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Abstract. The second-order Doppler shift is an important source of systematic error in rf 
quadrupole trapped ion frequency standards. This shift can be reduced by cooling the 
secular motion of the ion cloud with a light background gas at low pressure. Using a 
thermalized ion cloud model, it is possible to relate the Doppler shift to the temperature of 
the ion cloud. It is shown that, in practice, the measured frequency of the first-order Doppler 
sidebands can be used to determine the ion cloud temperature. 

PACS: 35, 32 

The technique of ion confinement using an rf quad- 
rupole trap [1-3] has been used to good effect in 
several different types of physical experiments. For 
example, the selectivity of the trapping process pro- 
vides a means of mass spectroscopy. The compara- 
tively long, collision-free ion storage time has also 
made possible measurements of such phenomena as 
small scattering cross-sections and weak optical tran- 
sitions. In particular, extremely high precision micro- 
wave hyperfine spectroscopy [-4, 5] has been carried 
out, leading to the development of a new type of atomic 
frequency standard [6-10]. 
In an rf trap the confined ions experience a small 
amplitude oscillation (micromotion) driven by the 
non-uniform, time-varying field. This motion produces 
an effective trapping potential in which the ions 
execute comparatively large thermally excited periodic 
orbits. The overall motion of the trapped ions causes a 
shift of the average hyperfine transition frequency due 
to the second-order Doppler effect of special relativity. 
It has been argued [7, 10] that this shift is the most 
significant absolute offset in a trapped ion frequency 
standard, and must be stabilized and accounted for to 
achieve the desired stability and accuracy. 
It has been demonstrated [2, 10, 12, 13] that the 
introduction of a low pressure of a light background 
gas reduces the amplitude of the macromotion of 
heavy ions, decreasing the total second-order Doppler 
shift. Under these conditions one can use as a model a 

cloud of ions in Which individual ion macromotion is 
thermalized in the effective trapping potential modified 
by the space charge of the rest of the ions. For a given 
macromotion temperature the distribution of ions 
within the cloud can be obtained by solving a set of self- 
consistent equations [14, 15]. The ion distribution, and 
the associated distribution of macromotion orbits, can 
then be used to calculate the total second-order 
Doppler shift due to both micromotion and macro- 
motion. Thus if the number of ions, the trapping 
parameters, and the macromotion temperature are 
known, the second-order Doppler shift can be 
calculated. 
The macromotion temperature of a trapped ion cloud 
will depend, in general, on the balance of heating effects 
resulting from collisions and irregularities in the 
trapping potentials, and cooling due to collisions with 
any background gas which may be present [2]. In 
practice, neither the heating rate nor the cooling rate is 
accurately predictable, and it is necessary to devise 
some method of measuring the ion macromotion 
temperature. 
The purpose of this paper is to show how one can 
accurately determine the temperature of a trapped ion 
cloud by measuring the first-order Doppler sidebands 
of the microwave hyperfine resonance. The theory 
developed is found to corroborate previous experi- 
mental evidence [10, 13] of the self-consistency of the 
thermalized cloud model used. The basic idea is as 
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follows. Due to their thermal energy, trapped ions 
move in periodic orbits which are determined by the 
total effective potential. When these ions are irradiated 
with a traveling electromagnetic wave, their periodic 
motion causes the ions to see a signal which is phase 
modulated at the motional frequency by the first-order 
Doppler shift. A signal with periodic phase modulation 
has a spectral density comprised of an unshifted carrier 
and sidebands uniformly spaced by the modulation 
frequency. Thus, the average spectral density that the 
ion cloud sees is a narrow unshifted carrier with first- 
order Doppler sidebands that are smeared by the 
velocity and trajectory distributions of the ion thermal 
macromotion. The first-order Doppler spectrum of 
confined atoms was first discussed by Dicke [16], and 
such sideband spectra have recently been observed in 
trapped mercury ion frequency standards [13, 17]. 
In the following sections we show how the sideband 
spectral density may be calculated for a given macro- 
motion temperature on the assumption of a therma- 
lized ion cloud. These results are then compared with 
spectral densities observed in a 199Hg frequency 
standard [13] in order to determine the macromotion 
temperature. As will be shown, the model accurately 
reproduces the observed spectral densities corroborat- 
ing the assumption of a thermalized ion cloud and 
clearly determining the temperature required to com- 
pute the second-order Doppler shift of the frequency 
standard. 
Jardino et al. [17] have recently calculated first-order 
Doppler spectral densities for trapped mercury 199 
ions using the same theoretical method. Their results 
are compared with experiments in which space charge 
effects are not dominant. Under those given conditions 
they show that the frequency of the first-order Doppler 
sidebands does not vary with temperature. Our inves- 
tigation concentrates on the space-charge-dominated 
situation with known, constant, ion population, as 
appropriate in our experiments with helium cooling 
gas. Under these circumstances we find that the 
sideband frequency can be used to obtain an accurate 
measure of the ion macromotion temperature. It will ~ 
be shown that these results are not at variance with 
those of [17]. 

