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Abstract. The circulation of an ultrashort light pulse in a continuously pumped mode- 
locked dye laser with a linear cavity configuration containing the active dye, the saturable 
absorber and a bandwidth-limiting element is treated. The steady-state condition that the 
pulse shape reproduces after each cavity round-trip leads to a nonlinear integro-differential 
equation for this pulse shape. An approximate method for the solution of this equation not 
limited to the case of low laser gain and small pulse energies is given. The stable single pulse 
region and characteristic pulse parameters, as energy, duration, intensity and asymmetry, 
are considered in dependence on the laser parameters. 

PACS: 42.55, 42.60 

Passively mode-locked dye lasers represent a convenient tool to generate picosecond and subpicosecond light 
pulses [1-6]. As a result of experimental and theoretical investigations it became apparent that the generation of 
ultrashort pulses occurs very rapidly in mode-locked dye lasers, and the final pulse duration is much shorter than 
the recovery times of the saturable absorbers employed [7-9]. The mechanism of mode-locking in dye lasers 
therefore is quite different from that occuring in solid-state lasers. 
Theoretical studies of the mode-locked dye laser have been done in [-8-16]. Employing a rate equation analysis 
New [-8, 9] first showed that by the combined action of the saturable absorber and the active medium a rapid pulse 
shortening can be produced if the laser parameters are such chosen that the pulse experiences a net loss on both its 
leading and trailing edges (static pulse compression region). Frequency dependent phenomena are explicitly left 
out in this analysis, therefore, a steady-state regime cannot be reached and no statement about the final pulse 
duration, pulse shape etc. could be given. For the description of a steady-state pulse shape the influence of 
bandwidth limitation of the laser transition or of a filter element (given usually by an intracavity Fabry-Perot 
etalon for frequency tuning) has to be taken into consideration. A steady-state solution was found numerically by 
Garside and Lira [10] applying density matrix formalism. They studied mode-locking conditions by perturbation 
analysis and found criteria for self starting of the mode-locking process characterized by the growth of a periodic 
perturbation on the time-independent solution. A similar analysis applying rate equation was carried out in [11]. 
A simple closed analytical steady-state solution taking into account bandwidth limitation by a dispersive element 
was given by Haus in [13]. In this paper approximations of small pulse energy (compared with the saturation 
energy of the absorber and the laser medium), small gain and small loss per pass were used limiting strongly the 
pulse and laser parameters to a very small region. 
In the present paper we study the mode-locked dye laser for more realistic and more general conditions. No 
limitations for the pulse energy, gain and loss are demanded and a possible asymmetry of the pulse shape is taken 
into account. The influence of dispersive effects within the cavity is described by a frequency filter with Lorentzian 
line shape. 
A steady-state solution for the final pulse profile is found by the requirement that the pulse shape reproduces after 
one cavity round-trip. This steady-state pulse shape is described by a nonlinear integro-differential equation. Using 
an approximate ansatz for the pulse shape a system of transcendental equations for characteristic pulse parameters 
can be derived. Solving these equations numerically we obtain the pulse energy, intensity, duration and asymmetry 
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Fig. 2a and b. Level scheme of the active dye (a) and the saturable absorber (b). co s and o)B 
are the laser and the pump frequency, respectively 

in dependence on the laser parameters. Real solutions corresponding to a stable single-pulse regime are found only 
in a limited range of laser parameters. However this stable single-pulse region is broader than the static pulse 
compression region defined in [8, 14]. This means that the condition of negative net gain on both pulse edges is not 
a necessary condition for the pulse formation. 
The numerical results show that at a certain value of the laser gain the pulse duration has a minimum. At higher 
pumping power the pulse duration increases again. Decreasing small signal transmission of the absorber leads to 
shorter and more intensive pulses with a higher pulse energy. In general, the pulse shape is asymmetric. The 
strength of the pulse asymmetry depends on the pump power. 

