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Abstract. A theoretical description of a three-pulse transient grating technique' is given 
where the pump pulses form orientational gratings. Including energy relaxation and 
angular reorientation the temporal behavior of the diffraction efficiency and energy 
transmission is discussed with respect to the dependence on the corresponding rate 
constants and the results are compared with experimental data for Rh6G and RhB. The 
polarization plane of the pulse diffracted by the grating is found to be rotated in dependence 
on its initial polarization. 

PACS: 33.50, 42.10, 42.60 

Laser-induced transient gratings have been observed 
in a wide variety of materials such as plasmas, dye 
solutions and semiconductors [-1]. Since the grating 
lifetime is dependent upon the material properties 
laser-induced gratings can be used to determine 
important material characteristics. Indeed, three-pulse 
transient grating techniques have been used to 
measure properties of a number of systems, as e.g. 
relaxation constants in dye solutions [-2, 3], surface 
recombination velocities and diffusion constants in 
semiconductors [-4, 5] and energy transport rates in 
molecular solids [6]. All these grating phenomena are 
based on a spatial modulation of the ground-state or 
excited-state population resulting in a modulation of 
the optical properties of the material (concentration 
gratings). Because of radiationless transitions the 
modulation of the absorption is often connected with a 
modulation of the temperature, and both an 
absorption grating and a thermal phase grating appear 
simultaneously. If the inducing light field consists of 
short laser pulses sound waves can be excited in the 
sample in addition [1]. In many cases it is difficult to 
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separate the influence of the various gratings. In 
particular, when using a continuous train of short 
pulses the contribution of several pulses to the thermal 
grating may sum up. The occurance of the long living 
temperature modulation and the gratings resulting 
from it becomes disadvantageous in investigations of 
fast relaxation processes by means of transient grating 
spectroscopy. Thermal gratings can be avoided if 
orientational gratings produced by two orthogonally 
polarized pulses are used for such investigations. 
Recent experimental results of Wu et al. [-7] who used 
the three-pulse transient grating technique with 
different polarization configurations to study the 
temporal decay of gratings in liquids illustrate this very 
impressively. In the case of orthogonally polarized 
pump pulses the time dependence of the diffracted 
energy of a delayed probe pulse is mainly determined 
by the molecular reorientation. In the case of pump 
pulses with parallel polarization this time dependence 
is overlayed by an oscillating behavior which has been 
interpreted to arise from standing sound waves 
induced by the temperature modulation or by 
electrostriction. 
Orientational gratings are produced by the 
interference of two orthogonally polarized light fields. 
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Fig. 1. Scheme of a three-pulse transient grating experiment 
considered in the text 
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Fig. 2. Energy levels of the absorber 

Provided the strength of the resonant excitation 
depends on the polarization of the field, the ground- 
state or excited-state population has a preferred 
orientation that is periodically modulated throughout 
the material. This occurs even though the total 
concentration (summed over all orientations) remains 
spatially uniform, (A.17). Such orientational gratings 
are produced in molecular systems by selective 
saturation of molecules with dipole moments aligned 
with the field. A comperative description of 
orientational and concentration gratings in degenerate 
four-wave mixing were given by Wherret et al. [8]. 
Measurements of the lifetimes of both the gratings in 
semiconductors were presented by the same authors 
[-9, 10]. 
In this paper we consider the effect of the orientational 
gratings formed by two orthogonally polarized strong 
pump pulses in a molecular liquid on a weak probe 
pulse. Restricting ourselves to delay times between the 
pump and probe pulse that are greater than the pulse 
duration, i.e. neglecting the coherent interaction 
between the pump and probe pulses, we are able to give 
an analysis of both the probe pulse direction and 
background-free direction for arbitrary values of the 
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pump energy and of the small signal absorption 
(Sect. 1). The results enable us 1) to discuss the 
dependence of the energy transmission and diffraction 
efficiency on the pump energy and the small signal 
absorption, 2) to describe the change in the 
polarization of the diffracted part of the probe pulse 
that is caused by the anisotropic preparation of the 
medium and 3) to work out the dependence of the 
decay of the energy transmission and of the diffraction 
efficiency on both the energy relaxation and the 
orientational relaxation (taken into account by an 
isotropic rotational diffusion model [,,11]). The 
resulting formulae are compared with experimental 
data obtained by Wu et al. [-7]. This item gives the 
foundation for the determination of relaxation 
constants from measurements by means of transient 
absorption and laser-induced orientational grating 
experiments (Sect. 2). In this sense this method is a 
valuable complement to picosecond techniques that 
use the time dependent fluorescence and probe-beam 
spectra for the investigations of fast molecular 
relaxation processes [12]. 

