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Abstract. A theoretical investigation of active-passive mode-locked lasers is presented. The 
main conclusion is that the intrinsic instability of a passively mode-locked laser due to the 
primordial noise fluctuation can be minimized by introducing an active modulator into the 
resonant cavity. Good agreement between computer simulation and experimental results 
reported previously is obtained. 

PACS: 42.55 

In spite of the fact that the passively mode-locked 
solid-state lasers are now in wide-spread use in a graet 
variety of applications, the realization of a reliable 
mode-locked operation can still be surprisingly trou- 
blesome [1]. The problems which have plagued the 
users include unreliable mode locking, multiple pulse 
train mode locking, irreproducible pulse train envel- 
opes, large shot-to-shot variation in pulse width and 
relatively low peak-to-background contrast ratio. 
Even if every effort is made to minimize unstable 
technical factors, these problems cannot be overcome, 
owing to the stochastic nature of the mode-locking 
process. 
The fluctuation model of passively mode-locking 
pulsed lasers first formulated by Letokhov [2] has 
been studied by a number of authors [1, 3-7]. It was 
found that under the same operating parameters (i. e., 
gain coefficient and spectral width of the gain medium, 
absorption characteristics of the saturable absorber, 
linear losses of the cavity and pumping intensity, etc.) 
the output parameters (amplitude and duration of the 
output pulses) may vary from shot by shot. Sometimes 
mode locking may not occur at all. Computer simula- 
tion of the evolution of a mode-locked pulse in a 
passively mode-locked laser shows that the amplitude 

and duration of the output pulses are not uniquely 
determined by the operating parameters of the system, 
but are distributed over relatively wide spreads accord- 
ing to their own statistical characteristics. It means 
that a purely passive mode-locked laser with a non- 
linear absorber for both Q-switcher and mode-locker 
always has stochastic features. 
Quite apart from the instability due to mechanical, 
thermal, optical, electrical and other technical causes, 
the pulse parameters vary by themselves. The proba- 
bility distributions of pulse parameters are governed 
by the initial noise fluctuation and then by the 
nonlinear mode-locking system which transforms the 
initial noise into a sequence of ultrashort pulses. A 
number of successful active-passive mode-locking ex- 
periments [8-12] indicate that the statistical output 
characteristics can be greatly improved by simple 
modification of the mode-locking system. 
The present work attempts to give a preliminary 
analysis of the evolution of the mode-locked pulse in 
an active-passive mode-locking system. A physical 
interpretation based on the fluctuation model is given 
at first, and then a computer simulation is made. 
Important results agreeing with experimental ob- 
servations are revealed. 
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1. M a t h e m a t i c a l  F o r m u l a t i o n  
and P h y s i c a l  Cons idera t ions  

Consider a ring-type laser with gain and linear loss 
elements uniformly distributed throughout the cavity. 
It is identical to the model previously described by 
New [1] with the exception of an intracavity modu- 
lator. The saturable absorber is treated as sufficiently 
fast and sufficiently thin in comparison with the spatial 
width of a typical noise fluctuation. 
The rate equation for the amplitude of n t~ fluctuation 
in the cavity noise pattern is now of the form 

dk =u ,  A -  - -  - F - S s i n  zcot. . (1) 
1 + u  n 

Here u, is the intensity of n th fluctuation peak, k is 
defined as t = kT, T is the cavity transit time, A is the 
gain coefficient averaged over the cavity, B,, and F are 
unsaturated absorption coefficient of the absorber and 
linear loss coefficient (all per cavity transit), respec- 
tively, 6 is the modulation depth, ~o is the sound 
frequency of the acousto-optic modulator, and tn 
denotes the instant at which the n th fluctuation passes 
through the modulator. All intensities are expressed in 
photon flux and normalized to the dye saturation 
intensity. 
During the nonlinear stage the laser gain falls as a 
result of gain saturation, the average gain coefficient 
change per transit is given by 

dA 5A 
- (2) 

dk U '  

U =  ( TlbGb)/( T(Ta) , (3) 

where Tlb is the relaxation time of the absorber, G and 
ab are the respective transition cross sections of the 
gain and absorbing media. The parameter ~ in (2) is the 
mean intensity of the complete signal profile. Consider- 
ing the signal as a sequence of N Gaussian fluctuations 
whose durations (FWHM) are z,, then 

