which correspond to effective tempera- 
tures from 10- j to 10-3 K [2-6]. 
The purpose of our paper is to consider theoretically 
another method of control of the atomic motion in a 
beam, consisting of collimation of the atomic beam by 
the radiation pressure produced by an axially sym- 
metrical field. The possibility of reducing the atomic- 
beam transverse velocities through two-dimensional 
radiative cooling was first pointed out in [7]. 

1. Basic Idea 

The idea of the proposed radiation collimation of 
atomic beams is based on the use of resonant light- 
pressure forces, acted on atoms in axial-symmetric 
light fields, to reduce the atomic velocities across the 
beam axis. One of the potential schemes of a radiation 
collimator is shown in Fig. la. In this scheme the beam 

of two-level atoms 2 coming out of the source 1 is 
irradiated by the axial-symmetric light field 3, the 
frequency ~o of which is red-shifted about the atomic 
transition frequency co 0. The axial-symmetric field is 
created by the reflection of the plane light wave 5 from 
the mirror's conical surface 4 (a reflecting axicone 
[8, 9]). 
Physically the radiation collimation consists of the 
following. In the axially symmetric field formed by the 
reflecting axicone atom is acted on by the light pressure 
force which, for ~o < ~Oo, is directed to the cone axis. 
Due to this force in the region of the axially symmetric 
field the transverse-velocity distribution of atoms is 
strongly narrowed. This, in its turn, reduces the 
angular divergence of the atomic beam drastically, i.e. 
beam collimation occurs. 

2. Field Distribution 

Consider as an example of an axially symmetric light 
field the field inside the reflective axicone (Fig. la). The 
external radiation coming into the conical surface Q = z 
is supposed to be a plane travelling light wave 

E i= ego cos(or + kz), (1) 
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Fig. 1. (a) Scheme of a radiative collimator for an atomic beam. 
The angle of the vertex of the cone is 90*. (b) The reflection of the 
light-field vector E ~ from a conical surface. The cone is cut by the 
plane xy 

where e is the polarization unit vector, k--  - ke~ is the 
wave vector, e z is the unit vector along the z axis. 
Let Aih and Az be the components of the vector E i 
parallel and perpendicular to the reflecting surface, NIL 
and Ra determine, respectively, the reflected field 
components. When the reflection coefficient is 1, the 
following relations apply [10] 

RII = All, R• = - A• (2) 

Let, for definiteness, the incident radiation be linearly 
polarized along the x axis (e=%). Then, using the 
boundary conditions (2) one can find the components 
of reflected field E (Fig. lb) near the conic surface 

Ex = E~ cos 2q~, (3) 

E r = E~ sin 2q~, 

where q) is the angle between the plane of incidence and 
the x axis. 
The solution of the wave equation 

A E -  e-  2~2E/0 t2  = 0 (4) 

satisfying (3) can be written in the form 

E x = E cos2q~ coscot, (5) 

E r = E sin2q~ coscot, 

where the amplitude E is an unknown function of the 
cylindrical coordinates z and 0. When (5) is substituted 
into (4), we get 

0- ~0/~0(0~E/~0) + (k 2 - -  40-  2)E + O2E/Oz2 -~ O. (6) 

The contribution of the last term to (6) is essential only 
for z ~ 2. Since the coordinates z >>/-are of interest, this 
term can be neglected. In this approximation the 
solution of (6) is 

E = C J 2 ( o k ) ,  (7) 

where J2(pk) is the Bessel function, C is the constant 
depended on the boundary conditions (2). After having 
determined C, the field inside axicone can be written in 
a final form 

E = e2 (rckz) 1/2 ~oJ2(0k) cos cot. (8) 

Since the atomic-beam diameter is several orders 
larger than the Wavelength (;c~ 10 cm-5), the small 
vicinity in the centre of the axicone (Q ~ 2) can usu- 
ally be neglected in (8). 
For  Q >> ~7 the collimating field is 

E = e2go(2Z/0) 1/2 cos (0% k - 5rr/4) cos cot 

= ego(2Z/O) 1/2 ['COS (60t -~- 0et.o k - -  5rc/4) 

+ cos (c0t-  0% k + 5rc/4)], (9) 

where e 0 is the unit vector corresponding to the 
cylindrical coordinate 0. Thus for 0 >>2 the axially 
symmetric light field inside the reflecting axicone is a 
standing cylindrical wave or the sum of counter- 
propagating cylindrical waves, phase shifted by the 
value re/2. The intensity of the field (9) for Q >> 2 is 
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proportional to z/o 

The dependence of the intensity of the axially sym- 
metric field on the transverse coordinate ~ calculated 
from (8) is shown in Fig. 2. 

