
Appl. Phys. B 27, 177-181 (1982) Applied ,'.o,,,- physics 
Physics B and Laser Chemistry 

�9 Springer-Verlag 1982 

A New Method of Measuring Ultra-Short 
Coherent Light Pulses 

N. M. Lawandy 

Division of Engineering, Brown University, Providence, RI 02912, USA 

Received 22 November 1981/Accepted 8 January 1982 

Abstract. A new method of pulse width measurement based on the total energy response 
of an etalon is presented. The theory is developed and results for several pulse shapes 
are given. The method is unique because no fast response detector is required and there 
are practically no spectral region limitations. 

PACS: 42.55 

The production of ultra-short light pulses in recent 
years has presented a challenge in measurement tech- 
niques. Generation of subpicosecond pulses from col- 
liding pulse mode-locking of dye lasers has produced 
the shortest pulses in the visible region [1]. In ad- 
dition, visible wavelength mode-locked laser pulses in 
the picosecond regime have been used with a variety of 
nonlinear mechanisms to generate short pulses in the 
infrared. Molecular gases have also been excited by 
mode-locked CO 2 lasers in a synchronous arrange- 
ment to generate submillimeter wavelength pulses in 
the 350 ps regime. Thus the availability of short pulses 
at a variety of carrier frequencies has been achieved. 
However, the techniques of measurement are fairly 
limited in the visible and ir regions and extremely 
limited in the region of wavelengths longer than 10 gm. 
This limitation at longer wavelengths is especially 
unfortunate since many interesting transient molecular 
responses and cooperative effects offer interesting 
possibilities for generating pulses shorter than 
100 ps. 
In the visible region measurements made with fast 
photodetectors and oscilloscopes have a time resolu- 
tion limit of about 100 ps. Picosecond pulses have to 
date only been measured either in a linear fashion 
using streak cameras and tubes or via nonlinear effects 
[2-4]. Of these methods, the nonlinear optical pheno- 
mena capable of 10-13s resolution has been most 
widely utilized. The three most extensively used con- 
cepts are those of second-harmonic generation (SHG), 
SHG of the second kind, and two-photon fluorescence 

(TPF). All of these effects can be utilized to determine 
the autocorrelation of a laser pulse. For TPF, it has 
been shown that the fluorescence along the pro- 
pagation axis is proportional to 

f(z) = 1 + 2a(z)(~), 

where GZ(v) is related to the pulse intensity l(t) by 

G(2)(r ) = ( I(t)I(t + ~)) 
(IZ(t)) 

This technique is highly dependent on the experimen- 
tal parameters and has been studied extensively [5, 6]. 
Only for well isolated coherent pulses does G(2)(0) 
equal 1 and G2(r---,oo) equal 0. This results in a 
maximum contrast ratio of 3:1 and has been experi- 
mentally verified by Shapiro and Duguay [7]. If how- 
ever the central peak is surrounded by a broad envelope 
such as in incomplete mode-locking, the contrast is 
bounded by a 2:1 ratio. Moreover, a multimode 
output without mode-locking can give a 1.5:1 ratio. 
These effects limit the use of this method to highly 
controlled conditions. Moreover, an estimate of the 
pulse shape and a degree of coherence are assumed. 
Pulse shapes can only be inferred from higher moment 
correlation functions and are virtually impossible to 
determine in single shot events [8-11]. 
The SHG measurements where the two correlated 
pulses have the same polarization are completely 
equivalent to TPF techniques. The resulting form for 
G(2)(z) and the various contrast ratios are all equal for 
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both methods. A variation on SHG is second- 
harmonic generation of the second kind. In this 
measurement, the two pulses have opposite polari- 
zations. In this arrangement it becomes possible to 
choose a crystal orientation in which neither pulse 
alone can lead to SHG. The effect is to remove the 
background and produce a direct measurement of 
G(2)(z). This technique however suffers from stringent 
spatial alignment constraints and birefringent group 
velocity effects. 
In other areas of the spectrum short pulses can be 
measured using correlation methods in a variety of 
non-linear materials. These can include upconversion 
type systems for the infrared or direct TPF measure- 
ments, Such crystals include prousite, AgGaS2, and 
LiBO s. For short pulse measurement in the millimeter 
and submillimeter wavelength region, most work has 
relied on the nonlinear response of mixer type device 
such as Schottky barrier diodes and MOM 
junctions. 
In this paper, we present a new method of short pulse 
measurement of coherent pulses using etalons. The 
technique is applicable in all spectral regions and does 
not require fast detectors. It is however sensitive to the 
degree of coherence and this will be treated in a later 
paper including experimental results. 