N 

ti=ul/2 Z (u,,%)/Tot, (4) 
n = l  

where a = 2(ln 2) 1/1. 
Equations (1-4) have been discussed by various 
authors [1,3-4], for the case of passive mode 
locking. 
The expression in the parentheses on the right side of 
(1) is the net gain coefficient for n th fluctuation, and is 
denoted by 

G, = A -  B - F - 6 sin2tot,, (5) 

where 

B = B . / ( 1  + u , ) .  (6) 

In the linear stage of signal evolution, both the gain 
and absorbing media are unsaturated, so that the 
average gain coefficient ,4 and absorption coefficient B 
may be replaced by their unsaturated values A, and Bu, 
then the width of the modulation window can be 
defined as 

W= 2(1/co) arc sin(G,,/(~) 1/2 , (7) 

where G, is the unsaturated net gain coefficient in the 
absence of an intracavity modulator, and is given by 

G u = A u - B , - F .  (8) 

To see what happens in the linear stage, we can easily 
imagine that the fluctuations inside the window expe- 
rience gain and will evolve gradually, while the fluctua- 
tions outside the window experience loss and hence 
gradually decay. At the same time, since the modu- 
lation loss is in the shape of a sinusoid, the fluctuations 
near the center of the window acquire more gain and 
will grow faster, while the fluctuations near the border 
of the window acquire less gain and evolve slower. 
Irrespective of the initial noise pattern, the modulator 
always gives preference to the peaks near the center 
and discriminates against those near the border. 
Integrating (1) over the entire linear stage and assum- 
ing that the small-signal gain coefficient Au remains 
constant, the peak intensity of the n th fluctuation at the 
end of the linear stage would be of the form 

un(knn ) = un(O ) exp(Guklin) exp(-  kli n 5 sinZ<otn) 

=u,p exp( -  k~in6 sin2tot,), (9) 

where u,p=u,(0) exp(G, kli,) is obviously the peak 
intensity of n th fluctuation at the end of the linear stage 
in the case of purely passive mode locking, and klin is 
the number of transits of the linear stage. Equation (9) 
shows that the number of fluctuations in the space- 
time domain will be greatly reduced after a large 
number of linear transits owing to the effect of active 
modulation. 
The nonlinear stage is characterized by the saturation 
of dye absorption and/or laser gain. As the fluctuatioris 
grow, the gain Z will decrease, so that the window will 
become narrower; on the other hand, as a result of 
absorption saturation, large peaks will make some 
"holes" in the loss curve, as shown in Fig. lb, and the 
effect of gain saturation may be counteracted. Once 
these two actions balance with each other, the peak u, 
will be removed from the window and will begin to 
decay during the next transit, and thereafter. 
Whether the absorption saturation can balance out the 
effect of gain saturation depends not only on the 
magnitude o f u ,  (say the depth of the hole), but also on 
the location of the peak. Obviously, the net gain G,, of 
the peaks near the center of the window is always 
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Fig. 1. (a) Modulation window and noise fluctuations at the end of linear stage�9 Co) Evolution of pulses in nonlinear stage. 
(c) Formation of giant pulse 

positive before the average gain A has fallen to 
A(= B, + F), while for the peaks near the border, only 
those which have sufficient intensity can counteract the 
gain saturation. In fact, after numbers of linear transits 
the peaks on both sides would inevitably be weaker 
than those near the window center; they are incapable 
of resisting the narrowing effect caused by gain satura- 
tion, and will ultimately be eliminated. When ,4= A, 
the width of the window almost becomes zero, and 
only one or very few peaks will remain in the window. 
This moment is defined as the beginning of the giant 
pulse stage. The competition between the largest peak 
and the other peaks, if any, goes on until the weaker 
peaks completely die out. The largest peak continues 
to grow until A = F ,  at which point it reaches the 
intensity maximum (Fig. 1 c) and then attenuates ac- 
cording to the cavity loss. 
The compression effect of the active modulator on the 
pulse duration can be estimated as follows: 
Consider a sequence of Gaussian fluctuations whose 
durations are ~,, then the instantaneous intensity of the 
n th fluctuation can be written as 