1. Basic Equations 

We consider an arrangement, as depicted in Fig. 1. At 
the time t=O two counter-running, orthogonally 
polarized pump pulses overlap within the sample of the 
length L and form an orientational grating in the 
saturable absorber. After a delay time assumed to be 
longer than the pulse duration a linearly polarized 
probe pulse of arbitrary orientation of the polarization 
plane enters the sample. We look for the characteristics 
of the transmitted as well as of the diffracted part 
(background-free direction) of the probe pulse in 
dependence on the delay time z and the properties of 
the absorbing medium. The absorber consists of three- 
level systems (Fig. 2) with quick vibrational relaxation 
in the upper electronic level. (For dyes the vibrational 
relaxation time is in the order of 10-1 z to 10-13 s [ t 7].) 
Thus the population in the excited vibrational level is 
neglected. The electromagnetic field interacts with 
level 3. In particular, the non-resonant interaction with 
level 2 is neglected. This is justified for a frequency 
difference between both the levels that is greater than 
z~l I and z2). The phase relaxation times %1 and z2~ 
are in the order of 10-13 to 10-14 s for typical dyes and 
are assumed to be short in comparison with the pulse 
duration. With these approximations and the 
assumption of equal rotational diffusion constants of 
the ground and the excited state, D (~) = D (2) = D, thus 
~l~(O,~p,r,t)+Q22(O,q~,r,t)=l/4~ is valid, the 
equation of motion of the density matrix including 
isotropic rotational diffusion provides following 
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relations 

0 
~ e ~ , (  , q), r, t )=DVJ ~0,,(0, ~0,r, t) 

+ 1 1 r, t)] 

i 
h d3 rE(r, t)0,3(0, q),r, t) + c.c., (1) 

iz31~ p 
~3~(0, (p, r, t) -- ~ O x , ( 0 , ~ o , r , t )  d3~E(r,t); (2) 

d3~ =dale,  with d3, being the matrix element of the 
transition and e the unit vector of the dipole direction, 

= [1 + i% , ( m -  co 3,)] - ' describes the line profile of 
the transition with the transition frequency c~a, , T2, 
and TR = 1/6D are the energy and rotational relaxation 
times, V 2 is the Laplace operator in spherical 8,q~ 
coordinates ~, q~, and E(r, t) the electric field strength 
describing the pulses. 
In what follows we separately consider three time 
intervals, i.e. the preparation of the medium by the 
pump pulses, the relaxation of the excited medium 
after the passage of the pump pulses and the probing of 
the medium by a weak pulse after a delay time z. 

1.1. Pumping of the Absorber 

The medium is pumped by an electric field consisting of 
two counter-propagating plane waves of orthogonal 
polarization which is represented as 

E(z, t) = �89 [e-i~,, 

�9 (At(z, t)e-ik~el + A2(z, t)eik~e2)+ c.c.]. (3) 

Al(z,t)(A2(z,t)) is the slowly varying complex 
envelope of the pulse propagating in the positive 
z-direction (negative z-direction), e), k, the frequency 
and the wave number of the carrier wave and e~ the unit 
vectors in x- ( i=1)  and y-direction (i=2). We 
preliminarily neglect the depletion of the pump pulses 
in the absorber and assume the pulse duration to be 
short in comparison with the relaxation times T2, and 
TR, so that the relaxation terms in (1) may be dropped. 
The depletion of the pump pulses is approximately 
taken into account in the following section. Using the 
representation of the unit vector in the dipole direction 
in the coordinate system determined by the pump 
pulses (Fig. 1) 

e = cos q) sin 0et + sin cp sin 0e 2 q- cos 0e 3 (4) 

we obtain from (1-4) with the rotating wave 
approximation 

c3 d~Kc31 
8 t  e l l -  2h 2 ~q~'[lA,lZc~ 

+ (A, A ~ exp ( - 2ikz) + c.c.) sin ~0 cos ~0] sin 2 00 ~ 1 (5) 

with the initial condition ~1 ,(0, cp, z, t = - oo) = 1/4re. 
For the regime after the passage of the pump pulses, the 
solution of (5) is given by 