3. Atomic-Beam Collimation 

The degree of atomic-beam collimation can be es- 
timated from the equations of motion in the field, (9). A 
two-level atom in field is acted on by the light-pressure 
force which in a rate equation approximation is [11] 

FQ= - e o k h y G ( S e _  - s  [1 + G ( ~ _  ..~ ~ + ) ] - -  1 (10) 

where Y+ are the Lorentzian functions of the radial 
velocity 

G = z ~ -  1 (dgo/hy)2 is the saturation parameter, d is the 
matrix element of the dipole moment, 2y is the natural 
linewidth, f2=co-co o is the detuning of the field 
frequency relative the atomic transition frequency co o. 
The dependence of the light pressure force F0 on v o for a 
small saturation parameter G <  1 is shown in Fig. 3a. 
The evolution of atomic velocity in the field (9) depends 
on both the radiation pressure, which narrows the 
transverse velocity distribution w(vo) (Fig. 3b), and the 
atomic momentum diffusion characterized by the 
diffusion tensor [11, 12]. For  estimation, we write 
down the longitudinal and the transverse diffusion 
coefficients as an order of magnitude 

Dtr , Dz~ ~- 2 -  l h 2 k Z y G  

�9 (~_  + ~ + )  [ l  + G ( ~  + ~f+)]-1 ( l l )  

Assuming that the distribution w(vo) is narrow, the 
values FQ and Dr, can be expanded in power series in v o 
near the point v~ = O. After expansion the force and the 
diffusion coefficients near the point v o = 0 are equal to 

F o = 4hk2(0/7)  G(1 + f22/72) -1 (1 + f2z/72 + 2G) - 1% 

= - ~ o v o ,  (12a) 

Dt~, D= = h2k2yG(1 + f22/72 + 2G)- 1. (12b) 

The light-pressure force for small velocities, according 
to (12a), has the meaning of a damping force. The 
inverse value of the damping coefficient determines the 
characteristic time during which a steady-state velocity 
distribution w(vo) is reached [13] 

%, = Mf i  2 1 ~., h R -  1, (13) 

where R = h Z k 2 / 2 M  is the recoil energy. 
The width of the steady-state velocity distribution 
w(%), for t >> z~t, is determined by the effective trans- 
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Fig. 3. (a) The light-pressure force F~ as a function of the 
transverse velocity vo for a standing light wave. (b) The narrowing 
of the transverse velocity distribution w(vo) as the atomic beam 
passes through the radiative collimator. The dashed line denotes 
the initial distribution. The solid curve illustrates the distribution 
at times t >> z~t 

verse temperature [13] 

Tt ~ = Dt,/kBfl~ = (hT/4kB) (IOI/7 + ~/If~l) �9 (14) 

The minimum transverse temperature is reached at 
f2= - 7  

Ttp i"~hT/k , .  (15) 

Using (14) it is possible to find the collimation angle 
near the point where beam comes out of the axicone 

0 = (2k B Tt~ a/2/~, (16) 

where 5~ is the average atomic velocity along the z axis. 
The ultimate value of the collimation angle according 
to (15) equals 

0 mi" = (2hy/M) 1/2/~. (17) 

For a beam of Na 23 atoms irradiated by laser radi- 
ation on the transition 3S - 3P (7 = n -  107 S - 1 )  and for 
fz = 5 x 104 cm/s the minimum collimation angle 0 mi" 
is 10 -3 . These numerical estimations show conclu- 
sively that using an axially symmetric light field it is 
possible to decrease effectively the transverse velocities 
of the atomic beam. 
Consider now the spatial atomic diffusion transverse 
to the z axis. The diffusion coefficient characterizing 
the atomic diffusion across the z axis can be estimated 
from (15) and (12) using the Einstein relation. Assum- 
ing the collimating intensity to be small (G< 1), we 
have 

Ct  r = o - 1 kB  Ttr fie ~ ~ 2 .  (18) 
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The beam divergence arised due to spatial diffusion 
during the interaction time q,t = z/f~ is 

Gt r = (q r  tint) 1/2 Z - 1 ~ };-(y/XtTz) 1/2. (19)  

For the case of sodium atoms and for z=10cm,  
2 = 5890 A the value of a,, is equal to 7 x 10-s and is 
small in comparison with 0m% Thus, the numerical 
examples show that the irradiation of an atomic beam 
by an axially symmetric field (9) can be used to 
collimate the atomic beam and prevent the loss of 
atoms in the transverse direction. 