1. Theoretical Description 
of Ion Thermal Macromotion 
in a Spherical Pseudopotential 

A single ion in an rf quadrupole trap feels a time- 
averaged force generated by its motion in superposed 
oscillating and static electric fields. The instantaneous 
electric potential seen by the ion is given in cylindrical 
coordinates by 

~b(t) = [ U -  Vcos(f2t)] ( ~ 2 _  2z2) /~2,  (1) 

where U and V are the dc and rf voltages applied, f2 is 
the rf frequency, and ~ is a dimensional parameter 
characterizing the trap electrodes. It is well known that 
the net effect of the oscillating part of the field is to 
create a harmonic restoring force on an ion, provided 
the displacement during an ff cycle is small compared 
to the distance from the trap center. This is equivalent 
to a cylindrically symmetric pseudopotential 7J(0, z) 
given by 

/ 2V2 ", 
7s(~, z) = ( q-  v - ~ (62 + 4z2) ' (2) 

\ m f 2 2 ~ 4 J  

where q and m are the charge and mass of the trapped 
ion. The superposition of the field due to the dc voltage 
U and the pseudopotential 7 j from the rf voltage gives 
an effective potential q~(Q, z). It is possible to choose the 
parameters U, V, and ~ to give a spherically symmetric 
effective potential, which in spherical coordinates is 

where 

o) - 2q V/mf2~ 2 . 

Since the use of spherical symmetry greatly simplifies 
the calculations and the observations to be discussed 
were made with an almost spherical effective potential, 
this is the case which will be analyzed. A single ion 
would undergo three-dimensional simple harmonic 
motion in effective potential (3) at a characteristic 
macromotion frequency o). Superposed on this motion 
is a small amplitude driven micromotion oscillation at 
frequency (2. It is easily shown that the mean square 
velocity (/)2) of this micromotion is 

032 
(v2> = ~ -  r z . (4) 

Both the macromotion and micromotion of a single 
ion in the potential well are completely described by 
the macromotion frequency parameter ~0. 
If the well contains a large number of ions, the effective 
potential is modified by the ionic space-charge. The 
total effective potential seen by an ion is then given 
by 

~btot(r ) = 4~(r) + qq~q(r), (5) 

where the electric space charge potential ~q is related 
to the ionic number density n(r) by Poisson's equation. 
Assuming the ion cloud has statistically thermalized at 
a temperature T, the ion number density will satisfy a 
Boltzmann distribution, 

n(r) = C" exp ( - Etot/k B T )  (6) 
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with 

Eto t = �89 2 + ~tot(r) 

and C ~ a normalization constant. The statistically 
independent momentum (velocity) distribution can be 
integrated out, leaving 

n(r) = C exp [ -  ~tot(r)/kB r]  . (7) 

Solving for ~tot(r) in terms of n(r), and using the 
Poisson equation gives a nonlinear second-order 
equation for n(r): 

n '  n 2 q  2 3mo2n 
n " - n ' - - + 2  + - 0  (8) 

n r eokBT kBT 

with the constraint 

n(r)d3r = N ,  (9) 

where N is the total number of ions. Equation (8) can 
be easily solved in the following two limits: 

3mcoZeo 
n(r)= q2 , [r~(gq2/4zrm~ 

for T-~O 
(10) 

n(r) = (const) exp ( 3rn~ ~ } for T ~ o e .  