1 
Q 1, = ~-~ exp { - ~co, sin 2 0[e, COS 2 r + ~2 sin2 qo 

+ le,~l cos(2kz + 6) sin2qg]}, (6) 

where e,z = le,21e-i~=d32,zal ~ dtA,A*/2h z, e, =e,,, 
-oo 

e2=ez2 are the pulse energies normalized to the 
saturation energy of the absorbing medium and 
~ ~  

1.2. Relaxation of the Absorber 

After the passage of the pump pulses, i.e. in absence of 
the electric field, (1) reads 

- ~ , , ( 0 ,  qg, Z, t)=DV~oQtl(O , fp, z, t) 

+~ ~-~,,(O,~o,z,t) , (7) 

where the initial condition is given by (6) and V~.~o 
=sin-'OO/30(sinOO/OO)+sin-2002/&p 2. In what 
follows the probability of finding the molecul in the 
ground state independent of its dipole orientation 

2n 
S dq9 ~ dO sin 0011(0, ~0, Z, t )  = 0 ,  1 (Z, t )  (8) 
0 0 

and the weighted averages of the density matrix 

2~ 
] dq~ t dO sin 3 00a 1(0, cp, z, t) = 011( z, t) (9) 
0 0 

~&o]dOsin30(sin2~~ 
o o \cos2qb 101t(O'~~ 

= (Ol l(z, t)) (10) 
% 

t) / 

are required. Using these quantities (7) can be 
reformulated: 

~0~l(z,t)= 1 rl -o,,(z, t)], (11) 

~Olx(z,t)=2[1 1 ] 5 ~a~ (z , t )+~  -O,~(z, Or, (12) 

•071(Z,  t ) /  : \ 0 7 1 ( Z ,  t )  ' 
(13) 
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with F = 1/T21 + 1/Ta. The solution of (11-13) is given 
by 
~l~(z, t)= 1 +e-t/T~[e~(z, 0)-- 1], (14) 

t )  = 1(z, [1 - e  
+[r (15) 

O'~a(z,t)) = (O'~l(Z,O)~e_rt (16) 
Oh(z ,  t) <O;dz,  o ) /  " 

exl(z, 0), ~11(z, 0), ~]l(z, 0), ~ ( z ,  0) are the weighted 
averages, according to (8-10), taken from the initial 
value (6). 

1.3. Behavior of the Probe Pulse 

The electric field o~(r, t) of the probe pulse described by 
the wave equation 

1 ~2OL~ t~2P 
V2~ V 2 r : / ~ 0  ~t2 (17) 

consists of a part travelling in the probe pulse direction 
(denoted by the index p) and a part caused by 
diffraction from the orientational grating (index d) 

8(r, t) = •  tr t)eik~ ~ 2 ~ L~p~=~ 

+ Aa(r, t)e ikar] + c�9149 (18) 

with cap, kv.a, and v being the frequency, the wave 
vectors and the velocity of light, respectively. The 
polarization P(r, t) of the medium is determined by the 
sum of the contribution of all molecular dipoles 

3 
Pi(r, 0 = eo Z Z,fj( r, t) 

j = l  

: n j dO d31,(f2) ea ~(F2, r, t, z); (19) 

with n being the particle number density, f~ stands for 
the spherical coordinates. If the probe pulse is weak 
enough to neglect population changes the elements of 
the susceptibility tensor )~j can be immediately 
deduced by inserting (2) with (18) into (19): 

inzaad21 
= co31) 

�9 j dOQ1 l(O, r, z) ei((2) e~(O), (20) 

where e,(O) is the i-th component of the unit vector in 
the dipole direction. Substituting (18, 19) into the wave 
equation (17), neglecting second derivatives of the 
slowly varying quantities Av, d and using 
02p/0t2~_-c%2P we find the coupled set of the 
equations of motion for the components of the 
complex field envelopes 

10Avi  ~ kv~ OAvi 
v o Ot + j= 1 kpp ~ x j  

3 
= -- Z (r~f)Aaj+tijAvi), (21) 

j = l  

1 t~Adi ~ kaj t~Adi 
v~ 0--{- + 25 j = 1 kp ~ x j  

3 
- -  ~ (+) 
- - - -  ( t i jAd j - - r i j  AM) , (22) 

j = l  

where 

i% 
r}f)(z) = - ~ (Zij(z) exp(+ 2ikv3z)>, (23) 

ice, 
tij(z) = - ~ (Zij(z)) �9 (24) 

< > denotes the spatial average over some 
wavelengths, kp = [kn] and v o is the group velocity. 
A known probe pulse enters the medium at z--0, i.e. 