1. Basic Equations 
The following calculations are based on the linear cavity configuration shown in Fig. 1. We theoretically treat the 
steady-state regime of the laser when only a single pulse circulates within the cavity and the laser emits a 
continuous train of ultrashort pulses. The interaction of the laser pulse with the dye molecules is treated in the well- 
known semi-classical way using balance equations. The active dye is assumed to be a four-level system (Fig. 2a) 
with a very fast relaxation from the pump level 13) to the upper laser level 12) and from the lower laser level I1) to 
the ground state 10) leading to a negligible population of the levels 13) and I1). The absorber is regarded as a three- 
level system (Fig. 2b) with negligible population of the excited vibrational level 12} of the S 1 electronic state. The 
laser frequency co L determined by the dispersive element in the cavity is assumed to lie not too far away from the 
center frequency of the absorber and laser transition. This condition allows to neglect spatial and temporal 
changes in the phase of the laser pulse during the passage through the media in the cavity. 
The changes of the photon flux density F and the population difference in the active medium An"=n~ and the 
absorber Anb= nbo--n] are described by the rate equations 

OF 
0-~ = or"An"F, (la) 

0 A n ~ - A n  a 
- -  An" = - tr"An"F + , (lb) 
on T~ 

OF 
0-~ = - abA nbF ' (2a) 

~ An b abAnbF Anbo-- An b + T~ (2b) 1 

Here the quantities refering to the active medium are denoted by the index a, those referring to the saturable 
absorber by the index b. The variables are r  and ~ = t-(z/Vor), where z is the space coordinate in the 
propagation direction of the pulse and V0, is the group velocity in the medium, a is the absorption cross section and 
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T~ the recovery time to the equilibrium population difference An o. T~ and T~ are long compared with the pulse 
duration. Therefore, the relaxation terms in (lb) and (2b) may be neglected during the pulse transit through the 
medium. In this case analytical solutions of the balance equations are known [17]. If the photon flux density at 

=0  (Fig. 1) is F(0, ~) the pulse shape after the passage through the active medium is given by 

ARF(O' q) e~(~ (3) 
F(1, t/) - 1 +Ag(e E(~ -- 1)" 

The photon flux density F(2, q) after the pulse passage through the saturable absorber is 

BRF (1, t/) e mE(l' ") 
F(2, t/) = 1 + BR(e " m  '") -- 1)" (4) 

tl 

The pulse energy E(~, tl)= a ~ ~ F(~, tl')dtl' is normalized to the active medium saturation energy per unit area of 
-oo 

the laser beam hCOL((r ~)- ~. The quantity m = kab/a" contains the ratio k of the beam areas in the amplifying and 
absorbing media. The inclusion of k allows for telescoping which is employed in some experimental systems to 
increase the value of m. A R and B R are the transmission coefficients at the leading pulse edge in the amplifier and 
absorber, respectively, during the pulse passage from the right to the left-hand side in the cavity. Analogous 
expressions are found for the return travel of the pulse. Only A R and B R have to be substituted by A L and B L. 
Assuming a small absorber relaxation time T~ compared with the cavity transit time U one finds with (1) to (4) the 
expressions : 

B R = B  o , 

[ 1 + AR(e e-* -- 1 ) ] "  ~exp(- UB/T~) 

B L = B ~  1 - B o + B o [ 1  +AR(e ~ -  1)]"J 

#st m 1/m exp(-  UR/T~) A L { 1 - - B o B L + B o B L [ I + A R ( e  --1)] } 
AR = A~ A o E1 - A L + AL{ 1 -- BoB L + BoBL[1-4- AR(e ~*t -- 1)] m} 1/m] J 

(5) 

(6) 

(7) 

A A ~ ARe~'* "(~xP(- vL/r~') 
= o 1,14o[1 0 ] J  

(s) 

where Ao=exp(aaAnao La) and Bo=exp(--aOAnboLb ) are the small signal transmissions of the amplifier and 
absorber, respectively. L is the thickness of the dye jet. 

+co 

S 
-oo 

is the pulse energy at ~ = 0. The propagation times U R, U L, U B are drawn in Fig. 1. Without taking into account the 
influence of the dispersive element one obtains with (3)-(8) for the photon flux density after one cavity round-trip 
the relation 

F(7, t/) = F(0, tl)g(E) (9a) 

with 
1 m 

ARALBoBLR ee[ 1 + AR(e E -- 1)] m- 1 { 1 -- BoB L + BoBL[1 + AR(e E -- 1)] m} m 
g(E) = 1 - A L + AL{ 1 -- BoB c + BoBL[ 1 + AR(e ~ -- 1)]m} 1/m ' (9b) 

where E = E(0, t/). R is the reflectivity of the output mirror. The transmission of the whole cavity at the leading and 
trailing edge of the pulse is given by T~ = g(E = O)= ARALBoBLR and T I = g(E = #st), respectively. 
The influence of the bandwidth limiting element on the spectral amplitudes A(co- COL) of the pulse during a single 
passage is described by A(5, co -- coL) = H(co -- c%) A(4, co--coL). The transfer function H(co-coz) is assumed as 
Lorentzian H(co- COL)= [1 +2i(CO- COL)/ACO]- 1 with a center frequency COL and a bandwidth ACO. Supposing that 
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the spectral width of the pulse is small enough compared with Aco the change of the intensity after a double passage 
through this element is given by 