which means that the change of atomic velocity in the 
process of velocity monochromatization exceeds the 
characteristic velocity interval due to the light- 
pressure force. The force F~ and the diffusion coeffi- 
cients D~ and D~ for a velocity-monochromatized 
atomic beam can be expanded in the powers of the 
local velocity u = v~- (v~) 

F~ = - hkT Lo + 2hk2y Lo(k ( v ~) + (2 a ) - 1 u 

= - h k y L  o - f l ~ u ,  (24) 

D~z, DI,, = 2 -  lhZk2yLo , 

where 

4. Collimation and Cooling of an Atomic Beam 

An atomic beam decelerated by the pressure of 
counter-propagating laser radiation always undergoes 
a transverse spread because of diffusion of atomic 
velocities in a light field [6]. As a result, the width of the 
atomic beam in the process of its deceleration is 
increased by 10 to 102 times [14]. Using along with the 
decelerating laser beam an axially symmetric light 
field, the wave vectors of which are directed per- 
pendicular to the atomic beam (Fig. la), one can reduce 
considerably the atomic beam defocusing. Let the 
axially symmetric field be formed by a reflecting 
axicone and the decelerating light field is given in the 
form of a plane running light wave 

Ede c = e g  1 cos (go l t  § kz).  (20) 

The atoms in (20) are acted on by a light-pressure force 
directed along the z axis [15] 

F~= - e z h k V G , [ l  + G l  +(fat  +kv~)ZT-z] - t  , (21) 

where ~21 =co,-coo is the frequency detuning about 
the atomic transition frequency coo. 
G, = (1/2) (dg,/hT) 2 is the saturation parameter for the 
decelerating light field. The diffusion of atomic mo- 
menta (20) is described by the diffusion tensor [12].The 
longitudinal and transverse diffusion coefficients are 
equal of the order of magnitude 

Dr D~z ~- 2 -  lh2k2];G 1 [1 + G 1 

+ (f21 + kv~)2~- 23 - 1. (22)  

The diffusion coefficient Dt:r is responsible for the 
transverse spread of atomic beam. The coefficient D~ 
characterizes the atomic momentum diffusion along 
the z axis. As a result of joint action of radiation 
pressure and longitudinal momentum diffusion a 
steady-state narrow velocity distribution around the 
average velocity (vz) is formed for times t>>~t. The 
value (v~) satisfies the condition [16] 

Ik(vz> § ~ l l Y -  t >)> (1 § G1) 1/2 , (23) 

Lo = Gl'YZ(k ( v z )  § ~ 1 ) - 2 .  

In (24) the first term - hk7L o is the average force which 
decelerates the atomic ensemble and the second term is 
the damping force which narrows the longitudinal 
velocity distribution. If a collimating light field, (9), is 
added to the decelerating laser radiation (20), at times 
t >> § a narrow velocity distribution will be formed in 
all directions. Assuming that the joint action of (9) and 
(20) is additive, we estimate the width of the mono- 
chromatized velocity distribution from a formula 
analogous to (14) 

Tt, = (Dr, + D~,)/kBfl o, T~ = (D= + D~)/knfi ~ . (25) 

Taking into account (12) and (24), we get finally 

T~r = Tt~ + b/2),  (26a) 

T~ = T ~ (1 + 2/b).  (26b) 

Here T ~ is the longitudinal temperature of atoms that, 
without an axial-symmetric field (9) is equal to [I6] 

T ~ ~- (h/4kB) [k(v~) + ~2 t I- (27) 

The parameter b is 

b -- G, [f2 z § (1 § 2G)y2]/G(k(v~) § O1) 2 

,~ (G1/G) (~/~"~ 1) 2 . (28) 

Since the transverse temperature is linearly dependent 
on b, and T~ is inversely proportional to b, the optimal 
value of b is about unity. 
The efficiency of radiative collimation can be il- 
lustrated by comparing the expression for the trans- 
verse temperature of atoms, (26a), with that due to the 
transverse momentum diffusion in the absence an 
axially symmetric field [16] 

Tt~ ~- (h/k . )  Ik (v=) + 011. (29) 