Note that for low temperatures the cloud condenses to 
a uniform distribution which has a space charge 
generated potential that precisely cancels the effective 
trapping potential within the cloud. At high tempera- 
tures the ions see a negligible space charge effect and 
satisfy a Boltzmann distribution with respect to the 
trapping fields. 
For a given set of trapping parameters, (8 and 9) can be 
numerically solved. Figure 1 illustrates the charge 
distributions for several temperatures with fixed trap 
parameters and ion number. Mass 199, N = 2 x  106, 
and ~o/2~z = 50 kHz have been chosen to correspond to 
the conditions used in [10]. Figure 2 shows the 
normalized total effective potential derived from these 
charge distributions using (7) in the form 

,I),ot(r)=-k,~rln ~S)  ' (11) 

where the potential has been set equal to zero at the 
cloud center. 
Note  that at low temperatures the potential tends to 
approximate a spherical square well. Under typical 
conditions it may be assumed that the densities of ions, 
neutrals and background gas atoms are such that the 
rate of collisions of the ions with the potential barrier 
at the cloud edge is much greater than the rate of ion- 
ion, ion-neutral, or ion-light gas collisions. Thus, the 
ion trajectories will roughly correspond to free recti- 
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Fig. 1. Ion density as a function of radial distance for several 
different input temperatures, with N=2 x 106 ions and co/2~ 
= 50 kHz. (The curves are, from top to bottom: T= 0, 300, 1000, 
3000, 5000, 10,000, and 30,000 K) 
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Fig. 2. The total effective potential as a function of radial distance 
for several different input temperatures, with N = 2 x 106 ions 
and co/2~z= 50kHz. (Same temperatures as Fig. 1) 

linear paths in the cloud interior, with rather sharp 
specular reflection at the relatively well-defined cloud 
surface. Also, the total potential is taken to be spheri- 
cally symmetric implying orbital angular momentum 
conservation, and therefore the ion trajectories remain 
in planes that contain the trap center. 
The intuitive picture of the ion macromotion trajec- 
tories at this point is that of ions bouncing around 
inside a hollow rigid sphere defined by the total 
potential. However as can be seen from Fig. 2, the 
potential is not precisely defined by a rigid sphere 
(except at T=0) ,  but rather a potential well with 
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extended "soft" walls. Therefore, for a given initial ion 
position and velocity we must solve for the precise 
trajectory using the numerical values of the potential 
given by (11). The equation for the ion two- 
dimensional trajectory in the plane defined by the 
initial velocity vector and the trap center can be written 
in terms of two integrals 

O =  i dr 
ro r2~/2~ ? 2mV(r) l 

12 /.2 

dr (12) 

t= r ! / 2 [ E _ V ( r ) _  , 12~2mr z] 

where O and t are the angle and time elapsed as the ion 
travels from ro to r, E, and l are the ion energy and 
angular momentum, and V(r) is the ion total potential 
energy. These equations can be numerically integrated 
for arbitrary ion initial conditions and potential. 
In summary, given the ion trapping parameters de- 
fined in (1), the ion number N, and a temperature T, the 
ion number density can be computed. From this the 
total potential seen by the ions can be determined, and 
thus the ion trajectory for an arbitrary initial ion 
velocity and position. 

