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Abstract. Amplitude modulation of the laser beam in a TEMm, mode by means of a 
mechanical chopper is investigated on the basis of the chopping model represented by a 
moving system of infinitely long, parallel slots and mark spaces. The cases of rectangular 
and axial symmetry of the laser beam are both treated. The explicit expressions for the 
waveform of the modulated normalized transmitted laser power are deduced and their 
consequences investigated. It is found that in the case of rectangular symmetry, unlike the 
case of axial symmetry, the TEM,,, modes give, for a constant value of the mode number n 
and for any value of m, the same time dependence of the amplitude modulated laser power. 
The notion of the equivalent modulation widths is introduced and conditions for the 
efficient amplitude modulation are found. 

PACS: 42.60, 42.80 

Amplitude modulation of the cw laser beam by means 
of a mechanical chopper is frequently used in photo- 
physics and particularly in photoacoustic spectros- 
copy [14] .  Usually, the TEM0o (Gaussian) mode is 
employed. For such a case the complete modulation 
theory, corresponding to the case depicted in [Ref. 5, 
Fig. 6] as well as the simplified model depicted in 
[Ref. 5, Fig. 2] of the amplitude modulation by a 
mechanical chopper were given in [5]. Basically, in 
both cases the appropriate laser-light intensity was 
integrated over the system of moving slots, thus 
yielding the transmitted laser power as a function of 
time. It was found that for the laser light in the TEMoo 
mode, for all practically important values of the 
chopping disc slot and mark space widths relative to 
the radius of the Gaussian beam, the difference be- 
tween the complete modulation theory and the model 
is effectively insignificant, thus making unnecessary the 
use of the precise and rather cumbersome treatment. 
The chopping model was used in [-6] to obtain the 
conditions for the harmonic-like and at the same time 
efficient amplitude modulation of the cw Gaussian 
laser beam by means of a mechanical chopper (the 

simultaneous fulfilment of these two features being of 
interest in photoacoustic applications). 
In this paper the chopping model is utilized to obtain 
the waveform of the amplitude-modulated laser light 
in a TEMm, mode in the case of either rectangular 
(Sect. 2) or axial (Sect. 2) symmetry. The predictions of 
the model in the two cases, some further considerations 
and discussion are presented in Sect. 3. The results 
obtained are of potential interest in all applications of 
the amplitude modulation of a cw laser light by a 
mechanical chopper. 

1. Modulation Theory in the Case 
of Rectangular Symmetry 

Consider a cw laser beam in the TEM,,, oscillation 
mode for a system with a rectangular geometry 
propagating along the direction normal to the plane 
containing moving parallel slots and mark spaces. It is 
convenient for the present purpose to use dimension- 
less parameters and variables. This is achieved by 
measuring all lengths in units of the radius a of the 
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Gaussian laser beam (including a itself, thus a -  1) and 
the time t in units of a/v (v being the velocity of the 
system of parallel slots and mark spaces)�9 In [6] these 
dimensionless quantities were distinguished by a prime 
which is here omitted for the sake of simplicity�9 The 
laser light intensity I , . . (x ,y)  corresponding to the 
TEMp.  mode in the case of rectangular symmetry is 
[7, 8] 

P m n  

I,..(x, y )  = ~ 2 . +  . _  ~r(m+ 1)F(n + 1) 
2 1/2 2 1/2 -- 2 ( x 2  + y  2 ) �9 Hm(2 x)H.(2 y)e . (1) 

Here P,.. denotes the power of the incident laser light 
in the TEMm. mode while H m and F denote the 
Hermite polynomial of order m and the usual gamma 
function, respectively. The mode numbers m and n give, 
as is well known, the number of zeros in a mode patern 
along the x and y direction, respectively�9 The constant 
factor in (1) is such that the intensity I,. ,(x, y), when 
integrated over all values of x and y, gives (with the aid 
of the orthogonality property for the Hermite poly- 
nomials, [9]) exactly the incident laser power pro,. 
At any instant t, the laser power P,,,(t) transmitted by a 
mechanical chopper is obtained by integrating the 
laser light intensity over the system of moving slots 

P,..(t) = Y +Y~ dx "~i(t)dy Im.(x, y).  (2) 
k - 00 y k -  (t) 

