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System 

Abstract. The observation of chaos in a hybrid optical bistable device is reported. There is 
no delay line in this system. An investigation of the mechanism concentrates on a somewhat 
simplified structure. This structure is described by a third-order differential equation with 
quadratic nonlinearity. Its realization as an electronic circuit is studied in detail. As we 
observe patterns of universal behaviour, we also comment on the relation to iterative maps. 

PACS: 42.65 

The theory of chaos in iterated maps [1] has been 
applied to physical systems that have a time delay, or 
retardation, as a feature governing their temporal 
behaviour [2, 3]. However, many observations of 
chaos were done in continuous systems [-4, 5] that are 
better described by a differential equation. In this 
paper we describe an electrooptical hybrid system 
without time delay exhibiting chaotic behaviour. Our 
approach for an understanding is to introduce certain 
approximations in order to come to a somewhat 
simplified structure. This structure is described by a 
third-order differential equation with quadratic non- 
linearity, an electronic realization permits detailed 
studies. 

1. The Hybrid Optical System and Its Model 

We first turn to a description of the hybrid device. The 
experimental set-up is shown in Fig. la. Two plane 
mirrors forms a Fabry-Perot resonator with a finesse 

-~ 8. The mirror spacing of about 1 mm can be finely 
adjusted by means of a piezoelectric translator (PZT). 
The 1 mW beam of a 632 nm helium-neon laser is 
transmitted through the Fabry-Perot resonator and 
then monitored by a photo diode. Its signal is ampli- 

fled, and an adjustable bias voltage is added. The loop 
is closed by feeding back the amplifier output signal to 
PZT. The resonator, placed at more than 1 m away 
from the laser, is tilted very slightly with respect to the 
light beam in order to avoid any undesired optical 
feedback into the laser. With a very small amplifier 
bandwidth (e.g., dc to 10 Hz), one finds bistability and 
hysteresis by scanning either the amplifier gain or the 
offset voltage. This should not require any further 
explanation. With larger bandwidth (dc to 1 kHz), a 
scan of the bias voltage over an Airy peak yields the 
following behaviour: 
An oscillation of about 1550 Hz sets in and undergoes 
two period-doubling bifurcations. Next, a short inter- 
val of weakly chaotic motion is found with some 
islands of more or less stable subharmonic periodicities 
like period 3 (P3) or P9, but otherwise, no obvious 
structure is seen. Scanning on further, the fundamental 
P1 reappears, this time a few percent lower frequency. 
After bifurcations to P2, P4, and P8 (Fig. 2), a chaotic 
regime with an inverse sequence of band mergings is 
entered, where periodic windows like P5 or P3 are seen 
occasionally. Amplitudes grow steadily during this 
process, but eventually all oscillations stop when the 
system switches, or precipitates, to the low- 
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Fig. l, (a) Set-up of the hybrid optical bistable device (PZT: 
piezoceramic translator), (b)The electronic model (X z :squarer) 

transmission state. A reversal of the scanning direction 
reveals that the first onset of oscillations is subject to a 
hysteresis. While the same is true for the point, where 
the chaos finally ends, all other events mentioned do 
not seem to have any hysteresis. No serious efforts were 
made to determine the convergence ratio ~ of the 
bifurcations or the splitting ratio e of the amplitudes. 
Measurements performed on the opened loop reveal 
that the time delay in the system is one order of 
magnitude shorter than the period of the fundamental 

oscillation P1 and should therefore play no major role. 
However, we find that PZT has a mechanical re- 
sonance, i.e. a damped-oscillatory approach to a new 
equilibrium position after a voltage step is applied. 
This resonance is characterized by its center frequency 
of 1550 Hz (which coincides with the frequency of P1) 
and its Q factor of about Q = 15. It is this resonance of 
PZT together with the nonlinearity provided by the 
Airy peak that is able to produce chaotic motion. 
In order to gain insight into the dynamic behaviour of 
the system, let us consider a somewhat simplified 
structure, as given in Fig. lb. This electronic circuit 
models the hybrid device within certain approxima- 
tions. PZT is replaced by its idealized equivalent 
cir6ulit consisting of the components C, Rm, and L,, [6]. 
The latter three generate a resonance that models the 
mechanical characteristics, while C represents the 
electrical capacity of PZT. We assume that in steady 
state the PZT length is linearly dependent on the 
applied voltage. R stands for the output impedance of 
the amplifier. Note that the network for PZT contains 
three complex impedances and will thus lead to a 
differential equation of third order. The peak of the 
Airy function is here approximated by a quadratic 
parabola, generated by a squarer module. This is 
certainly a lowest-order approximation, that should 
not be expected to describe all the experimental details 
of the hybrid device. It is clear, for example, that 
bistability is not possible within the parabola 
approximation. 
For technical reasons we consistently use a slightly 
modified version of the circuit throughout this paper. 
The modification consists of an interchange of the 
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Fig, 2. Period doubling sequence in the hybrid device. The bias voltage was increased monotonously from P1 to P8. Vertical scale is 
approximately logarithmic. Spurious peaks at power line frequency and harmonics appear below f =  1/8 
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amplifier with the squarer (Ucm is first amplified and 
then squared). This does not alter the patterns of 
behaviour, and both versions are seen to be equivalent 
by some simple rescaling. The dynamic range of the 
circuit, however, is considerably improved. 
We now turn to a discussion of the equation describing 
the circuit. It is given by 