F ( 7 , 7 ) = R { F ( 4 , 7 ) - 2 ~ - - - ~ F ( 4 , 7 )  

( ~ ) 2 [  d z F(4,7) 1 (~F(4,7))2]} (10) 
+ l 3 d ~  2F(4, 7) 

In the steady-state the pulse shape reproduces itself after one cavity round trip with a possible shift h in the local 
time. If h is small compared with the pulse duration the steady-state condition may be written in the form 

d h 2 d 2 ] 
F ( 7 , 7 ) = F ( O , 7 + h ) ~  l + h ~ 7  + ~ - ~ ] F ( 0 , 7 ) .  (11) 

With F(4, 7)= R - ~  F(O, 7)9(E) the combination of (10) and (11) leads to an nonlinear integro-differential equation 
for the steady state pulse shape F--F(0, 7): 

F + h ~  l h 2 d 2 F = F g - 2 ~ ( F g ) ( A ~ )  2 [ d 2  I = - ' ' z r g l / d  ,2] 

with 9 = 9(E) corresponding to (gb). 
An exact analytic solution of this equation is not possible. We expand the pulse shape near the maximum at 7 = 0 
into a power series. On the other hand, at the edges the gain g is nearly constant (g = T~ and g = T I at the leading 
and trailing pulse edge, respectively). Therefore in the wings equation (12) is solved by exponential functions and 
we make the ansatz: 

[ �89 [0i(7 - 7i)/0] - oo <7 <7i <0  

F(O,7)=Fo~l-(7/O)Z+ll(7/O)  3 7,<7<_7 s (13) 

[�89 exp [ -  ~y(7 - 7~,)/0] 0 < 7s < 7 < oo, 

where 0 and # are measures for the pulse duration and the asymmetry of the pulse shape, respectively. F o is the 
photon flux density in the pulse maximum. The three time intervalls are fitted at 7i and 7y which are solutions of 

the equation 1-(7/0)2+ p(7/0)3 = 1/2. For I~! > ~- /27 a continuous fitting of the parts of the ansatz (13) is not 
possible. In this case there exists a discontinuity at t h or 7i. The full width at half maximum -c is given by z = 7jo- 7~. 

For nearly symmetrical pulses one obtains ~ 1/~0. 
Putting this ansatz (13) into (12) and comparing the coefficients of the power 7 o and 71 we find 

1 - H 2 = go - 2 Wa"FoO9' o - W 2 [60o - 3(ff~Fo0) 2 g; + ~go (aaF~176 ' (14) 

- 2H + 3#H 2 = ~"FoOg' o + W[49o - 2(a~FoO)29~] + W 2 [ -  22~FoOgo + 18#9o + 3(aaFoO)39o' 

+ 2g-~ol (aaFo09,o)3_ l (aaFoO)agogol  " 9 ~  (15) 

Here we used the following abbreviations : H = h/O, W =  2/(AcoO), 

, do(E) ,, dZg(E) ,,, d3g(E) o 
g ~ 1 7 6 1 7 6  dE Eo ' g ~  dE 2 ~o ' g ~  dE 3 Eo, Eo=aa f_~F(0,7)dT. 

By integration with respect to 7 in (12) in two independent ways firstly from - co up to + oo and secondly from 
- o o  up to 0 one gets 

gst = R In { 1 - A L + A L [1 - BoB L + BoBL(1 - A R + A R eCst) m] 1/m} _ 1 w2aaFoO[ TiQi + TfQf + 2.8 go], (16) 

E o = R in { 1 - A L + A L [ 1 - BoB L + BoBL(1 - A R + A R e~~ m] l/m} 

-- (H + 2 Wgo) aaFo 0 + W 2 [ 3(aaFoO)2 g o - l aaFo 0(T~o i + 1.490)] (17) 
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with 