A,(0, t) = Ao(t), (25) 

where Ao(t) is a prescribed function. The diffracted 
wave is generated in the medium, not introduced from 
the right, thus at z = L/cos e (e being the angle between 
the pump and probe pulse direction), i.e., 

Ad(z = L/cos c 0 = 0. (26) 

Equations (21, 22) and the boundary conditions 
(25, 26) completely describe the response of the 
absorber prepared by the pump pulses on a probe 
pulse after a delay ~. In deriving (2t, 22) we have used 
that X~j has only a periodic z-dependence and that kal, 2 
= kvl, 2 and ka3 = - kv3�9 The fundamental period of Z~j 
is n/k, compare (6 and 20), and therefore the spatial 
average in (23) provides only an essential contribution 
if 

kpa = kv cosa = + k. (27) 

This is the well-known Bragg-condition. In what 
follows we assume this condition to be satisfied�9 The 
integration over the spherical coordinates in (19) has to 
be carried out in a coordinate system x', y', z', 
determined by the geometry of the probe pulse. For the 
sake of clarity, we consider only small angles between 
the pump and probe pulse direction (cose ~1). Then 
the z- and z'-axis nearly coincide and the x'-axis is 
determined by the orientation of the polarization of the 
probe pulse. In this coordinate system the unit vector 
of the dipole direction has the form 

e(0, q~) = cos(9 + 9o) sin0e~ 

+ sin(o + ~o) sin 0e~ + cos0e; (28) 

with q~o being the angle between the x- and x'-axis, 
(Fig. 1). On inserting (28) into (20) we are led to the" 
weighted averages of ~1 i, Eqs. (8-10). Substituting the ~ 
expressions for these quantities (14-16) into (23 and 24) 
we can calculate the matrix elements r~j, t~j (Appendix). 
With the simplifications e 1 = e 2 (equal energy of the 
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counterpropagating pulses) and ~ = 0 we find 

r(.+- ) = r. .= �89 rna(cop - o9 3 1 )  tJ - tJ  cos  o!) 
e-  l-cos  o , I 9, 

0 

= �89 ncr(%- 0231) 

(:~ ~ t e-r~F(z) 1 , (30) 
0 ( Q l l ) - 2 ( 0 1 1 )  +F(z)  

/ 
where a (c%-  (031) --- a o ~ ( ~ p -  oJ31), ao = ( d21% 109)/ 
eovgh is the absorption cross section in the centre of 
the absorption line and 

F ( z ) -  i :/~ \ A_ 2 r.r~ : / r~  
- -  ~" t \ ~ l l /  W ~- L u - - u  

- <e11> (1 - e~ /r~) ]} .  (31) 

The quantities ( e l l ) ,  (011), and r are given in the 
Appendix [(A.5, 6) and for small pump energies, e ~ 1, 
(A.8-10)]. 1 
Equations (21, 22) with (27, 29, and 30) reduce to a set 
of four coupled differential equations. Introducing the 
new variables t l = t - z / v  o, ( = z  in (21) and ~/=t 

- (L - z)/v o, ~ = z in (22) and assuming, in addition, the 
sample depth to be small compared with the pulse 
length (i.e., time-of-flight effects are excluded) we 
obtain 

~ A p i ( r h ( )  

= - ~, [tijApj(rl, ~) + ri~Aa~(rl, ( ) ] ,  (32) 
j = 1 , 2  

0 

= Z [r,2Ap~(q, () + t,~Ad~(q, ()],  i=  1,2 (33) 
j = l , 2  

with the boundary condition 

0) = Ao(n), 0) = 0) 

= Aa~(rl, L) = 0. (34) 

In (32 and 33) the coefficients r~j and tii generally are 
dependent on ( due to the depletion of the pump pulses 