2. Asymptotic Estimation 
of the Doppler Sideband Frequencies 

The Doppler sideband frequencies can be estimated 
simply for the cases of very high and very low 
temperatures. At very high temperatures the macro- 
motion amplitude is large so the density of the stored 
ion cloud is low, and the space charge effects are 
unimportant. The total potential seen by the ions is 
therefore the quadratic pseudopotential given by (3). In 
the case of spherical symmetry the ion macromotion is 
thus simple harmonic motion in three dimensions at 
the angular frequency co given by (3). As described in 
the introduction, this motion will cause the observed 
hyperfine spectrum to show narrow sidebands at 
+_ co/2zc and harmonics. A reduced sideband frequency 
F* can be defined by 

F* = 21rfsB/co , (13) 

where fSB is the Fourier frequency in Hz of the first- 
order Doppler sideband. At sufficiently high tempera- 
tures we expect F*o, ~ 1 for all values of the parameters 
m, co, and N. These sidebands will of course be 
accompanied by sidebands at the micromotion fre- 
quency ~2/27r and its harmonics. 
At very low temperatures the situation is different. As 
described in Sect. 1, the total potential is strongly 

modified by the space charge of the ion cloud, and is 
approximately a spherical square well with a radius ro 
given by (10). The orbit periods for ions with velocity v 
lie between the limits 4ro/v and 21rro/v corresponding 
to diametric and equatorial orbits, respectively. The 
appropriate average ion velocity must be close to the 
most probable thermal velocity Vmv for the Maxwell 
distribution given by 

vm, = ( ZkB T/m) 1/2 . (14) 

The reduced frequency of maximum sideband intensity 
will thus be given by 

Fcold - -  Vmp/TroCO, 
where 

2/7r<7<1. (15) 

The value of ? represents the geometrical average in 
phase space over all possible orbits, which should be 
independent of m, CO, N, and T. Substituting the values 
of ro and V,,p gives 

* - - l ( T * ) l / z  (16) Fcold - -  ? 

where we have defined a reduced temperature 

T * =  T/To, 

with 

T o = ml/3(qZcoN/41reo)Z/3/2k~. 

Thus at sufficiently low temperature we expect F* to be 
given in terms of the parameters m, co, N, and T by (16), 
and at sufficiently high temperatures we expect 
F * ~ I .  
It is instructive to notice that the characteristic temper- 
ature T o of the low temperature motion is related to 
O(ro), the pseudopotential at the edge of the cold 
cloud, by k~To = O(r0). Thus for T* ~ 1 the cold cloud 
model might be expected to break down. The practical 
significance of the reduced temperature T* will 
become apparent when the results of rigorous calcu- 
lations are considered in Sect. 4. 

3. Complete Calculation of Sideband Spectra 

As established in Sect. 1, the trapped ions have a 
thermal macromotion following calculable two- 
dimensional trajectories governed by the effective 
potential. In a frequency standard, these ions would be 
irradiated by microwave traveling waves at the hyper- 
fine frequency. The macromotion causes the ions to see 
the microwaves with an additional position and time 
dependent phase factor. We assume an ion with 
position r(t) sees a plane wave microwave field 

B(t) = B o cos [COot- k. r(t) + ~b], (17) 
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where Bo is the peak field strength, coo and k are the 
microwave angular frequency and wave vector, and O 
is an arbitrary phase factor due to the random starting 
phase of the incident wave. The power spectral density 
of the radiation perceived by the ions is given by the 
Fourier transform of the autocorrelation function of 
the field. If the following reasonable assumptions are 
made: i) that the radiation in the sidebands is incoher- 
ent, and ii) that transitions do not change the popul- 
ations of the hyperfine levels significantly, the induced 
transition rate will be proportional to the power 
spectral density of the observed radiation. The shape of 
the observed Doppler sidebands will thus be that of the 
power spectral density. The power spectral density 
P(co) of the field of (17) is given by 

P(co) = 4 ~ dz T(z) cos(coz), (18) 
0 

where T(z) is the autocorrelation function given by 

T(z) = S2<cos {coo(t + z ) -  k. r(t + z) + r 
�9 cos {COot-- k. r(t) + r (19) 

where the brackets signify averaging over an adequate 
statistically weighted ensemble of ion trajectories. We 
also note that T(T) is independent oft  in (19) since B(t) 
is a statistically stationary variable. Averaging over the 
random phase factor r eliminates the explicit t de- 
pendence and yields for T(~) 