0~ = max {[H + 2TzW+ ]/(H + 2TzW) 2 - 2(1 - Tfl (H 2 - 5TzW z) ]/(H 2 - 5T~ W2)}, 

0i = max { [ -  (H + 2T~W) + ] / ~  + 2T~W) 2 - 2(1 - Ti)(H 2 - 5 TiW2)]/(H 2 - -  5T/W2)}. 
The last term in (12) provides only a small contribution. To carry out the integration over this term we made the 
approximation g = 1 and # = 0  which gives only a small correction. Integration with respect to ~/in the ansatz (13) 
from - oo up to + oo and from - oo up to 0 gives the equations 

[ 1 3 3 3 1  4 1 ] 
#,,=aaFoO (tly-t l i) /O- ~(l~f--lli )/0 "~ ~(t~f--~]~)/04 ~ - 20~. + 2 ~ y '  (18) 

[ 1 3 1  iJ e o  = ~  -  i/o + ( jo) - 4 + . (19) 

Now we have to solve a system of seven coupled transcendental equations (7) and (14)-(19) for the seven unknown 
quantities gst (steady-state pulse energy), E 0 (pulse energy up to the maximum), F o (peak intensity), # (asymmetry 
parameter), 0 (pulse duration), h (time shift), and AR (amplification at the leading edge of the pulse coming from the 
right-hand side). The other quantities BR, B L, and A L are explicit functions of A R and g,t and may be substituted in 
(7) and (14)-(19) by the expressions (5), (6), and (8). 
A similar method as developed here was used for the investigation of the synchronously pumped dye laser in [183. 

2. Discussion 

We have solved the transcendental equations (7) and (14)-(19) numerically. The results are plotted in Figs. 3-5. The 
position of the active dye and the absorber within the cavity is fixed by the values of U R, U L, and U B. In our 
calculations we considered the laser medium in the middle of the cavity (U R = uL). This is the optimum position for 
a maximum energy of the pulses (see [19]). The saturable absorber is placed near one end mirror (UB= 0) but we 
considered it as either non-contacted or long compared with the pulse duration. In the case of a short contacted 
absorber cell coherence effects of the superposition at the incident and reflected part of the pulse should be 
included in the calculations, this was done in [20] for the case of small absorber loss, small laser gain, and small 
pulse energy. 
In Sect. 2.1 we discuss the conditions for the occurence of mode-locking (stable single-pulse regime), and in Sect. 2.2 
we treat the dependence of the pulse properties on the laser parameters. 

2.1. Stable Single Pulse Regime 

Real solutions of (7) and (14)-(19) corresponding to a stable single pulse regime exist only in a limited range of the 
parameters Ao, Bo, R, U/T~, and m. (Unphysical branches of solutions, e.g. with E 0 >gst, are excluded.) In Fig. 3a 
the region of mode-locking is plotted in the A o - Bo-plane. The boundaries of the region are indicated by solid 
lines. For small absorber loss 1 - B 0 ~ 1 and small gain A o - l ~ 1 the parameter range for mode-locking is small. 
Decreasing absorber transmission leads to a broader stability range but on the other side the minimum pump 
power to reach the mode locking regime increases. 
The lower boundary of the mode-locking solutions lies at the chosen values of the laser parameters below the laser 
threshold T o = A2BZR = 1 which is indicated by a dash-dot line. In order to start the laser oscillation the laser has 
to be pumped up to threshold, but then the gain can be lowered while the laser oscillates, the laser keeps oscillating 
in a mode-locked regime even below threshold. 
We note that the stable single-pulse region is different from the static pulse compression region defined by a 
negative net gain on both pulse edges [8, 14]. The boundaries of this region are given by the curves T~ = g(E = O)= 1 
and Ts=g(E=Cs, ) = 1 indicated by dashed lines and for B 0 >0.7 lie within the stable single-pulse region. This 
means that the condition of negative net gain on both pulse edges is not a necessary criterion for the occurence of 
mode-locking. A steady-state pulse solution would also exist in principle with a loss on one of the edges and an 
amplification on the other. The possibility of such a regime was discussed in [14], but no unique answer on the 
question of its real existence could be given in the framework of a rate-equation calculation neglecting the influence 
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Fig. 3a and b. Stable single-pulse region in the 
A o - Bo-plane (a) and in the A o - U/T~-plane  (b). The 
boundaries of the static pulse compression region 
(T~ = 1, Ty = 1) are indicated by dashed lines. The laser 
threshold (T o = 1) is designated by a dash-dot line. 
The parameter values are R=0.9,  m=7,  UB=O and 
U L =  U R. In (a) the cavity length is fixed at U = ~ ,  in 
(b) the absorber transmission is B 0 =0.85 