�9 u.(t9 = u. exp( -  (X 2 ff2/'Cn2 ) . (10) 

Taking t '=  %/2, we get 

d l n z .  2 ( d u . ( t ' ) c = ~ .  d l n u . ~  
dk - • \ dk d k  ~]  (11) 

Assuming that the response of the saturable absorber is 
sufficiently fast compared with the instantaneous vari- 
ation of the pulse intensity, then (1) can be written as 

d in u n ( Q  = A B .  
F - 6  sin2co(t.+t ') .  (12) 

dk 1 + u. (t') 

When t ' = % / 2 ,  u . ( t ) = u . / 2 ,  then 

d l n u . ( t  ~) ,,==.~ = ~  B. 

dk 1 + u. /2 

- -F - - a  sin2co(t .+L/2).  (13) 

From (11 and 13) we obtain the respective equations 
for the compression on the fron and trailing edges of n th 
pulse 

d In ,~- 

dk 
- (14a) 

d in z + 

dk 
_ _  _ 2 ( 1 / a  2) ( f l + y + ) ,  (14b) 

where 

= (B.u./2)/[(1 + u.) (1 + u./2)] ,  

y_ = 6 sin 2 co(t. - %, J2 )  - 6 sin 2 cot., 

? + = 6 sin 2 co(t. + z.,k/2) - a sin 2 cot.. 

(15a) 

(15b) 

(15c) 

Defining the pulse width L as the arithmetic mean of 
z~- and "c +, from (14a and b) we obtain the width of the 
n th pulse after (k+ 1) nonlinear passes 

"c., k + 1 = �89 -- 2/a 2) [~,k exp( -- 27 - / ~ 2 )  

+ V+k exp( -- 22 +/e2)]. (16) 

Consider the pulse which is situated in the center of the 
modulation window (i. e., cot. = kn, k: integer). From 
(15b and c) we have 

= 7- = 7 + = 6 sin 2 (co-c./2). 

Equation (16) becomes 

Z.,k + 1 = tl exp(-- 2~/a2).,k, 

(17) 

(18) 

where q = exp(-22/0r 2) is the compression factor (per 
pass) coming from the active modulator, and the factor 
exp( -2 f l / .  2) is the compression factor coming from 
the nonlinear absorber. 
Consider a laser having a cavity transit time T = 6 ns, 
an initial absorption coefficient B.=0.75,  a modu- 
lation depth 6=0.6 and an initial pulse width 
L = 100 ps. In this case, t /= 0.9997 but 
exp ( -2 f l / .  2) =0.914. Thus we can see that the modu- 
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lator has very little effect on the pulse width during the 
nonlinear stage. 
If the pulse lies away from the window center, for 
example, on the right side of the window, then y_ < 0 
and 7+ > 0, the front edge witt be expanded and the 
trailing edge will be compressed. But the total effect, as 
it is estimated above, is negligible. 

2. Simulation Results 

In principle, the statistical behavior of the mode- 
locked pulses can be obtained by solving (1 and 2) for N 
fluctuations in the noise pattern (N + 1 simultaneous 
equations) and finding the related probabilities in a 
large number of shots. It is straightforward to do this 
by means of numerical simulation. 
Integrating (1 and 2) and assuming that the average 
gain _g remains constant during each pass, we have 

In u,,~+ 1 = l n  u,.k + [Ak-B,/(1 + U,,k) 
-- F--  6 sin 2 cot.], (19) 

In Ak+l = ln  Ak--~k/U. (20) 

Equations (19 and 20) have been computed iteratively 
for every pass and every fluctuation from the beginning 
of the nonlinear stage until the net gain G. of the largest 
fluctuation falls to zero. 
As indicated by (9), the peak intensities at the begin- 
ning of the nonlinear stage are 

u, = u,p exp( -  kli n fi sin 2 ~ot,), 

where U,p is the peak intensity of the n th fluctuation at 
the beginning of the nonlinear stage in the case of 
purely passive mode-locking and kiln is the number of 
passes of the linear stage. N values of u,p can be 
generated by the computer as has been done in [1]. The 
length of the linear stage in the case of active-passive 
mode-locking would be slightly longer than that of 
parely passive case owing to the additional modulation 
loss. However, we let the number of linear transits be 
equal to tha t  of the purely passive case [1], for 
convenience; 

kli .=3.53 p 1/4(K/A)l/2. (21) 