As it seen from Fig. 4a, showing the dependence of Ttr 
and T,~ on the average velocity (vz) , the transverse 
temperature T,, a increases beyond all bounds and T,, 
tends to the constant ~ T, ~ 
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Fig. 4. (a) The transverce temperature of atomic beam as a 
function of the average atomic velocity (v~) (S = [k (vz) + ~?a 1/7) 
for detuning f21 = - 1007 : 1-collimating laser field is switched 
off, 2-collimating field is switched on. The dashed lines show the 
asymptotical behaviour of the temperature. The point-dashed 
parts of the curves are not described by macroscopic theory. (b) 
The spatial width of atomic beam decelerated by laser radiation 
as a function of the average velocity for parameters ~21 = - 1007, 
G 1 = 103, hy/R = 103, 2 = 5890 A. 1-collimating field is switched 
off, 2-collimating field is switched on 

In  conclusion,  f rom the Einstein relation we can 
estimate the radius of  the a tomic  beam decelerated and 
coll imated by the pressure due to the resonant  laser 
radia t ion dur ing the time tin t 

q = ( t i n  t kB rtr/fle) l/2. (30) 

Assuming that  the time tint is equal to the deceleration 
time of  the a tomic  beam, tdec, [16] 

tde c : 2hR- l[ff~ 1 "t- k(1)z) ] 3/3~3G1, (3 l) 

and the transverse temperature  Ttr is equal to Tt rain we 
find the min imum radius of  the decelerated a tomic  
beam 

qmin = ~7-  I[Q1 + k(vz)] [h IQI + k(vz) l /6RG~] ~/2. (32) 
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Fo r  compar ison,  one can estimate the cross dimension 
of  an a tomic  beam decelerated wi thout  collimation. 
The beam width determined by the a tomic  m o m e n t u m  
diffusion in (20) can be calculated as the distance 
covered by a particle in the time tde c with the velocity 
(2keTtd/M) 1/2 

qa ~ 27 - 31f2~ + k(vz)]3 [h 1(21 + k(v~)l /R] t/2/3G l . (33) 

Figure 4b shows the dependence of  qmin and qa on the 
average velocity (vz).  As it can be seen, the axial- 
symmetr ic  field decreases considerably the spatial 
diffusive spread of  the decelerated a tomic  beam. 
Thus, the above  considerat ion shows that  the use of  the 
radiat ion pressure on a tomic  beams enables two 
problems to be solved. First, to reduce the transverse 
temperature  of  an a tomic  beam up to the ult imate 
value (15). Second, to at tain a m in imum divergence of  
an a tomic  beam. 

References 

1. V.I. Balykin, V.S. Letokhov, V.I. Mishin: Pis'ma Zh. Eksp. 
Teor. Fiz. (in Russian) 29, 561 (1979); Zh. Eksp. Teor. Fiz. (in 
Russian) 51, 692 (1980) 

2. V.I. Balykin, V.S. Letokhov, V.G. Minogin: Zh. Eksp. Teor. 
Fiz. (in Russian) 80, 1779 (1981) 

3. S.V. Andreev, V.I. Balykin, V.S. Letokhov, V.G. Minogin: 
Pis'ma Zh. Eksp. Teor. Fiz. (in Russian) 34, 463 (1981); Zh. 
Eksp. Teor. Fiz. (in Russian) 82, 1429 (1982) 

4. W.D. Phillips, H. Metcalf: Phys. Rev. Lett. 48, 596 (1982) 
5. J.V. Prodan, W.D. Phillips, H. Metcalf: Phys. Rev. Lett. 49, 

1149 (1982) 
6. V.I. Balykin, V.S. Letokhov, V.I. Sidorov: Zh. Eksp. Teor. 

Fiz. (in Russian)86, 2019 (1984) 
7. T.W. H/insch, A.L. Schawlow: Opt. Commun. 13, 68 (1975) 
8. S. Fujiwara: J. Opt. Soc. Am. 52, 287 (1962) 
9. M. Riox, R. Tremblay, P.A. Be'langer: Appl. Opt. 17, 1532 

(1978) 
10. M. Born, E. Wolf: Principles of Optics (Pergamon Press, 

Oxford 1964) 
11. V.G. Minogin: Zh. Eksp. Teor. Fiz. (in Russian) 80, 2231 

(1981) 
12. V.G. Minogin: Zh. Eksp. Teor. Fiz. (in Russian) 79, 2044 

(1980) 
13. S. Chandrasekhar: Rev. Mod. Phys. 15, 1 (1943) 
14. T.V. Zueva: Kvantovaya Electron (in Russian)(in press, 

1984) 
15. A. Ashkin: Phys. Rev. Lett. 25, 1321 (1970) 
16. V.S. Letokhov, V.G. Minogin, T.V. Zueva: Opt. Commun. 

38, 22~ (1981); Zh. Eksp. Teor. Fiz. (in Russian) 81, 84 (1981) 