B 2 
T(z) = 7 Re {eiO~ ar(~)) }, (20) 

where Ar(~)= r(~)-r(0). The ensemble average of the 
bracketed expression must be done to compute T(~), 
which is then used to compute the power spectrum via 
(18). However, the three-dimensional rotational inva- 
riance of the potential which governs the ion trajec- 
tories can be further exploited to simplify (20). The 
argument is as follows. In a time interval z, an ion will 
trace out a two-dimensional trajectory segment whose 
chord is Aft-c). Due to rotational invariance, within the 
ion statistical ensemble it is equally probable that there 
is an ion with a trajectory segment whose chord yields 
a At(z) rotated by any angle in the parameter manifold 
of the three-dimensional rotating group. Thus we can 
sum (average) over all orientations of A r(z) integrating 
over the full 4~r solid angle 

<e-ik- a,(~)) = <j" e-ika .... o s inOdO)  

= 2 /s in[kAr]~  (21) 
\ [ka ] / 

The simplified expression for T(r) is then 

T(z) = Bo 2 cos(COoZ ) /s in  [kAr(z)]~ (22) 
\ / 

The autocorrelation function and thus the power 
spectral density for absorption of microwave radiation 
by the trapped ions can now be computed using the 
statistical sampling techniques of Monte Carlo pro- 
gramming�9 The procedure to compute the autocorrel- 
ation function of (22) is the following. The trapping 
parameters defined in (1), the total number of trapped 
ions and the temperature T of the thermalized ion 
cloud, are chosen�9 From this information, the ion 
number density n(r) and the effective total potential 
~btot(r ) seen  by the ions can be computed. Statistically 
generated ion trajectories can be calculated, and their 
contributions to T(z) can be determined from equation 
(22). The iterated algorithm is the following: 
1) Generate a starting point for an ion trajectory from 
the rotationally symmetric spatial probability 
function 

P 1 (r)dr = n(r)r 2dr. (23) 

2) Generate an initial speed for the ion from the 
Maxwell-Boltzmann thermalized distribution 

P2(v)dv = exp ( -  mv2/2k r)v2dv. (24) 

3) Generate an initial velocity direction given by the 
angle O from an arbitrarily defined z-axis 

Pa(O)dO = sin(O)dO . (25) 

4) Compute the trajectory using (12). Computation 
time is minimized by computing one full trajectory 
segment from rmi, to rma x and reflecting this repro- 
duced segment repeatedly about the appropriate axes 
of symmetry. [Also, analytic expressions for the in- 
tegrals near the turning points must be used because of 
the integrable singularities in (12).] 
5) Compute the contribution to the autocorrelation 
function using (22). Loop back to Step 1. 
After computing an appropriate number of statistically 
generated contributions to the autocorrelation func- 
tion, the absorption power spectral density can be 
computed using (18). This process can be repeated for 
various cloud temperatures and the resultant spectral 
densities compared with the measured data. In this 
way, the temperature of the physical experimental 
cloud can be determined, and the consistency of the 
thermalized ion cloud model investigated. 
As will be seen in the next section, very good results 
have been achieved. However, it is of interest to 
investigate possible corrections to our model. The 
largest correction expected would be the inclusion of 
ion-ion scattering as the ions follow their trajectories 
through the cloud interior. This scattering would 
manifest itself as a slowly growing deviation from the 
unscattered trajectory due to multiple Coulomb scat- 
tering, and would give a finite lifetime to any distinct 
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orbit. This process was found to have a negligible effect 
upon the results, and is thus relegated to discussion in 
the appendix. 