C + 1 ) + -  1 U 

1) 2 
= RC~s (U - #)2 (1) 

with U = Ucm, v: gain, #: bias. Time is measured in units 
of co-1= (LC)I/z and L, C, and C~ are scaled with co. 
This differential equation contracts phase space vol- 
ume V with a constant rate everywhere: (1/V)dV/dt 
=L/R+RmC. The fixed points of the system are 

Ufix_ + : ~--/22 (21)2#"]- 1+_~/1 +4v2#). (2) 

A linear stability analysis yields that Ufix+ is always 
unstable while Unx_ is stable over a range of param- 
eters. One can thus determine the first bifurcation. 

2. Experiments with the Electronic Model 

We will now describe in some detail the experiments on 
the electronic circuit of Fig. lb. They may be viewed at 
as calculations on an analog computer. In fact, we 
checked the accuracy of its solutions by comparison 
with runs of a digital computer. We found that the 
results typically agree to well within 1%. In terms of 
speed, however, the analog circuit is superior by 
several orders of magnitude. As we consider qualitative 
structures only, we do not attempt to simulate PZT 
quantitatively, but rather choose component values 
such as to yield a fundamental frequency of about 
18kHz. This high speed makes the study of the 
solutions on an oscilloscope screen very convenient. 
For a stress parameter we use either the amplifier gain, 
the bias voltage, or the damping resistor R,,. 
Essentially, all patterns of behaviour described below 
can be obtained by varying any of these. It is just for the 
sake of clarity that in the following description, we will 
refer to a R m variation only. 
For very high R,,, the system rests in the fixed point 
Unx_. Decreasing Rm, one finds limit cycle oscillations 
and a sequence of period doubling bifurcations up to 
the onset of P32 (Fig. 4). We determine the 
convergence rate 6 and find from a row of similar 
measurements 61=7.0___0.13 , as defined in [3], 
62=4.64_+0.13, 63=4.6_+0.5 (64 uncertain) which 
seems to fit well with the prediction for the one- 
dimensional logistic model that 6~ =4.669. We also 
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Fig. 3. Spectra obtained from the electronic device, with 
R=1800f l ,  C=C,,, L = t 2 6 8 f l ,  v=1.158, #=3.634, and 
co = 8.129 x 104 s - 1. These two examples show P8 at Rm = 205 fl 
(upper) and chaos at Rm = 181 fl. Vertical scale is approximately 
logarithmic 

recorded spectra of the oscillations with a spectrum 
analyzer (Fig. 3). The evaluation of the average power 
in the spectral peaks is performed according to [7]. For 
the bifurcation from P1 to P2, power goes down by 
2fi=7dB, and for P2 to P4, we found about 12dB. 
Averaging all other values from P4 to P8 and P8 to 
P16, we arrive at 2/3 = 13.2 + 0.5 dB. This is in excellent 
agreement with the theoretical prediction of 13.215 dB 
for the logistic model. 
In the chaotic regime (Fig. 4) we find an inverse 
sequence of band mergings with a convergence ratio of 
4.7_+0.6. We also observe more than ten periodic 
windows in this regime, the most prominent ones 
having P6, P5 (bifurcating into P10) and P3 
(bifurcating into P6 and P12). The position of 
windows, their order of appearance and their 
itineraries, or patterns of visitation, are also consistent 
with the situation in one-dimensional maps [8] with 
only few exceptions that we are going to discuss below. 
If R,, is decreased more and more, an extra "hook" in 
the phase portrait appears and shifts towards (U, U) 
= (Ufix+, 0). We checked that simultaneously 0 and U 
approach zero. At the moment the trajectory touches 



62 F. Mitschke and N. Fliiggen 

Fig. 5. Part of bifurcation diagram from the electronic system. 
Scan was from right to left 

Fig. 4a-c. Phase portraits from the electronic device. U (horiz.) 
vs. 0 (vert.). Parameters as in Fig. 3, with R,, set at 205 ~, 181 f~, 
and 94 f~, respectively 

the unstable fixed point, the oscillations abruptly stop. 
This is an example of a boundary crisis [9]. The 
process corresponds with the switching to the low 
transmission state of the hybrid device. As there is no 
such state in the parabola approximation, the solution 