It should be noted that the results (29-31) agree with those 
obtained with a simplified model of the rotational relaxation 
where the diffusion term D172,~,Qii(,9, q~,z, t) in (7) is replaced by a 
phenomenological relaxation term 6D(Qz~(0, q~, z, t)/4n 
-Qli(z ,  t)). Such a term was used by Penzkofer and Falkenstein 
1-13] for the description of the probe transmission in excitation- 
probe experiments 1-14]. In particular, the time dependence of the 
weighted averages Oil(Z, t), Eq. (15), (O'll(z, 0)  and (O'~l(z, t)) 
coincide for both the models 

in the absorber. We neglect this spatial dependence by 
replacing el(~), ez(0, and Iel2(0l in (6) by its mean 
values (Sect. 2.1). With this approximation and the 
assumption of equal energies of the incident pulses, i.e. 
e1 =ea, the solution of (32-34) is found to be 

Apl(rl ,  L) = Ao(q) [F(z) 2 - r 231/2 

�9 {(F(z)2 _ r 2) 1/2 cosh [xG(z)] + F('c) sinh [xG(z)]} - 1 

(35) 

t t sin  o' Ae2(t/, 0) = cos2q~o I, Ao(q)r sinh [xG(z)] 

Ad3( ,0) o / 
�9 { [F(z)2 _ r 2] 1/2 cosh [xG(z)] + V(z) sinh [xG(z)]} - 1, 

(36) 

where G(z) = e-r~(F(z) 2 _ r 2)1/2 and tc = td + ix  / 
= ha(cop- 0~31) L/2 the complex absorption coefficient. 
With the definition of the energy transmission 

T =  : ~  drllAp(rh L)I 2 dr/[Ao0/)[ 2 (37) 

and of the diffraction efficiency 

R = : ~  drllAa(rl, 0)l 2 dqlAoff/)l 2 (38) 

we have 

R = r 2 {cosh [2xrG(z)] - cos [2xiG(z)] } 

�9 {[2F(z) 2 - r 2] cosh [2x'G(z)] 

+ 2F(z) IF(z )  2 --  r 2] 1/2 sinh [2x'G(z)] 

- r 2 cos [2xiG(z)]}- l ,  (39) 

T = 2[F(z) 2 --  r 2 ] { [2F(z)2 _ r 23 cosh [-2x~G(z)] 

+ 2F(z) [F(z) 2 - r 2] 1/2 sinh [2x~G(z)] 

- -  r 2 COS [2x/G(z)]} - i (40) 

Equations (35, 36, 39, and 40) are the starting point for 
the following discussions. It should be noted that the 
case of purely dispersive media can be formally found 
by setting xr = 0 in (39, 40). Only in this case the relation 
R + T = 1 is valid�9 

2. D i s c u s s i o n  o f  the Resu l t s  

2.1. Dependence of  the Diffraction Efficiency 
and the Energy Transmission on the Pump Energy 
and Small-Signal Absorption 

In deriving (35-40) the depletion of the pump pulses 
within the absorber has been neglected�9 This is, of 
course, only a rough approximation�9 The depletion of 
the pump pulses may be taken into account 
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Fig, 3. Diffraction efficiency R versus small-signal absorption 
for different values of the energy of the incident pulses (z = 0, 
(%-co30=0) 
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Fig. 4. Energy transmission T versus small-signal absorption t~ 
for different values of the energy of the incident pulses 

subsequently in an approximative way ifs and le~zl are 
regarded as mean values obtained by averaging the 
pulse energy over the sample length. The spatial 
variation of the pulse energy may be calculated by 
means of a simple model. For this we assume that the 
two pump pulses polarized perpendicular to each 
other interact with two independent reservoirs of 
absorber molecules. In particular, this includes the 
neglection of the coherent interaction between the 
counterrunning pump pulses (self-diffraction) and of 
the influence of the angular distribution of the 
molecular dipoles. The rate equations describing this 
model 

~11 

~rt 

1 1 ONz 
o-ne~ 1)N1, - + -ffrto]~N2, (4.1) 

2 

N,~(o (i = 1,2) (42) i ~ l  I 

where Ni=d~lzallAi[2/2h 2 is proportional to the 
photon flux, have the solution [18] 