Here the quantities 

Yk +_ (t) -- k(b + fl) -- t +_ b/2 , (3) 

denote the y-coordinates of the upper (+ )  and lower 
( - )  edges of the k th slot (k=0,  + 1, +2,  ...) at time t. 
The b and fl are the dimensionless slot and mark space 
widths respectively. Combining (1 and 2) and perform- 
ing integration over x, one obtains for the normalized 
transmitted laser power in the TEM,,,  mode of the 
rectangular symmetry as a function of time the follow- 
ing expression 

P,..(t) 1 
P,,, nl122"F(n + 1) 

�9 ~. [K.(2t/Zyk+(t))-K.(21/ay~_(t))] ,  (4) 
k 

where the quantity K. is introduced via the following 
indefinite integral 

K,(r - I H,2(~) e-r . (5) 

With the aid of the well known properties of the 
Hermite polynomials the following relation is es- 
tablished (n = 1,2,. . .)  

K,,(~) = 2nK.  _ 1(r - e -  r162 a(~), (6) 

which together with 
~1/2 

Ko(~) = ~ - -  erf~, (7) 

gives any K.(r The first few K.'s are 

K1 (4) = rc 1/z erf~ - 2r r (8) 

Ka(~) = 4r? 12 e r f ~ -  4~(2~ 2 + 1)e- ~ ,  (9) 

Ka(~) = 24~ ~/2 e r f ~ -  8~(4~ 4 - 4~ 2 + 9)e- e (10) 

Using these, one can obtain the corresponding 
Pm,(t)/P,,, expressions from (4). In the case m = n = 0, 
(4), together with (7 and 3), reproduces the expression 
given in [5, 6] for the amplitude modulated laser light 
in the TEMoo mode. 
The remarkable property of (4) is its independence of 
the mode number m; for given, constant value of the 
mode number n (which defines the number of zeros in a 
mode pattern in the direction across the slots) all 
TEM,, ,  modes with m = 0, I, 2 . . . .  have the same time 
dependence of the amplitude modulated laser power. 
This is the consequence of 
(i) assumed symmetry of the chopping model (i.e., of 
the assumption that the slots are parallel and infinitely 
long along the x-axis; this is, as was shown in [5], in all 
cases of practical interest a very good approximation) 
and 
(ii) the fact that all these modes (with any m and 
constant n), have the same functional dependence of 
the light intensity on the y-coordinate, (1). 
Thus, in particular, any of the TEM,,o modes with 
m= 1,2 .. . .  gives the same time dependence of the 
amplitude modulated laser power as the TEMoo mode, 
the case which has been already extensively discussed 
[5, 6]. 
Figure 1 presents the waveforms of the amplitude 
modulated laser light in the case of rectangular symme- 

TEMmo 

I ' \  \~-/~.TEMm2 / / / i 

I~E 6k " S "  "~'k~kV"~. \/TEMrn3 / ~ ' / " '  ............. - 
..... ........... .... .... 

. I x -  / 

.2 \\\ i/ Z: J 
r12 -- 

Fig. I. Waveforms of the amplitude modulated laser l ight in the 
case of rectangular symmetry for n = O, i ,  2, and 3 (any m) and 
b = f l = 2 . 7 7  
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try for n=0,  1, 2, and 3 (any m) and b=fl--2.77 which 
were obtained using (3, 4, 7-10) as well as the rational 
approximation for the error function [10]. Defering 
detailed discussion to the Sect. 3 we only note here that 
the modulation depth is decreasing with increasing n 
value reflecting the fact that the cross sectional area 

N(m, n, l, I) - 

occupied by 
number. 

where 

fm.(t) - M(m, n) 2 ~ ~ N(m, n, l, l') 
k / = 0  l '=O 

�9 ] P(n, l, l', rk+_) COS2 n~b&b, 
0 

M(m, n) - F(m + 1)F(m + n + 1)/re(1 + ~,o), 

( - 1 )  l+r 

r(l+ 1)r(r + l)C(n+l+ 1)r(n+r+ 1)F(m-l+ 1)r(m-l '+ 1)' 

p(n,l,l,,rk:L)_sgn{rk+}R(n+l+/,2rk+ ) ,  2 
a mode increases with the mode _sgn{rk_}R(n+l+,  2 l, 2rk _), 

rk + = rk + (t, 0)-- Yk + (t)/sin~b, 

(13) 

(14) 

(15) 

(16) 

(17) 

