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Abstract. Some relations between the area-temperature distribution of a blackbody and its 
radiated power spectrum are derived. These relations shall be useful in verifying the 
adequacy and the accuracy of the various procedures recently developed for the numerical 
solution of the inverse blackbody radiation problem. 
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Lately, the electromagnetics community has begun to 
pay attention to the blackbody radiation phenomenon 
due to its occurrence in the area of remote sensing [1]. 
The forward problem has been investigated quite 
extensively from around the turn of this century, but 
the inverse problem has only recently been the subject 
of exploration [2-5-1. However, the inverse problem is 
quite ill-conditioned I-6], and the various numerical 
algorithms proposed for its solution do rely on the 
nonunique inverse Laplace transform. Consequently, 
it is necessary to develop algorithm-independent 
checks in order to verify the accuracy and the adequacy 
of the numerical results obtained on a digital com- 
puter. This is precisely the objective of this communi- 
cation where three such relationships will be derived 
in the last section. 

The Inverse Blackbody Radiation Problem 

It is well-known that when a body's surface is at an 
absolute temperature T, it emits "blackbody radiation" 
whose spectrum is given by Planck's law as 

W(v) = ( 2hv3 /c 2) [exp(hv/ K T) - 1] - 1, (1) 

where v is frequency, h is Planck's constant, c is the 
speed of light in vacuo, and K is Boltzmann's constant. 
If, however, all parts of the body's surface are not at the 
same temperature, and a(T) is the area-temperature 
distribution function, then (1) must be modified to read 

co 

W(v) = (2hv3/c 2) S dT a(T) [exp(hv/KT)- 1] -1 (2) 
0 

The inverse blackbody radiation problem is consti- 
tuted by the determination of a(T) provided W(v) is 
known, experimentally or otherwise [73. As stated 
earlier, several new procedures for solving this inher- 
ently ill-conditioned problem have recently come to 
light and shall now be briefly discussed. 

Solution of the Inverse Problem 

On defining a "coldness" function u such that 

u=(h/K)(1/T) (3) 

and an auxiliary spectrum g(v) as 

9(v) = (c2/2hv 2) W(v) (4) 
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the integral equation (2) can be reconstituted in the 
form 

cO 

g(v) = v ~ du a(u) [exp(uv)- 1]- 1 (5) 
0 

Hamid and Ragheb [3] considered the case at micro- 
wave frequencies where the Rayleigh-Jeans approxi- 
mations uv ~ 1 holds. By expanding the denominator of 
the integrand in (5) and discarding the high-order 
terms, they obtained 

9(v) = 2P{a(u)/u}, (6) 

where ~ { .  } denotes the Laplace transform. From (6) 
the solution of (2) in the Rayleigh-Jeans approximation 
is then given by 

an,(u) = 5r 1 {9(v)} , (7) 

where ~ - 1 { .  } is the inverse Laplace transform. 
On the other hand, should the Wien approximation 
exp(uv)>> 1 hold, then (5) transforms to [-4]: 

g(v) -- v &C { a(u) } , (8a) 

whence the solution given by Lakhtakia and Lakh- 
takia [4] in the Wien regime is 

aL~(U) = ~ -  1 {9(V)/V} " (8b) 

Two solution procedures, valid everywhere, have also 
been proposed recently. The earlier of the two [2] uses 
an iterative procedure whose m tla stage gives a solution 

a(,,+l)(u)=arL(U)-- ~ (1/n)a(,,)(u/n), m>0 (9) 
n = 2  

with the initial guess being the Wien regime 
solution (Sb). 
The second of the two "universal" procedures is rather 
complicated but avoids iterations, and only the final 

result  is stated here [-5]: 

a(u) = aLL(U) -- (1/2)aLL(U/2) -- (1~3)aLL(U~3) 

-- (1/5)aLL(U~5) + (1/6)aLL(U~6) -- (1~7)~aLL (U/7) 

+ (1/lO)/aLL(u/lO) -- (1/11) aLL(U~1 1) 

- -  (1 / 13)aLz(U/13 ) + ( 1 / 14)aLL(U/14) 

+(1/15)aLL(U/15)--(1/17)aLL(U/17)--.... (10) 

Checks on the Inversion Procedures 

The point to be noted in the previous section is that in 
all of the four procedures mentioned above, the inverse 
Laplace transform must be utilized at some stage or the 
other. Because (5) is an integral equation of the first 
kind [6, 8] and because the inverse Laplace transform 

1 a(u)= a(T)T/u is called the area-coldness function 

is not unique [9], all of the solution procedures suffer 
from a certain lack of confidence in them (but, see 
Appendix). Hence, it is necessary to develop from (2) 
itself some properties of the blackbody radiation 
phenomenon which can serve to check the accuracy of 
the computed solutions (6, 8b, 9 or 10). This is what is 
now going to be described and developed. 
Beginning with (2) and using the definition (3) one 
obtains 