NI((, 
= N1 (0, r/) { 1 + exp [ -  ~(r/)] [exp(~rn(/2) - 1]} 1, 

N2((, t/) = NI(L-  (, I/), (43) 

where N,(O, rl)=Nz(L, rl) and e~0/)= I dt/'N~(0,t/'), 
co 

i.e. e~=s~(r/~oo) is the normalized energy of the 
incident pulse. From (43) we may deduce the 
normalized pulse energies 

- - 0 0  

= In {1 + exp ( -  crn(/2) [exp (ei)- 1]}, 

e2(~) =~I(L- ~) (44) 

and 

1~12(~)1 = ~ drl[Nl(~, tl) g2((, t/)] ~/2 
- c o  

+ {I +2 exp ( -  2 )  [exp(el)- 1] cosh ( 2  - x  ) 

+[exp(  ),oxp. , q  ) 
[l+cos(  ,4., 

where x = anal2 and ~c = nL/2. The quantities e and 1~121 
occurring in (6) are obtained by averaging (44 and 45) 
over the sample length 

L L 

41 = 42 = ~ =  X d~el(~)/L, 1~21 = $ d~ls12(~)l/g- (46) 
0 0 

In Figs. 3 and 4 the dependence of the diffraction 
efficiency and of the energy transmission on the small- 
signal absorption are depicted. The curves numerically 
calculated from (39 and 40) with (A.5, 6), and (46) allow 
to deduce some interesting aspects. In the range of 
where the diffraction efficiency nearly exponentially 
grows with increasing small-signal absorption, for 
s~ > 1, R decreases with increasing energy of the pump 
pulses at values of x kept fixed. This becomes more 
distinct with increasing 4i. In this range the mean pulse 
energy in the absorber exceeds the saturation energy 
and the spatial population modulation deviates from a 
sinusoidal shape. This deviation which becomes 
stronger with increasing energy reduces the diffraction 
efficiency [18]. In the range of ~: where the penetration 
depth of the pump pulses becomes smaller than the 
absorber length the counter-running pulses only 
incompletely overlap and with increasing x ]s~21 
decreases very rapidly in comparison with e. This is the 
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reason for the rapid decrease of the diffraction 
efficiency beyond its maximum in the range of e, < 10. 
In the range of ~c where R goes beyond its maximum the 
energy transmission begins to fast decrease with 
growing small-signal absorption (Fig. 4). In contrast to 
this the curves for e= 50 show that the diffraction 
efficiency already decreases for values of ~ where T ~- 1. 
In this region of strong saturation the direct part of the 
interfering field of the pump pulses can cause an almost 
complete bleaching of the absorber in the range where 
e begins to differ noticeably from [a121(e> [e12]). This 
leads to a vanishing modulation of the absorber 
population. For this reason the maxima of the 
diffraction efficiency decrease with increasing tc in the 
range of e, ~> 10. 

2.2. Dependence on the Relaxation Rates 

An essential goal of the short-pulse spectroscopy is to 
determine relaxation rates as, e.g., the energy and 
the rotational relaxation rates in liquids. Eqs. (39 
and 40) show that R and T depend on these rates in a 
different way. For this reason the simultaneous 
measurement of the probe and background-free signal 
should be advantageous for an exact determination of 
both the relaxation rates. For example, in the low 
absorption range, IK[ < 1, 

R ~- r z exp ( - 2r~) [-(~,)2 + (K,)2], (47) 

T-~ 1 - 2F(z) tc r exp ( -  Fz), (48) 

it is obvious that R decays with a rate F = 1/T21 + 1/TR 
which makes impossible a distinction between both the 
rates without additional assumptions. The decay of T 
determined by F(z), cf. (31), depends in a more 
complicated manner on the rates F, 1/Tzl, 1/TR. 
In the strong absorption range, i.e. cosh[2x r G(z)] 
-~exp [-2xrG(z)]/2 >> 1, which leads to 

/, 2 - 1  

T"~ exp [ -- 2~rG(z)] [ 1 - (F~z)) 2 ] 

. { 2 + 2 I  1 ( r_L_)2],2 - r 2 -1 

the z-dependence of R is mainly determined by 
[-r/F(z)] 2 and that of T by exp [-2~rG(z)]. In the case 
of [r/F(z)]2< 1 Eq. (49) with (31) gives 

3(0,~}/2_ (0,1 > �9 
1 - ( 1 -  (Q11))e-~/r2~ 1--e-~/rR 1_(Ql l  ) 

"-5 
x3 
L 

m 
C 

C I 

Rh B in ethanol. 