4,  R e s u l t s  o f  C a l c u l a t i o n  

The formalism of the previous sections can now be 
used to compute the effects of ion thermal macro- 
motion on the power spectral density of microwave 
radiation seen by trapped ions. As stated in the 
introduction, the phase modulated signal seen by the 
ions is a Dicke spectrum consisting of an unshifted 
carrier and first-order Doppler sidebands uniformly 
spaced by thel-notional modulation frequency. What 
will be computed here is the single-sided power 
spectral density of the first-order Doppler sidebands, 
which will be plotted as a function of the frequency 
difference from the unshifted carrier. 
In order to calculate the ion density distribution it is 
necessary to choose values of the ion mass m, the 
trapping parameter co, the total number of ions N, and 
the temperature T. To complete the calculation of the 
sideband spectra, a value of the wavelength 2 at the 
hyperfine frequency is also required. 
Figure 3 shows the results of typical calculations for 
trapped 199Hg ions. The autocorrelation function is 
plotted for various temperatures, suppressing the 
baseline due to the unshifted carrier, together with the 
corresponding power spectra. For comparison with 
the experimental data [10, 13] the parameter values 
m=3.329 x 10 .25 kg m/2~= 50 kHz, N = 2  x 106, and 
2 = 7.5 mm have been used. 
The following general observations can be made on 
these results: 
1) The frequency of the first maximum in the sideband 
intensity is a monotonically increasing function of 
temperature. 
2) The first maximum falls well below co/2~ at low 
temperatures and asymptotically approaches this 
value at high temperatures, as predicted by the sim- 
ple analysis of Sect. 2. 
3) Sidebands occur at harmonics of the frequency of 
the first maximum. This is particularly obvious at high 
temperatures, where the cloud is largest and the 
condition 2~r/2 ~ 1 is approached. Figure 4 shows a 
power spectral density plotted up to 200 kHz showing 
this effect. 
4) The width of the first-order sidebands decreases 
uniformly with increasing temperature, as expected 
from the fact that the effective potential becomes more 
nearly harmonic. 
5) At higher temperatures, there is a small peaked 
contribution to the spectral density at low frequencies 
(1-10 kHz). Detailed analysis of individual trajectories 
has revealed that this originates in the fact that general 
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Fig. 5. The reduced frequency F* 
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first order Doppler sideband vs. 
the reduced temperature T*, 
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co/2~z= 50 kHz: m: N=0.6 x 106 
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ions; x : 1.1 x 10 6 ions. 
N=2 x 106 ions, m/2~z= 30 kHz: ~ : 
m=3.329 x 10-25kg, x : m=2.292 
x 10-25 kg) 

orbits are not closed, and the "orbital symmetry lines" 
defined by the orbital turning points have a pre- 
cessional motion superposed upon the higher fre- 
quency orbital motion. This low frequency precession 
manifests itself through the phase nonlinearity of the 
autocorrelation function. 
In order to demonstrate the systematics of the vari- 
ation of the sideband frequencies we show in Fig. 5 the 
results of plotting the frequency of the maximum 
intensity of the first-order sideband in the calculated 
spectra (divided by e)/2rc) against the calculated value 
of the reduced temperature T* defined in (16). The 
calculations have been extended to several different 
values of m, ~, and N as shown in the figure caption. A 
surprising and useful result is seen to be that, for the 
data calculated, the values o fF*  appear to be given by 
a single function of T* for all the parameter values 
chosen. At low temperatures the rigorously calculated 
results fall within the limits given by the simple theory 
in (16). At high temperatures F* approaches unity. The 
calculated results are quite well described by the 
phenomenological relationship 

F* = [1 + 0.32(T*)-  2] - 1/4, 

implying a value of 7=0.75. 
The data shown in Fig. 5 demonstrates that the 
position of the first-order sideband can be used to 
estimate the ion cloud temperature as long as the 
reduced temperature T* is smaller than about  0.5. The 
estimate requires that the values of m, co, and N be 
known with sufficient accuracy. 
Jardino et al. [17] have found using the same method 
of calculation as that discussed above that the side- 
band frequency is independent of temperature for a 

given density, n(0), of ions at the center of the trap. For  
this result to be compatible with our finding that F* is a 
single-valued function of T*, n(0) must itself be a 
single-valued function of T*. For  given values of m and 
co, (16) shows that for a constant n(0), the relationship 
T o c N  2/3 must hold. Our calculated density distri- 
butions for m = 3.329 x 10- 25 kg and e) = 2~t x 50 kHz 
do indeed demonstrate this unexpected result for 
values of N between 106 and 5 x 10 6 ions, and thus 
there is no disagreement between our results and 
those of Jardino et al. [17]. 
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Fig. 6. Measured (solid) and theoretical (dashed) power spectral 
densities as a function of frequency away froni the carrier 
frequency. (N = 2 x 106 ions, co/2n = 50 kHz, and the input tem- 
perature T= 564 K as determined from Fig. 5) 
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Fig. 7. Measured (solid) and theoretical (dashed) power spectral 
densities as a function of frequency away from the carrier 
frequency. (N=0.6x 106 ions, co/2~=50kHz, and the input 
temperature T= 503 K as determined from Fig. 5) 