Theory 

It is a well known fact that etalons can serve as 
frequency filters. In particular, when there is no disper- 
sive medium filling the etalon, the input field and 
output field can be linearly related in the frequency 
domain by 

EOUT(co ) = g(co)EIN(co), (1) 

where 

1 
g(o)= l_re i~Tc .  (2) 

Here r is the field amplitude reflection coefficient, co is 
the frequency and T~ is the cavity roundtrip time given 
by 2nL/c. The time domain output field can be found 
from 

+ y eU~ 
e o u T ( t ) =  �9 (3) 

When the illuminating light is a continuous coherent 
field, EiN(co ) = 5(coo)E~ and 

E~176176 (4) 
EOUT(t) = 1 __ rei~oT~ �9 

This gives a time-independent intensity which is a 
function of r, coo, and T~. This result is given by 

1 
I(co, T~,r)=I~ 1 +rZ-2rcosco0T~" (5) 

Equation (3) assumes a completely different character 
and produces a time-dependent intensity in the case 
that the illuminating field is a pulse of short duration. 
Of particular significance is the case where EiN(co ) has a 
Fourier transform bandwidth which is large as com- 
pared to T~-t. In this situation the integral begins to 
look very similar to a mode-locked laser integral and 
will result in intensity pulsations. From this analysis it 
becomes obvious that the effect that an etalon has on a 
coherent light field is strongly dependent on the ratio 
of the pulse width to the etalon round-trip time. In 
particular one can think of the cw case as being 
approached by a pulse interacting with a very short 
etalon. 
The integral equation in (3) becomes very difficult to 
solve when ExN(co ) has any sizable structure. Therefore, 
we approach the desired solution by the standard 
method of summing transmitted waves. We begin the 
analysis in a general manner by assuming a single 
maximum input pulse shape EIN(t ). The sum of the 
transmission terms at the output side of the etalon is 
given by 

EOUT(t ) = (1 - e 2) ~ R2Nei~176 --  NT~), (6) 
N=0 

where R is the electric field reflection coefficient 
T~ = 2nL/c, and co o is the pulse carrier frequency. This 
expression may be used to evaluate EouT.(t)Eouv(t) for 
a variety of functional forms of EIN(t ). This has been 
done using numerical calculations and shows that an 
etalon can have strong effects on the total energy 

+ao 
~= ~ EouT*(t)EouT(t)dt" 

However, before the numerical results are presented, 
the case of a low reflectivity R 2 ~ t  etalon may be 
analyzed by omitting higher powers of R 2. Keeping 
only the linear term gives 

EOUT(t ) ~ (1 -- R 2) [EiN(t) + (R2)eiemTcEiN(t -- Tc)]. (7) 

The intensity is then given by 

E~UT( t)EouT( t)Ceo 
2 

and results in 

I(t) ~�89 - R2) 2 [EIN(t) 

+ 2R2EIN(t)EIN(t -- Tc)cosco o T c + R4EIN(t - To) ] . (8) 
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Fig. 1. Numerical results for total energy trans- 
mission of an etalon with R=0.9 

Equation (8) can be integrated in order to determine 
the total energy e which is transmitted by the etalon�9 
The linear approximation of (7) results in a transmitted 
energy 

e = �89 - R )  2 [E1N(t)dt+ 2R 2 COSCO0 T c 

�9 S E]N(t)E,N(t- T~)dt 

+ R 4 ~ E,N2(t -- T~)dt]. (9) 

For R 2 ~ 1, the R 4 term may be droped and we are left 
with the electric field autocorrelation term as the 
expression containing the cohrent effect of the etalon. 
Thus we have a constant term plus a term which has a 
resonance variation and is proportional to the electric 
field G (2) (T~). In this sense this is not a linear process in 
total energy. 
The expression in (9) can be evaluated in closed form 
for a Gaussian pulse shape and a decaying exponential 
for EIN(t ). If Em(t) is taken to be 

EIN( t )  = Eo e -  t2/r~ 

the total energy which is transmitted by the etalon is 
given by 

= 4o[1 + V2R 2 exp(-- TJ2T~) cos(co o T~)], (10) 

where 40 - ~ E~Tp(1 - R 2 )  2 
4 

For the pulse shape 

EIN(t) = {0 t < 0  } 
Eo e x p ( -  t/Tp) 0 < t < oe 

the energy transmitted is given by: 

4=�88 + I /~R 2 cos(cooTs) e x p ( -  Tc/Tp)]. (11) 