\x 

x ~ ~ x  

i i l i i 

0 60 120 180 240 
a 0pticat delay (psec) 

D 

.d  
t_  
O 

�9 ~ Rh 6G in ethanol 
C 

\ 

x 
x x x x 1( 

i , i I 

0 60 120 180 240 
b Opticat del.ay (psec} 

Fig. 5a and b. Dependence of the intensity of the diffracted pulse 
on the optical delay for solutions of (a) RhB and (b) Rh6G in 
ethanol (10- 3 mol/l), x denotes the measured points ofWu et al. 
[7] for pump pulses with orthogonal polarization. The solid line 
shows the theoretical dependence obtained by fitting (51) with 
1/T21 < 1/TR to these points [TR= 192ps, (011)/(011)=0.56 (a) 
and TR=238ps, (&l)/(Qll)=0.43 (b)]. The dashed part 
indicates the range where (51) is not valid 

The formulae for the temporal behavior of the 
diffraction efficiency, (39, 47, 49 or 51) may be 
compared with the experimental results ofWu et al. [-7] 
for the case of orthogonally polarized pump pulses. 
The experimental conditions of their investigations of 
the absorbing liquids rhodamine 6 G and rhodamine B 
should meet the range of validity of (51). Figure 5a and 
b show the results obtained by fitting (51) to the 
measured time dependence of the diffracted energy of a 
delayed probe pulse in RhB and Rh6G in ethanol, 
respectively. From Fig. 5a it is obvious that (51) gives 
an excellent description of the measured temporal 
development of the diffraction efficiency in RhB, 

(51) 
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whereas the agreement between the theoretical and the 
experimental dependence in Rh6G is not so good 
(Fig. 5b). Of course, the experimental conditions of [7] 
are not fully known to us, but one of the reasons for the 
lesser agreement could be that the model of an 
isotropic rotator assumed in deriving (39), (40) is only a 
rough description of the Rh 6G molecul. The resulting 
constants are TR = 192 ps, <011)/<011 ) = 0.56 for Rh B 
and TR=238ps, <01i)/<011)=0.43 for Rh6G. From 
(A.6) it is deduced that, e.g., <011)/<011)=0.56 
corresponds to a mean value of the normalized pump 
energy ofe = let21 = 1.3 in the RhB sample. The value of 
the orientational relaxation time of Rh6G well agrees 
with those previously measured (TR=270ps [15], 
T. = 250 ps [16]). 

2.3. Polarization of the Diffracted Pulse 

From (36) it is obvious that the diffracted part of a 
linearly polarized probe pulse generally suffers a 
rotation of its polarization plane. The amount of this 
rotation depends on the orientation of the polarization 
plane of the incident pulse. For example, if the 
polarization plane of the probe pulse coincides with 
that of one of the pump pulses, i.e. goo = 0, +_ n/2, the 
polarization plane of the diffracted part is rotated by 
n/2. If, however, the polarization plane of the probe 
pulse has the same direction as the orientation of one of 
the orientational gratings, i.e. goo = -+ n/4, the 
polarization of the diffracted pulse remains unchanged. 
That means, for 0 < Igo0l < n/4 every orientation of the 
polarization plane of the diffracted pulse can be 
obtained. This behavior is caused by the fact that the 
pump pulses produce two orientational gratings with a 
orientation of n/4 and - re/4 in the coordinate system 
determined by the pump pulses (Fig. 1). The maxima of 
the two gratings are mutually shifted by 2/4 and, 
therefore, the components of the probe pulse diffracted 
by the two gratings suffer a phase difference of hi2 
which leads to the rotation of the polarization plane of 
the diffracted part. This behavior may be utilized to a 
further improvement of the signal-to-noise ratio of the 
background-free signal. 
In conclusion we briefly want to discuss the most 
essential approximations made in this paper. The 
assumption of a delay time longer than the pulse 
duration includes the neglection of contributions due 
to the coherent interaction between the pump and 
probe pulse (four-wave mixing) and hence enables a 
solution for arbitrary values of the pump energy and 
the small-signal absorption. The results are reasonably 
applicable if the pulse durations are short compared 
with the relaxation times under investigation. 
The model used in (1 and 7) for the description of the 
rotational diffusion of the molecules contains two 