of bandwidth limitation. In comparison with this the criterion of a real selfconsistent solution of (12) can be 
considered as a necessary condition for mode-locking. On the other hand, the parameter range of the steady-state 
mode locked pulse solution is overlaped by the region of self-starting of mode locking from a cw time-independent 
state of operation in the early stage of the pulse formation process. Such a criterion of self starting characterized by 
the growth of a periodic perturbation on the time-independent laser output has been derived in [10-12] and can 
also be considered as a necessary (but not sufficient) condition. 
As it can be seen in Fig. 3 the small-signal absorber transmission Bo has to be smaller than a maximum value B~ a~. 
At the absorber transmission B~ ax the boundaries of the stable single-pulse region and the three curves T 1 = 1, 
Ty = 1 and T o = 1 end up in one point. This point is characterized by gst = 0 and 

dg,  _ aT;  

Using these conditions we find after some calculation 

1/1. 1 [ 1 - R ~  2 1-R 
B'~'=V + ~ l  ~--~-1) 2 ] / R ( m - 1 ) "  

(20) 

For the parameters R = 0.9 and m = 7 one gets B~ nax= 0.991. In Fig. 3b the stable single-pulse region is shown in the 
U/T~I-Ao-plane. The width of the stable single-pulse region depends very sensitively on the value of the cavity 
length UlTra. For very long cavities U/T~ >> 1 the region of the cw stable single pulse regime tends below threshold 
and becomes very narrow. Very short cavities are also unfavourable because the minimum pumping power for 
reaching the stability region becomes very large. 
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Fig. 4a e. Characteristic pulse parameters in dependence on the laser 
gain A o for various values of the absorber transmission B o. It was 
chosen B o =0.7 for Curve 1, B o =0.75 for Curve 2, B o =0.8 for Curve 
3, B o =0.85 for Curve 4, and Bo=0.9 for Curve 5. The other laser 
parameters are R=0.9,  m=7,  UB=0, UL= U R =0.5 T~. It is plotted 
in (a) the normalized inverse pulse duration W=2/(AcoO), in (b) the 
normalized pulse energy gst, in (c) the normalized peak intensity 
[~o=2G"Fo/Aco, in (d) the local asymmetry # and in (e) the global 
asymmetry (g,t - 2Eo)/gst 
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2.2. Pulse Parameters 