can go beyond all limits on a digital computer, while 
the analog system is limited by the supply voltage. 
As one should expect a three-dimensional flow to 
behave like a two-dimensional rather than a one- 
dimensional mapping, we devoted some study to the 
deviation from the behaviour of the logistic equation. 
A first step to make them visible is a bifurcation 
diagram. We produced it by scanning the bias voltage 
with a ramp that also swept the horizontal deflection of 
an oscilloscope. The oscillations were fed into a 
sample-and-hold circuit, and the sampled voltage was 
given to the vertical channel of the escilloscope. 
Samples were taken at all negative-going zeroes in 0. 
The first obvious deviation is revealed at the first P3 
window. A step in amplitude (Fig. 5) is accompanied by 
a hysteresis at the onset of this window (not visible in 
Fig. 5 as, for reasons of clearness, only one scan 
direction is shown). We mention that the two- 
dimensional Henon map [10], which also has the 
property of contracting the phase space volume with a 
constant rate everywhere, exhibits the same amplitude 
step and hysteresis at the P3 window if parameters are 
chosen for strong dissipation such as to make it 
resemble the logistic equation. Beyond the first P3 
window, more deviations from the logistic model 
appear. We observe windows not consistent with [8], 
e.g. a second P3 window with an antiharmonic 
bifurcation to P6. The map describing our system is 
visible (at least in a projection to a lower-dimensional 
space) in a so-called return map. To construct it 
experimentally, takes two sample-and-hold circuits 
and some control logic. At defined phases of the 
oscillations, say whenever 0 has negative-going 
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/ 
Fig. 6A-C. Return map of the electronic system: U, (horiz.)vs. U, + 1 (vert.). These examples are taken with parameters as in Fig. 3, with 
R,, at 181 ~ (A), 178 f~ (B), and 94 fl (C). Case B is in the first P5 window. The arrows indicate how the mapping is iterated. The "splitting" 
visible in (C) is also existent but not resolved in (A),it becomes more pronounced and is seen to be a multiple folding when the phase space 
contraction rate is decreased as for Fig. 7 

Fig. 7. Poincar~ section. Parameters: R-6400(2, v=2.372, 
#=3.033, and R,,=91 f2, otherwise as in Fig. 3 

zeroes, trigger pulses are generated. By one of these 
pulses, the first sample-and-hold circuit is triggered, 
and at the subsequent pulse, this applies to the second 
one, while the first one keeps its sample. Both samples 
are fed to the horizontal and vertical channels of an 
oscilloscope, respectively, which is keyed bright after 
the second sample is taken. A display of U, vs. Un + t 
appears (Fig. 6). After a while the cycle starts from the 
beginning. It is, of course, also possible to display U, 
vs. U,+m, m = 2 , 3 , 4 , . . ,  by simple changes in the 
control logic. One finds that in regimes, where the 
logistic equation seems to describe the system quite 
well, the return map is, in fact, very nearly a quadratic 
parabola. For low R,,, however, more structure 
appears (Fig. 6C). This is the regime, where windows 
inconsistent with the logistic model appear. 
We take another view of the map that describes our 
system by displaying its attractor. This is simply 
accomplished by producing a Poincar~ section of the 
flow of our system. Experimentally, the easiest method 
is to display a phase portrait like Fig. 4 but to key the 
oscilloscope bright only for a short interval (50ns), 

when ~) has a defined phase, for example negative- 
going zeroes. Due to the fact that our system behaves 
nearly one-dimensional, this yields a figure which is 
hardly distinguishable from a line. We therefore 
increased R in order to decelerate phase space 
contraction (Fig. 7). Still, one has to take into 
consideration the brightness steps of the trace in order 
to appreciate the intricate, self-similar structure which 
is mostly obscured by the geometrical resolution of the 
image (even more so in reproduction). 

3. Summary and Conclusion 

We summarize that our hybrid electro-optical system 
follows a route to chaos that is, in parts, similar to a 
Feigenbaum route. Our electronic model reveals that, 
even within the simplifications made, the behaviour is 
quite complex. On the other hand, a variety of studies 
can be conducted in this system very conveniently 
which helps to gain an understanding of its behaviour. 
One may think of dropping the simplifications in 
future work and then conclude directly about the 
mechanisms in the more complicated hybrid device. 
For a technical motivation, let us just mention that our 
hybrid device is of exactly the same structure as a 
widely employed scheme for a laser frequency 
stabilization. This scheme uses an external Fabry- 
Perot resonator to generate an error signal, which is 
fed to a PZT that, in turn, moves an optical component 
in the laser resonator such as to correct the laser 
frequency. From a viewpoint of control systems 
engineering, it is certainly no surprise that resonances 
in this sort of applications must be cancelled or 
damped out carefully, as it has been known for a long 
time that feedback loops with resonances as well as 
those with time delays tend to oscillate. Our system 
shows quite clearly how the resonance contributes the 
degrees of freedom that are necessary for chaotic 
motion. 
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While our  Eq. (1) belongs into a class of  equat ions that  
has been considered a candidate  for p roduc ing  chaos 
before [11], we have demons t ra ted  how it arises f rom 
an experiment. We believe, tha t  our  example is a m o n g  
the simplest a u t o n o m o u s  cont inuous  systems with 
chaot ic  behaviour  that  are relevant for physical  
experiments. 
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