2. Modulation Theory in the Case of Axial Symmetry 

The treatment is in this case somewhat more complex 
due to the fact that the axial symmetry of the laser 
beam combines with the rectangular symmetry of the 
system of slots and mark spaces (as assumed by the 
chopping model). Consequently the expression ob- 
tained for the amplitude modulated laser light is more 
complex and the relative simplicity of the Pm,(t)/Pm, 
expression in the rectangular case is here lost, of 
course. The derivation in the case of axial symmetry 
generally follows the rectangular case. The starting 
point is the expression for the intensity of the laser light 
in the TEM,,, mode which is in the case of axial 
symmetry given by (employing cylindrical coordinates 
r, ~b, and z, [7, 8]) 

4r(m + 1)Pro. 
Im.(r, ~)= 

=(1 +6,o)F(m+n+ 1) 

�9 (2r2),[L~,(2rZ)]%- 2,2 cos 2 n~b. (11) 

Here, r is the dimensionless radius, 3,o is the usual 
Kronecker delta symbol and L~, are the associated 
Laguerre polynomials. The m and n are the mode 
numbers (such that m and 2n give the number of zeros 
in a mode pattern in the radial and the azimuthal 
direction, respectively). The constant factor in (11) is 
such that the intensity Im,(r, 0), when integrated over 
all values of r and ~b, gives (with the aid of the 
orthogonality property for the associated Laguerre 
polynomials, [9]) exactly the incident laser power Pro, 
in the corresponding mode. 
Firstly, consider the case when the axis of the laser 
beam impinges on a chopper mark space. The treat- 
ment analogous to that of Sect. 1 gives, with the aid of 
the expression for the associated Laguerre polynomial 
given in [10], the expression for the normalized 
transmitted laser power in the TEM,,, mode of the 
axial symmetry as a function of time in the form 

Pm.(t)/P,.. =f~.(t), (12) 

and 

R(j,~)=_S~Je-r162 ~ F(j+I) 1 
i=1 F ( j - i +  1) ~ j - i  �9 

(18) 

The remaining integration in (13) must be done by 
numerical methods. 
When the axis of the laser beam passes through a 
chopper slot it is more convenient to find the normal- 
ized laser power which is not transmitted by the 
chopper�9 It turns out that it is given by If..(t)] and 
therefore in such a case 

Pmn(t)/Pmn = 1 -If, . .(t)[  �9 (19) 

The TEMo0 mode is the same for both rectangular and 
axial symmetry and therefore in the case r e = n = 0  
Eqs. (12, 19) together with (13-18) must reproduce the 
expression given in [5, 6]. That this is indeed the case 
one can see using the following relation 

1 - - 1  S e-  r : erf[~[, (20) 
7[0 

the validity of which can be easily established. 
We see that in the case of the axial symmetry the 
Pm,(t)/Pm, expression depends on both mode numbers 
unlike the case of the rectangular symmetry. 
Figures 2-4 present the waveforms of the amplitude 
modulated laser light in the case of axial symmetry for 
m=0, 1,2, n=0,1,2 ,3 ,  and b=f l=2.77 which were 
obtained using (12-19). 

3. Further Considerations 

In both cases (of rectangular, Sect. 1, or axial, Sect. 2, 
symmetry) the amplitude modulated laser light by a 
mechanical chopper is periodic function with the 
period 

T=b+ fi. (21) 



198 I. Menda~ et al. 

E 
.8 TEMoo ,TEM01 

---" I \. \ ,  \ / / . /  
= I \ .  "x',,~--TEMo2 / / "  . /  

\ ' ,-._ F.,.4'I 
\ '--, ' ,  . , ' . . . 7  

.2 \ \ ~ ,  j / / x / "  

T'I2 
t"  

Fig. 2. Waveforms of the amplitude modulated laser light in the 
case of axial symmetry for m=0, n=0, 1, 2, and 3, and 
b=/~=2.77 
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Fig. 3. Waveforms of the amplitude modulated laser light in the 
case of axial symmetry for m = l, n = 0, 1, 2, and 3 and b = fl = 2.77 
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Fig. 4. Waveforms of the amplitude modulated laser light in the 
case of axial symmetry for m=2,  n=0,1 ,2 ,  and 3, and 
b=1~=2.77 

In the case when b,/~>> 1 the laser beam impinges 
completely on one slot at most at any instant. In such a 
case in the sum over k in (4) or (13), as the case may be, 
only one term contributes significantly; the one corre- 
sponding to the slot which is at that particular moment 
centered on the laser beam. This is the k 't~ slot where 