(c2/2h)W(v)/v 3 = ~ du a(u)/[exp(uv) 1] .~ (11) 
0 

Operating now on both sides of (11) by the integral 
operator 

( . )v  2'~- 1dr, n = 1,2, 3,... (12a) 
0 

yields 

(c2/2h) ~ dv W(v)v  2"-4 
0 

= ~dvv 2~-1 du a(u) [exp(uv)- l ]  -1 (12b) 
0 0 

The order of integration on the rhs of (12b) can be 
reversed since u and v are independent variables. 
Consequently, 

(c2/2h) dv W(v)v 2"-4 
0 

= ~du a(u)~dv  v 2 " - l [ e x p ( u v ) - l ]  -1 (12c) 
0 0 

But the v-integral on the rhs of (12c) can be expressed in 
closed-form as [Ref. 10, Eq. (3.411-2)] 

dv v 2"- 1 [exp(uv)- 1] 1 
0 

=(_ ).- (13) 

where B2, is the Bernoulli number of order 2n satisfy- 
ing the relations 

1 1 
B 2 . -  2n+~ + 

2 " - 2 2 n ( 2 n - 1 ) ' " ( 2 n - 2 k + 2 ) B k ,  (14a) - Z  
k=2 k! 

Bo=I  , B1=- (1 /2 ) ,  B 3 = B s = B 7 = B 9  . . . . .  0. 
(14b) 

As a result of using (13), (12c) converts to 

cO 

dv W(v)v 2"- 4 = e .  of du a(u)u- 2,, (15a) 
0 0 

where, the number 

F, = ( - )" - ~ (2rO2"(h/Zn) (B 2 ,~ca), (15b) 
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thereby leading to a family of relations between a(u) 
and W(v). 
A more general property of a similar nature is given by 

dv W(v)v p-4 = (2h/c 2) F(p)((p) 
0 

�9 ~du  a(u)u -p ,  p > 0  (16) 
0 

for all non-zero, positive real p. This property can be 
derived in the same manner  as (15) was derived from 
(11), the difference being that the integral operator  this 
time will be 

( . )v  p- ldv (17a) 
0 

in place of (12a), and use is made of the integral [Ref. 
10, Eq. (3.411-22)] 

dv v p- 1 [exp (uv) - 1 ] - 1 : u -  p r (p) ~ (p) , p > 0 
o (17b) 

in place of (13). In (16 and 17), F(p)  is the gamma  
function and ~(p) is the Weierstrass function defined in 
[Ref. 10, Sect. 8.17]. 
It is interesting to note that (15a) relates the (2n) 'h 
moment  of W(v)v-4  to the ( - 2 n )  th moment  of a(u), 
n = 1, 2, 3 . . . . .  This relationship is generalized in (16) to 
between the pth moment  of W(v)v-4  and the ( -p ) '~  
moment  of a(u) for all positive real p. 
Finally, in this section, provided a(u)=0 Vu <u0 >0,  
then using the operator  

~(.)vexp(l~v)dv,  R e { # } > U o > 0  (18) 
0 

in place of (12a), and proceeding likewise, leads to the 
relation [Ref. 10, Eq. (3.411-24)] 

oo 

dv W(v )v -  2 exp(~v) = 2h(rc/c) 2 
0 

�9 ~ du a(u) [u sin(#zt/v)] - 2 ,  (19) 
UO 

which is a relation between the complex moments  of 
the area-coldness distribution and the radiated power 
spectrum�9 
These three families of relations (15a, 16, and 19) thus 
developed are independent of the specific solution 

procedure used to solve the inverse problem�9 Hence, 
their chief utility lies in ascertaining the accuracy of the 
solution a(u) obtained from the specific algorithm 
implemented on a digital computer�9 

Appendix 

If two functions fl(t) and f2(t) have the same Laplace transform 

F(s) = ~ dt exp( - st)A (t) = ~ dt exp( - st)f2(t), 
0 0 

then 

f2(t) =fl(t) + N(t), 

where N(t) is a null function such that 
i' 

SdtN(t)=O 
0 

for every positive t'. This statement is known as Lerche's theorem 
[9], and it somewhat broadens the conditions for the uniqueness 
of the inverse Laplace transform of F(s). However, the inverse 
blackbody radiation problem is bedevilled by two culprits. The 
first is the error in the measurement of W(v) or g(v) itself. The 
second one is the error buildup in a digital computer. Whereas 
the latter can be surmounted to some degree by using as high 
precision arithmetic as possible, the effect of the former could 
possibly be reduced by filtering out null functions from a(u). A 
priori, that cannot be done; hence, the need for algorithm- 
independent checks. 
A further word of caution: not every function ofs is a Laplace 
transform. The class of functions F(s) that are transforms is 
limited by several conditions of continuity and analyticity dealt 
with in detail in [Ref. 9, Sect. 63]. Thus g(v) or g(v)/v must be 
able to satisfy the conditions of inverse transforrnability for the 
solution algorithms to be effective. 
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