In so doing, sufficiently good results can be obtained, 
as will be seen later. We have reason to expect that the 
actual results are even better. Moreover, all fluctua- 
tions are assumed to have the same duration at the 
outset. Thus we can obtain the initial distribution of u, 
in (9), making use of (21) and u,p obtained as above. 
Finally, the average gain coefficient Ak in (19) decreases 
as the number of nonlinear passes k increases accord- 
ing to (20). The initial value of Ak equals A u = G, + A. 
The dependence of G, on the pumping intensity is 

given by [1] 

G, = 11.7 pl/g(A/K)l/2. (22) 

Typical parameters of the laser system can now be 
inserted into the above equations to perform the 
computer program. In order to compare the results 
with what have been obtained in the purely 
passive case [1], we take T = 6 n s ,  M=1080  (gain 
bandwidth: 1.8x1011Hz), r amp=125  fls , F = 0 . 5 ,  
Tlb = 10 ps, a b = 8 x 10-16 cm 2, o-, = 2.13 x 10- 19 c m  2. 

The relative pumping energy P, initial absorption 
coefficient B, and the modulation depth fi are taken to 
be variable parameters. 

2.1. Mode-Locking Probability 
and Threshold Characteristics 

Following the suggestion of New [-1] we utilize the 
parameter E as a measure of the mode-locking quality. 
E is defined as the percentage of total energy ultimately 
contained in the largest fluctuation. Assuming that all 
fluctuations are Gaussian in shape, we can obtain 

E = (Ul f'Cl f ) / (n~__ l Unf'Cnf ) . (23) 

Here u,i  and z,i  are the ultimate peak intensity and 
ultimate width of the n th fluctuation, respectively, and 
the latter can be found from (26) below. The subscript 1 
refers to the largest fluctuation. Table 1 shows the 
summary of the results for sequences of 100 computer 
shots for three values of P with Bu=0.75 and 6 = 0  
(purely passive mode-locking). 
We see from Table f that an increase of 14% in 
pumping energy will be needed to raise the mode- 
locking probability from 80% to 100%. This means 
that the threshold characteristic is rather flat. How- 
ever, a dramatic change will occur once the modula- 
tion is applied. Table 2 shows the performance sum- 
mary for sequences of 100 computer shots for three 
values of modulation depth with B,=0.75,  
P= I . 1 0 .  
It can be seen from Table 2 that the mode-locking 
probability immediately increases to 100% provided a 
small amount of modulation is applied. This means 

Table 1 

Relative Mode- E> 98% E> 90% 30% < E 
pumping looking < 90% 
energy probability 

[%] 

P = 1.06 80 74 77 3 
P=I.10 95 82 88 7 
P = 1.21 100 64 74 26 
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Modulation Mode-locking E> 99% E> 98% E> 90% 
depth probability [%] 

50% < E < 90% 

6=0.2 100 89 90 97 
6=0.4 100 97 97 99 
6=0.6 t00 100 100 100 

that in the active-passive case the separation between 
the laser threshold and the mode-locking threshold 
become narrower because the mode-locking threshold 
lowers remarkably, that is to say, the threshold 
characteristic becomes very sharp. 
The statistic nature of the mode-locking threshold of 
purely passive mode-locking was investigated experi- 
mentally by Lii et al. [13]. It was demonstrated that the 
sharpness of the threshold can be estimated from the 
semi-empirical formula given by New [1]. 

X = (G,,B,,UR)/(A + G,,) > Xq ,  (24) 

where XQ is determined empirically. Its value ranges 
typically from 0.65 to 0.7. For a laser with fixed 
parameter values, whether condition (24) can be satis- 
fied will depend on the value of G,, and R. According to 
(22), we have G,=0.035 with P=1.06 and other 
parameters are such as above. From (24) we obtain 
R >  4.05. However, for a purely passive mode-locking 
system with parameters as given above, the statistical 
variable R is distributed over the range of 3 to 10 (as 
shown in Fig. 2, where r=uli/u2~ is the ratio of the 
largest to the second largest peaks at the beginning of 
the nonlinear stage). Of course, we may control G,, 
namely P, to satisfy (24) even if R = 3. In this way, we 
find from (24 and 22) that the minimum pumping 

energy required to achieve 100% mode locking is 
P =  1.16 (16% above laser threshold). 