[Here (~), ~ denoting t(b + ~)-1, is used to denote the 
nearest integer to 4.] 
On the other hand, when b,/~ ~ 1 the laser light passes 
at any instant through many slots simultaneously. In 
(4) or (13) many terms contribute and although the 
pattern is moving the transmitted power is constant 
[e.g., in the case of rectangular symmetry, for the slots k 
which are contributing significantly, the arguments of 
the K,, functions appearing in (4) are small so that series 
expansion and rejection of the small higher-order 
terms indeed gives a constant]. In fact when b,/~ ~ 1 
one has 

Pm,(t) b transmitting area 
,,~ - -  - = const. (23) 

Pro, b + ~ total area 

In the intermediary case b , / ~ l  several slots con- 
tribute significantly (the contribution of others being 
negligible) and the modulation depth is reduced when 
compared with the case b,/~ >> 1. 
In all cases considered, the time averaged value 
Pm,(t)/P,,, of the transmitted laser power is also given 
by (23) irrespectively of the sizes of the slot and mark 
space widths relative to the laser beam diameter. 
The largest and the smallest value of the normalized 
transmitted laser power, [P,,,(t)/P,,,]m,x and 
[P,,,(t)/P,,,]mi., respectively, are the quantities which 
measure the modulation depth. These two quantities 
are depicted on Fig. 5 for the case of rectangular 
symmetry and on Fig. 6 for the case of axial symmetry 
as a functions of the mode numbers and for 
b=/?=2.77 .  In the case when b=/~ one has 

[ P m n ( t ) / P m n ] m i n  = 1 - [ P m n ( t ) / P r n n ] m a x .  

One can see that the modulation depth is decreasing 
with increasing values of the mode numbers, reflecting 
the fact that the cross sectional area occupied by a 
mode increases with the mode numbers. Obviously, in 
order to achieve the same modulation depth as in the 
case of the TEMoo mode one must, in the case of a 
TEM., ,  mode, employ larger values of the slot and 
mark space widths. One can introduce the notion of 
the equivalent modulation widths be =/~e as the chop- 
per slot and mark space widths which achieve the same 
prescribed modulation depth for different TEM,. ,  
modes. Figures 7 and 8 give typical values of the 
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Fig. 5. Largest and smallest normalized transmitted laser power 
for the case of rectangular symmetry as functions of the mode 
number n (any m) and for b=fl=2.77 
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Fig. 6. Largest and smallest normalized transmitted laser power 
for the case of axial symmetry as functions of the mode numbers 
m and n and for b=fi=2.77 

equivalent widths as a functions of the mode numbers 
for the two symmetry cases. One should bear in mind 
that the equivalent widths ensure only the same 
modulation depth; the waveform of the modulated 
taser light being generally different for different 
modes. 

4. Conclusions 

The waveform of the amplitude modulated cw laser 
light in a TEM,, ,  mode  by means of a mechanical 
chopper, based on the chopping model  [5], is given by 
(4) in the case of  rectangular symmetry and by (12 and 
19) in the case of axial symmetry of the laser beam. In 
the case of  rectangular symmetry, unlike the case of  
axial symmetry, the TEM,, ,  modes  with a constant n 
value and for any m value give the same time de- 
pendence of  the amplitude modulated laser power. In 
particular, any of the rectangular TEMmo modes with 
m =  1, 2 , . . .  gives the same waveform as the TEMoo 
mode,  the case which has been already thoroughly 
investigated [5, 6]. The modulat ion depth as a function 
of mode  numbers m and n, for given slot and mark 
space widths, is presented for the two symmetry cases 
in Figs. 5 and 6. It is found that the modulat ion depth is 
generally decreasing with increasing mode numbers; 
the larger values of  the chopper slot and mark space 
widths must be employed in such cases in order to 
achieve the same modulat ion depth. The not ion of the 
equivalent chopper slot and mark space widths is 
introduced and their values obtained for various 
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Fig. 7. Equivalent chopper slot and mark space widths be=/?~, 
measured in units of the radius a of the Gaussian laser beam, as 
functions of the mode number n (any m)in the case of rectangular 
symmetry and for various prescribed modulation depths in- 
dicated on the figure 
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measured in units of the radius a &the Gaussian laser beam, as 
functions of the mode numbers m and n in the case of axial 
symmetry and for the two modulation depths indicated on the 
figure 
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prescr ibed modu la t i on  depths  (Figs. 7 and  8). The  
results ob ta ined  are  of  potent ia l  interest  in all applica-  
t ions of  the ampl i tude  modu la t ion  of  a cw laser light 
by  means  of a mechanica l  chopper .  
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