These expressions for the total energy ~, reflect how the 
etalon can alter the total transmitted energy as a 
function of TJTp. When the cavity is very long com- 
pared to the spatial extent of the pulse, there are no 
coherent effects and the pulse ratles inside and leaks 
out. The result is a constant energy since eventually all 
the rattling pulses will be measured. If however, the 
etalon is small as compared to the spatial extent of the 
pulse, the wave train can be folded over and in- 
terference effects take place�9 The etalon spacing then 
becomes important and can lead to oscillations of 

depth V 2 R2 (1 -  T~2/2T~) relative to the long etalon 
value. This result is the basis for pulse width measure- 
ment technique suggested in this paper. 
Verification of the general behavior of the output 
energy ~ for various values of R has been done by 
numerical summation and integration of the equations 
and is shown in Fig. 1. The results show that stronger 
amplitude variationas are expected for values of R near 
unity. The calculations also show that the result in (10) 
is valid for R<0.5  and can be used if the experiment is 
properly designed. 

Experimental Method 
In this section we discuss how the etalon can be 
utilized to determine pulse widths. This method like 
autocorrelation techniques also must assume a pulse 
shape. For  the sake of simplicity of calculation, the 
Gaussian shape will be utilized in discussing an experi- 
mental use for our results. 
The result we will use is that of (10). The term of value 

is the ]/~R 2 ex p ( -  TJ2Tv2 ) coscooT c ; therefore we will 
define the dimensionless constant to be determined 
experimentally 7 given by 

4 r -  ~., _ ]//~R 2 ex p ( -  T~2/2T~) ; (12) 7 -  4o 
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Fig. 2a and b. Experimental arrangements for pulse measurement  

~,. and ~,,. correspond to c0oT~=2M~ and cooT~=MTc 
(M odd), respectively. Using (12) we have that 

Tp- (0.707) T~ (13) 

I/In(R/y) 

for the case where we have (Tc/Ty ~ 1, the expression 
simplifies to 

T~R (14) 

The results of (13) and (14) can be used in an experi- 
mental arrangement to determine pulse widths from 
total energy measurements. Using the arrangement 
shown in Fig. 2a we can determine the necessary 
variables from three energy meters D1, D2, and D 3. 
Calling the energy measured at each detector 41, 42, 
and 43, respectively, and referring to the figure, we 
have that 

4o = 4 t (1 -R2) (1 -R~) (1 -R2)  2 
R~ ' (15a) 

43(1 -R22) (15b) 
4, , -  R~R 2 

Using these relations we can write as 

2 2 2 2 2 42R1R2R3- 43(1 - R2)R 1 
? = 41R2R~(1 - R~)(1 - R~)(1-RZ) 2' (16) 

For R~ = R~ -= R32 = 0, we have 

4202 - 43( 1 - 0) (17) 
7= ~1[e(1-e) 2] [ 1 - R 2 ]  2" 

For the special case of Q=0.62, (i.e. 02= 1-0)R=0.4 ,  
we have 

4(42 - -  43) (17a) 
7= 4~ 
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An even simpler experiment can be designed which 
only uses two detectors and a resonant or non- 
resonant etalon. This experiment is shown in Fig. 2b. 
For this measurement we define 

~ =  4~- 4o (18) 
4o 

In terms of q~, we have that the pulse width is given by 

Tc (19) 

In order to relate q~ to the experimentally measured 
energies 41 and 42, we have the following 

41(1 - R~) (1 - R  2) (20) 
~0 m 

and 

4= 
~2R~ 

41(1 - R~) (1 -  R z) 
- -  1 .  ( 2 1 )  

For the case of R 2 =0.5 and R2=0.5, we have 

q~ = 442 (22a) 
G 

and 

(22b) 

Conclusions 

We have shown how a total energy transmission 
measurement through an etalon of suitable spacing 
can be utilized to measure pulse widths. Numerical 
solutions are given for arbitrary values of the re- 
flectivity of the etalon R and an analytic approxima- 
tion is presented for values of R less than 0.5. The 
results are given in terms of two possible measurement 
set-ups and interpreted. 
This treatment has not considered the degree to which 
the shape assumed for the pulse affects the results. In 
addition, no account of non-lumped losses, dispersion 
and chirping have been included. These additional 
effects will be examined in a forthcoming publication 
which will also include experimental comprisons of 
this technique to TPF and SHG results. Finally it 
should be pointed out that this technique because of its 
simplicity and the availability of accurate energy me- 
ters throughout the spectrum may become a way of 
measuring pulse widths in spectral regions which have 
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been inaccessible. Furthermore, because current tech- 
nology can produce very thin optical wafers, this 
method may pove to be the most straightforward way 
of measuring pulses in the 10-femptosecond regime. 
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