We shall now discuss the dependence of the pulse properties on the laser, absorber and resonator parameters. In 
Fig. 4a the inverse pulse duration in dimensionless unites is plotted [W= 2/(AcoO)] as a function of the small signal 
gain A o for various values of the small-signal loss B o and fixed values of m = 7, R = 0.9. The end points of the curves 
characterize the end of the stable single-pulse region. As discussed in the last section, the boundaries of the static 
pulse compression region T~ = 1 and Tf = 1, indicated by dashed lines, lie inside the stable single-pulse regime. For 
small values of A 0 the pulse duration decreases with increasing pump power (increasing Ao). After reaching a 
minimum value a further increase of pumping power leads to an increase of the pulse durations. Decreasing 
absorber transmission B o results in the generation of shorter and more intensive pulses. The minimum of the pulse 
duration tends for smaller B o to the left boundary of the mode locking region. This behaviour is in agreement with 
experimental results in [4], where at higher pumping power levels an increase of the pulse duration has been 
observed. 
The variation of the pulse duration in dependence on the intracavity bandwith Aco is given by the relation 
O~(A~) -1. The pulse energy gst increases monotonously with the small-signal gain A o (Fig. 4b). For small 
absorber loss the intensity also increases monotonously with growing pumping power but at higher absorber loss 
the intensity reaches a maximum within the stable single-pulse region (Fig. 4c). 
The quantities #(Fig. 4d) and (gst - 2Eo)/gst (Fig. 4e) are measures of the asymmetry at the pulse shape : # is a local 
measure near the pulse peak whereas (g~-2Eo)/gst is a global measure. Comparing with the pulse duration in 
Fig. 4a one can see that for B o > 0.8 the pulse is nearly symmetrical (#~0  and gst-2Eo ,~0) if the pulse duration 
takes its minimum value. Reducing the pumping power below this point of minimum pulse duration leads to a 
steepening of the trailing edge (#<0, E o >gst/2), whereas a higher small-signal gain results in a steepening of the 
leading edge (#> 0, E o < g J2). This behaviour could be expected since a higher gain leads to a higher amplification 
of the leading pulse edge. 
As an example we calculate the pulse parameters for a filter bandwidth Aco=5 x 1013Hz, a cross section for 
stimulated emission aa=3 x 10-t6cm 2, a beam diameter of 15gm within the active dye and a wavelength 
2 = 600 nm of the laser radiation, which are characteristic values for mode-locked Rhodamine-6G-dye lasers. The 
other laser parameters are chosen to be A o = 1.3, B o = 0.85, R = 0.9, m = 7, U s = 0, and U R = U L = 0.5 T~. We find for 
the pulse duration 0=0.28 ps. The pulse energy and peak power outside the cavity are 2.4 x 10-10j and 470W, 
respectively. The asymmetry of the pulse can be taken from Fig. 4d and e. The local asymmetry is #=0.075, the 
global asymmetry (g~t - 2Eo)/g~t = 0.002. 
Figure 5a and b show the dependence of the pulse duration and the pulse energy on the laser gain for two values 
of the ratio U/T~. Since the width of the mode-locking region strongly depends on this ratio we have normalized 
the gain Arel=(Ao-Aml,)/(Am,x-Am~n), where Ami n and Am, ~ are the values of the small-signal gain Ao at the 
lower and upper limit of the stable single-pulse region. Figure 5 shows that the pulse parameters do not sensitively 
depend on the ratio of cavity round-trip time U over recovery time T~ of the active dye. 
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Finally we will give a short comparison of our results with those of Haus [13]. Haus used the approximations of 
small gain, small absorber loss and small pulse energy: 

1 - B o ~ 1, A o -  1 ~ 1, (21a) 

gst < 1, rnd~ < 1. (21b) 

In this approximation the pulse duration decreases monotonously with increasing laser gain. Comparing with 
Fig. 4a one finds that at the chosen laser parameter such a behaviour can be observed only near the lower limit of 
the stable single-pulse regime. Considering the pulse energy in Fig. 4b we see that at m= 7 even for small 
amplification and low absorber loss the condition (21b) is not fulfilled. There is a strong limitation of the validity of 
the solution given in [13]. Only for small values of m there can be found a small region in which the conditions (21) 
are fulfilled. But in order to have optimum conditions the region of larger values of m, Ao, and gst is of greater 
experimental interest. 
In order to give a test for the ansatz (13) we simplify (5)-(8) and (14)-(19) using the conditions (21) and compare 
with the equations in [13, 20]. After some calculation we can eliminate two of the variables by the solution 
E o =o~FoO=gst/2. This leads to #=0 .  These relations would also be obtained using a secant-hyperbolic pulse 
shape. For the other equations we find 

1 + 2H + 2H 2 =fo(1 - 4W) + W2(12fo - S), 

_ 2 H = l  , 1 ,, 2 2f oCs, + ~f ogs, + 4 Wfo + 2 Wf og,,, (22) 

3H 2 = ~_r + 3Wf'og, t + W2(18fo - S) 

with 

H=h/O, W =2/(Aa)O), fo = 1 +~R+C~L--~0--XL--7, f(~=m(zo+Zr)--~R--c~L, fd'= -- m2()<0-1- ZL), 

~,m=%[I_exp(UL/R/T~t) +1 } 
e x p ( U / ~ ) -  1 8st ' eo = lnAo,  

~/~ = Xo { 1 - [md~ ] e x p ( -  US/Tb)}, ~o = -- In Bo, 

7 = - l n R  and S=3(T~oi+Tz~I+2.89o)/8. 

The special form of S results from the approximate integration over the last term in (12). Comparing with [13] it 
should be noted that in this paper a gaussian transfer function for the dispersive element has been used (without 
first-order derivations in the local time) and only linear terms in H have been considered. Therefore, (22) should be 
better compared with the results in [20], where the same suppositions as here has been used. There would be an 
exact correspondence if we set S = 2f0. This is only a small deviation in a second-order term from the equations 
derived with the approximations (21) and a secanthyperbolic pulse shape ansatz. Therefore, within the range of 
validity of the solution given by Haus we obtain a good correspondence with our ansatz (13). 
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