In active-passive systems, the modulator profoundly 
influences the distributions of R and r. The values of R 
are no less than 15 as shown in Fig. 2b and c. Hence 
condition (24) can easily be satisfied even for a small 
value of G,. Assuming that the minimum value of R in 
the case of active-passive mode-locking is four times as 
large as that of purely passive case, then Gu will become 
near one-fourth of that in the case of purely passive 
mode-locking. It can be found from (22) that the 
minimum pumping energy required to achieve 100% 
mode locking will then reduce to P=I .001 (0.1% 
above laser threshold). That is to say, the mode-locking 
threshold nearly coincides with the laser threshold. 

2.2. Mode-Locking Quality and Amplitude Stability 

Table 1 shows that an increase in mode-locking 
probability is accompanied by an increase in multiple 
pulse-train probability. Thus, as a whole, the output 
pulses of a purely passive mode-locking system are 
poor in stability. In the case of active-passive mode- 
locking, however, this problem will be greatly al- 
leviated, as has been shown in Table 2. 
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Fig. 3a-c. Variation of amplitude stability for sequences of 100 computer shots with respect to various operating parameters. 
(a) Stability versus modulation depth (/7, = 0.75, P = 1.10). (lo) Stability versus relative pumping energy (5 = 0.6, B, = 0.75). (c) Stability 
versus unbleached absorption coefficient (P= 1.10, 5=0.6) 

As we may expect from the preceding discussion, the 
distributions of R and r can be controlled by varying 
the depth of modulation. An increase in modulation 
depth results in an increase not only in R but also in r. 
The increase in r will lead to an effective reduction in 
multiple pulse-train probability. For example, three 
shots in Fig. 2b with r < 1.10 correspond to three shots 
in Table2 where 5 0 % < E < 9 0 % .  Their E's (as a 
measure of double pulse-train, parameter ~ is defined 
as the ratio of the ultimate peak intensity of the largest 
fluctuation to that of the second largest fluctuation, 
i.e., ~ = u l l / u2 f l  are all less than 2. This indicates the 
appearance of double-pulse trains. As the modulation 
depth is increased to 0.6, all values of r exceed 2.3, all 
values of E exceed 104 and all r  exceed 99%. It 
indicates that hundred percent mode locking has been 
achieved without multiple pulse train. 
The amplitude stability can be defined as the mean 
coefficient of dispersion of the statistical variable 

u l f  

Su = (IAul  f l ) l ( u t  f ) , (25) 
where (U~s) is the arithmetic mean of the ultimate 
mode-locked pulse intensities in a large number of 
shots under the same operating conditions, (lAuds I) is 
the mean deviation from the mean. 
The amplitude stability S, as a function of modulation 
depth is shown in Fig. 3 a. Fig. 3b shows the variation 
of stability with pumping energy. Lowering the pump- 
ing energy P means an increase in number of linear 
transits, thus an increase in r. This is advantageous to 
the improvement in stability. Figure 3c shows the 
variation of amplitude stability with the unbleached 
absorption coefficient. Operating at higher B, is con- 
ducive to the increase in discrimination ability of the 
system, hence to the improvement in stability. 

2.3. Pulse Width  and Pulse-Width Stability 

In principle, duration of the mode-locked pulses can be 
computed iteratively from (16). However, it is more 
convenient to utilize the relation 

�9 = ((1 + u .  s) [ Y . + u . , ( 1  + (26) 
z,, i \ (1  +u,i)  EY.+u,,s(1 + Y.)].]  ' 

where 

Y, = ( A , -  B , -  F -  5 sinZ cot,)/B, . (27) 

All fluctuations are assumed to have the same duration 
at the outset. Using (4), we have 