5. Comparison with Experiment 

Measurements of the first-order Doppler  sidebands in 
a mercury-199 t rapped ion frequency standard have 
been published elsewhere [13]. Figures 6 and 7 show 
the results of fitting calculated spectra using the 
macromot ion  temperature T as determined from 
Fig. 5. The experimental data  appear  to be reasonably 
well accounted for by quite similar temperatures.  
The intensity at low Fourier  frequencies in the mea- 
sured data is probably  the edge of the central line 
which is saturated and broadened by the relatively 
high microwave intensity necessary to see the 
sidebands. 

6. Conclusions 

A self-consistent model for a cloud of ions in an rf 
quadrupole trap has been analyzed, and the first-order 
Doppler  sideband lineshapes calculated from the auto- 
correlation function of the motion. We find unex- 
pectedly that  the first-order sideband frequency is 
given quite accurately by a single-valued function of a 
reduced temperature depending on m, ~o, N, and T. 
It  follows that, for a reasonably cold ion cloud, the 
effective temperature  can be easily estimated from the 
position of the measured first-order Doppler  side- 
bands of the Dicke spectrum, as long as the parameters  
m, m, and N are known. 
Knowledge of the temperature  implies a knowledge of 
the ion spatial distribution and also the ion thermal 
speed distribution. 
These quantities are necessary to determine the 
second-order Doppler  corrections to the center fre- 
quency of the ion t rap frequency standard due to ion 

micromotion and macromotion,  respectively. Our  
confidence in previous estimates of the second-order 
Doppler  shift for t rapped mercury ions [10, 13] is 
increased by the excellent agreement between the 
rigorous calculations of the sideband frequencies, and 
the predictions of the simple model of the cold cloud 
which was used to calculate the second-order Doppler  
shift. 

Appendix 

As stated in Sect. 3, the primary correction to our model would be 
the approximate inclusion orion-ion scattering as the ions follow 
their trajectories through the cloud interior. The effect of this 
multiple Coulomb scattering would be a slowly growing (ran- 
domized) deviation from the unscattered trajectory, which 
would introduce a randomized phase modulation to the micro- 
wave radiation frequency seen by the ion. We incorporate this 
scattering off-set by adding a contribution to the ion trajectory 
displacement vector 

Ar(t)-~ Ar(z) + e(t), (A.1) 

where c(t) is a vector transverse to the ion trajectory and is 
weighted by a distribution governed by the scattering dynamics. 
The distribution is a function of the density of ions, velocity and 
mass of the ions, and t. As z becomes larger, we expect the width 
of the transverse distribution to grow due to the increased 
number ofscatterings. We further expect it to grow in a fashion 
analogous to a statistical random walk. 
Inclusion of the multiple Coulomb scattering effect in the 
autocorrelation function of Sect. 3 changes (17)to the following 
simple form 

B 2 
tp(z) = 2 Re {eiOO~(e - i k "  A r ( Q  - ik "g(t)) }, (A.2) 

where the brackets denote averaging over the distribution in the 
scattering off-set e, in addition to the usual averaging over the 
statistical ensemble. 
The direction of c is orthogonal to the ion trajectory and 
randomized in this plane. Here we will outline the derivation of 
the probability distribution for the magnitude of 8. The ortho- 
gonal distance e away from the unperturbed trajectory is given 
by 

t 

e(z) = I v• (A.3) 
0 

where v• is the velocity orthogonal to the unperturbed 
trajectory generated by scattering. The velocity v• can be 
rewritten as [v sin O(t)], where O(t) is the angle of deviation from 
the unperturbed trajectory and v is the (constant) ion velocity 