essential assumptions. 1) It was assumed that the 
diffusion constants of the ground and excited state 
does not differ. Otherwise the relation Qll(O, rp, z, t) 
+ 022(0, go, z, t )= 1/4rc used for (1) is not valid. This 
assumption should be justified in the most cases. 
Recently Reiser and Laubereau [20] have reported 
measurements of the rotational relaxation rates of the 
So- and Sl-state of phonoxazine dissolved in dioxane 
and CC14, which show a slight difference in the first 
case (120 and 150ps) and no difference in the second 
case. 2) A more restricting assumption is that of an 
isotropic rotator, i.e. equal axes of the diffusion 
ellipsoid, Dx = D~ = D~ = D. This assumption made for 
the sake of simplicity is generally not satisfied and must 
be checked for the actual experimental conditions. 
(For a detailed discussion of the validity of various 
models of rotational diffusion compare [12, 14] and 
references cited there.) 
Due to the assumption of a sample depth short 
compared with the pulse length the equations of 
motion for the pulse envelope, (21 and 22), have been 
reduced to stationary ones, (32 and 33). Because of this 
approximation changes in the shape of the diffracted 
pulses have been neglected that arise from the influence 
of time of flight of the probe pulse and from the 
variation of the grating amplitude in the sample. 
The non-resonant interaction of the electromagnetic 
field of the pulses with level 2 of the three-level system 
used as model is neglected. This is justified for a 
frequency difference between both the levels that is 
greater than the phase relaxation rates of these 
transitions. Otherwise the influence of the adjacent 
transition on the dispersion, i.e. on the variation of the 
refractive index has to be considered. In special 
wavelength ranges the influence of the resulting phase 
grating may exceed that of the amplitude grating. 
Recently Eichler et al. [21] have reported experimental 
results which show that, e.g., in rhodamine 6G 
irradiated by pulses of a wavelength of 530 nm the 
induced phase grating dominates the amplitude 
grating by an order of magnitude. However, because 
the relaxation of the corresponding transitions is 
determined by the same rate constants the time 
behaviour of the diffraction efficiency is expected to be 
the same as described above. 
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Appendix 
In order to calculate the quantities r u and tu, (23 and 24), 
011(0, ~0, z) given by (6) is expanded into an infinite series 

A(O) ~ [ - B ( ~ ) y  . . . . .  
011(0, ~0, Z) = ~n=~"0 n!--' COS [ZKZ) sin"(2r (A.1) 

with 
A(O) = exp ( -- A~ sin 20), B(0) = ~r[~ 12l sin20 (A.2) 
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and where e 1 =e2=e,  6 = 0  has been assumed. To carry out the 
integration over q~ and z the following relations are used 

2~ (0 m = 2 n + l  
d(p s in (24o)- n = 1, 2 . . . . .  (A.3) 

2~ (2n'] m=2n 
L tn) ' 

1 t 
(cos m (2kz)) = 7 ! dz cos m (2kz) 

= {0, m = 2n + 1 (A.4) 

1(2.  .,=2., / 
{22" t, , , )  ' 

where terms - (nk) - i have been neglected. I denotes a length of 
some periods of k -  1. Inserting (A.1) with (A.2) into (23, 24) with 
(20) and using the relations (A.3 and 4) the results, (29 and 30), are 
obtained, where 

r = - =- S dO sin3 O a(~9) ~. , (A.5) 
4o ,,=, (2n-1)! k~\nJJ 

( (Q~) )  l~dol'sin'9"~ .... a B(O)2"[ 1 [2n'~] 2 
t, sin O) A%5o L -t, n)_l " (A.6) 

In particular, one obtains by means o f  (A.3, 4) the relation 
1 l 

dz cos (2kz) 01 l(z, 0) = ~ dz cos (2kz) 011(z, 0) = 0. (A.7) 
0 0 

That means, the total ground-state population (summed over all 
angles) and the weighted ground-state population have no 
periodic z-dependence, i.e. there is no concentration grating. 
In the ease of small pump energies, [~lzl = e ~  1, (A.5, 6) can be 
approximated by 

r- -  - s  (A.8) 

(~o11) = 1 - 2 2 ' % / 3 ,  (A.9) 

( 011 ) = 2(1 - 4A~ (A. 10) 
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