,<0 
Figure 4 shows the distributions of the ultimate mode- 
locked pulse durations in both purely passive and 
active-passive cases. It can be seen from Fig. 4a that 
the pulse durations are dispersed shot by shot over a 
relative wide spread as 6 =0. This has been verified 
experimentally by Bechtel and Smith [14] and theoreti- 
cally by New El]. Figure 4b shows that in the case of 
active-passive mode-locking, all pulse widths merge 
together into a small range, that is to say, the pulse 
width is rather stable. 
It can be seen from Fig. 4 that the pulse widths of an 
active-passive system are, for the most part, somewhat 
greater than those of a passive system under the same 
operating conditions. To explain this, we rewrite (26) in 
the form 

= F (u.i) G(u.y) , (29) 
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Fig. 5. Pulse width as a function of raodulation deptla with 
P= 1.10 and B.=0.75 

where the ultimate normalized intensity of the largest 
fluctuation uli>> 1. Because 111 ~ 1, we get 

l +uly 
G(uls) = V a + u t A l + y 0  ~-1. 

As u u <  1, we obtain the following expression for the 
change dF(uli) due to the intensity variation duu 

dF(uli) duu duli 

F(uli) uli(1 -t- Uli ) b/li 

If, for example, u~ increases by 10%, the pulse width 
will increase by 5%. As has been said before, at the end 
of the linear stage, the values of R of the active-passive 
system are much greater than those of the passive one. 

For  the same ti, the active-passive system will have a 
greater u u which will cause the pulses to broaden. This 
effect will be sufficient to counteract the compression 
effect of the modulator  mentioned in Sect. 1. For  the 
same reason, an increase in modulation depth will 
result in an increase in pulse width, as shown in 
Fig. 5. 
Pulse-width stability is defined by 

s t  = (Nz~sl>/(~s). (30)  

Variations of pulse-width stability with respect to 
various operating Farameters are shown in Fig. 6. 

2.4. Pulse Energy 

The energy density of the mode-locked pulse is given 
by 

E1 = (~l/2ul y'cl fhv)/(~6b Tlb) , (31) 

where hv = 1.87 x 10-19 Joules for ,t = 1.06 gin. With 
P =  1.06, B,=0.75,  6=0 .2  other parameters are the 
same as above, and beam diameter is assumed to be 
l mm, we find from (31) that the pulse energy is 
approximately 1.8 mJ (inside the cavity). This value is 
almost twice the average pulse energy of a passive 
mode-locking system under the same conditions. The 
energy enhancement can be attributed to the modu- 
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Fig. 6a-c. Pulse-width stability for 
sequences of 100 computer shots. 
(a) Stability versus relative 
pumping energy (B, = 0.75, 
5 = 0.6). (b) Stability versus 
modulation depth (P = 1.10, 
B, = 0.75). (c) Stability versus 
unbleached absorption coefficient 
(P = 1.10, 5=0.6) 
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Fig. 7. Dependence of the pulse energy on the modulation depth 
with P= 1.06 and Bu=0.75 

lator which condenses the background energy into the 
mode-locked pulse and effectively shortens the non- 
linear process. The amount of increase depends appa- 
rently on the type of modulation. The pulse energy 
increases slightly as the modulation depth is increased 
at low modulation depths, after passing a maximum, it 
falls off slightly for higher modulation depths. The 
computed curve is shown in Fig. 7. 

3. Conclusions 

The function of the mode-locking system is merely to 
transform the initial noise distribution into a desirable 
distribution (a stable mode-locked pulse with ex- 
tremely weak background). Thus, the statistical char- 
acteristics of the mode-locked pulses can be greatly 
improved by appropriate modification of the mode- 
locking system. Computer simulation shows the 
remarkable improvements in performance including 

100% mode-locking probability without satellite, a 
very sharp mode-locking threshold, high pulse- 
amplitude and pulse-width stabilities, better peak-to- 
background contrast, and a considerable increase in 
pulse energy. These can be achieved by introducing an 
active modulator into the cavity of a passive mode- 
locking system. The analysis is based upon the 
fluctuation model. The effect of linear amplification of 
the passive part and the influence of the modulator on 
the distribution of the noise fluctuation are treated 
separately according to (9). The modulation loss in (1) 
may be different for different type of modulation, but 
the effect is essentially the same. 
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