t 

e(t) = v i sin [O(t')]dt'. (A.4) 
o 

To characterize the distribution O(t) we model the scattering as 
that of an ion of velocity v passing through a cloud of effectively 
stationary ions, and undergoing multiple Coulomb scattering. 
The scattering cross-section for a single ion-ion scattering is the 
simple Rutherford cross-section 

da 1[ / e a '~2 1 (A.5) 
= g [ x ~ , ]  sin'O/2 " 
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As is always the case with the naive application of this formula, 
there is an apparent infra-red (O--+0) singularity. However it is 
known from physical considerations that there is a Omen and a 
O~x for the process under consideration. To determine Omi, we 
simply note that for small angle scattering momentum conser- 
vation gives A 0 ~ e2/2~eobmv a, where b is the scattering impact 
parameter. For the scattering of a screened charge (analogous to 
Debeye screening), there is a maximum impact parameter and 
thus a minimum A O. The screening here comes from the 
compensating motion of the "spectator" ions which move to keep 
the long range potential gradients inside the cloud equal to zero. 
The magnitude of b is estimated to be always less than 2-3 
interionic distances in the cloud interior, which leads to 

e 2 

A Omi, ~ 2motlromv2, (A.6) 

where t/~2-3, ro is the inter-ionic distance given by 
ro=(3/4gn) 1/3, and n is the ion number density. 
Similarly, there is a A Ore, ~. This originates from the fact that the 
ions are extended objects of distributed charge As a result, the 
scattering cross-section falls substantially below the Rutherford 
expression for large angles due to diffraction effects. The 
scattering is confined to angles < (2/2nR), where 2 is the ion 
de Broglie wavelength and R is the ion radius. For wider angles 
the wavelets from different parts of the scatterer destructively 
interfere. Using p=hk=2gh/2 the expression for AOma~ 
becomes 

h 
AOmax ~ m v R "  (A.7) 

Given (A.5-7), the mean squared angle can be computed for a 
single collision 

2 . 2da .da (o >=jo g /j da 
202mi= In ([~}max/Omin) . (A.8) 

Since successive collisions are independent events, the central 
limit theorem of statistics implies that for a large number of 
collisions N, the distribution in angle will be approximately 
Gaussian around the forward direction with a mean square 
angle 

(0 z) = ( 0 2 ) .  (1.9) 

Using the expression for the total number of collisions after 
time t 

N ( t) = naxotVt , (A. 10) 

the final expression becomes 

/ e 2 \ 2  
( 0  2 )  = 2rm ~ )  ln(Omax/l~min) Yr. (A.11) 

Equation (A.I 1)for the RMS angle of scattering can be used to 
compute the RMS value of a using (A.4): 

eRMS('~) : Ct  312 (A.12) 

where 

[- / '  e 2 \ z  -[1/2 
C=2|2=n|--mv21[_ \2riCo / ln(Oma,]Omin)J V a/2. 

As before, the central limit theorem gives a Gaussian probability 
distribution in the parameter 

P(e)&=~C2~ta e x p ( - ~ ) d e .  (A.13) 

This weighting function is used in (A.2) after the angular 
averaging of ~ is completed. The expression for the autocorre- 
lation function of (A.2) including ion-ion scattering can be 
reduced to 

~u(z) = / ~  Re {ei~ot(e- ~kzx r~*l ) 

This is the same as the original unperturbed autocorrelation 
function of(20), modified by the scattering term in brackets which 
tends to damp the correlation for large ~. As an estimate of the 
importance of this effect, putting in typical values of the velocity 
and density of Hg ions in the ~ 99Hg frequency standard yields a 
scattering induced damping time on the order of a half millisec- 
ond. As seen in the results of Sect. 3, the autocorrelation function 
has already become extremely damped on a much shorter time 
scale from the statistical ensemble average, and this scattering 
effect is normally negligible. The only situation where it may have 
a modest effect is when the cloud is extremely hot, and the 
damping of the autocorrelation function from the statistical 
ensemble average is of comparable time. 
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