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Abstract. A novel concept is presented for the pulse generation in the linear regime of an 
actively loss modulated laser. Introducing collective laser modes, the frequency detuning of 
the modulator and the statistical :initial situation of the laser starting from spontaneous 
emission become tractable. Formation of a mode-locked pulse is described by the selection 
of collective modes. Perfect mode locking corresponds to the survival of a single mode in the 
build-up process. A variety of laser properties is derived from the solution and compared 
with experiment. The model predicts imperfect mode locking (with a finite number of 
collective modes) in the transient case in agreement with experimental findings. 

PACS: 42.55 Bi, 42.60 He 

The demand for short and reproducible pulses has 
renewed the interest in understanding active mode 
locking (AM) of pulsed laser systems. It has been 
shown, for example, that this operation mode com- 
bined with passive mode locking increases the repro- 
ducibility of short and intense pulses [1-4]. Actively 
mode locked and Q-switched oscillators are also 
considered as a stable and reliable pulse source for 
laser-fusion systems [5-7]. 

The theory of stationary mode locking applicable 
to cw lasers is well established [8-/0]. For the transient 
conditions of pulsed lasers, however, the theoretical 
treatment is still subject to discussion. For the analyt- 
ical description of this situation a very simple model 
has been recently proposed assuming a special initial 
condition for the mode locking process [11]. The laser 
action is considered to start at t = 0 with a single axial 
mode while neighbouring additional modes are sub- 
sequently excited under the effect of the active mode 
locker. The statistical character of the initial condition 
of multi-mode lasers starting from spontaneous emis- 
sion is not contained in this picture [12]. In fact, 
comparing theory and experiment, deviations from 
theoretical predictions have been noted and attributed 
to this point [6]. 

In this paper an alternative approach is presented 
which incorporates the complicated temporal and 

frequency structure of the initial spontaneous flu- 
orescence. Introducing the concept of collective modes 
replacing the longitudinal frequency cavity modes, 
analytical solutions for the build-up of laser radiation 
in the linear regime are derived in closed form. Our 
results will be compared with previous work and with 
experimental data on a pulsed Nd:gtass laser 
oscillator. 

1. Theoretical Model 

The physical situation is illustrated by Fig. 1. The laser 
system is schematically shown in Fig. la. It consists of 
the optical cavity, the active medium for light amplifica- 
tion and the acousto-optic mode locker for active loss 
modulation. The specific kind of optical resonator used 
is not relevant for the following discussion which 
applies for Fabry-Perot and ring cavities. The trans- 
mission t/ of the active mode locker is depicted in 
Fig. 1 b; it varies periodically in time according to: 

~(t) = ~/o +~1 c o s f f t  (1) 

with average value qo, modulation amplitude I/1, and 
frequency f2'. The maximum transmission is usually 
close to 1, ~/m,x=~/O+~/l~--l. Higher harmonics are 
neglected by (1) which is a good approximation for 
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Fig. 1. (a) Schematic of actively mode locked laser oscillator; 
mirrors M i-M3, laser medium LM; (b) transmission t/(t) of the 
active mode locker versus time; modulation frequency O'; (c) and 
(d) spectrum of amplified cavity modes for a rectangular gain 
profile (c) and for a parabolic gain profile (d); the shown 
frequency dependence is exaggerated; center of gain profile c%; 
frequency spacing of cavity modes O 

many experimental systems. The spectral properties of 
the laser medium are depicted in Figs. lc  and d. In the 
first part of this paper, a rectangular gain profile of the 
active medium is assumed which allows N equally 
spaced longitudinal cavity modes to be amplified 
(Fig. l c). The more general case of a parabolic gain 
profile with N longitudinal modes above threshold is 
subsequently discussed (Fig. ld). The frequency spac- 
ing of the modes is given by 

f2= 2~c/L (2) 

(with cavity length L). #2 may differ by a certain 
frequency mismatch 

A c o = O - f 2 '  (3) 

from the modulation frequency. It is obvious from 
Fig. lc that the longitudinal modes form a set of equal 
oscillators of constant spacing in frequency domain. 
The analogy to the well-known linear chain in solid 
state physics suggests a collective mode picture for the 
analytic treatment of the mode locked laser. 

The total electromagnetic field in the cavity is 
obtained by a superposition of the set of longitudinal 
modes 

m =  ( N -  1 ) / 2  

E(t)=expOcoot) Z Am(t) 
m =  - ( N -  i ) / 2  

x exp (img2t + i~b,,(t)], (4) 

where Am and ~bm, respectively, denote the amplitude 
and phase of the m-th cavity mode. coo marks the center 
of the gain profile (N uneven). As discussed in [13] the 
build-up of the laser emission from spontaneous 
emission is represented by a random distribution of 
initial phases ~b,,. 

1.1. Rectangular Gain Profile 
For tutorial reasons we consider the case of a flat gain 
profile which is switched on at t = 0  and provides 
constant amplification. With respect to the linear 
cavity losses (except the mode locker) we introduce the 
net gain K > 1 per cavity pass and see immediately that 

E(t + T) - E(t) = [ K q ( t ) -  1]E(t) ; (5) 

T= LIe denotes the cavity round trip time. Substitut- 
ing (4) into (5) and equating terms with same frequency 
co o + mY2 we arrive at 

AEm = E,,(t + r ) -  Em(t) 

= (K% - 1)Era + ~ Em+ 1 exp(iAcot) 
Z 

+ ~ - E m -  t exp(- iAcot) .  (6) 

Here Em(t)= Am(t)exp (i~bm) is the complex field ampli- 
tude of the m-th cavity mode. 

The build-up of the laser radiation requires a large 
number of round trips; i.e. the mode amplitude Em 
changes slowly for small net gain K. It is therefore 
convenient to convert the difference equations (6) to 
differential equations 

dEm flU 
d ~  = aEm + ~- m+ 1 exp(iAcot) 

+ ~Em- 1 exp(- iAcot)  (7) 

with a=(Kqo-1)/T and fl=Kth/T. Equation (7) 
readily shows that modes ( re+l )  and ( m - l )  effect 
the time evolution of the m-th mode via the modula- 
tion parameter ft. The direct analogy of this expres- 
sion for the resonant case (Am=0) with the well- 
known equation of motion of a one-dimensional 
monatomic lattice should be noted. 

Following this analogy, we introduce the periodic 
boundary condition 

Em(t)=Em+N(t) (8) 

which holds for sufficiently large N. We recall that 
N ~  10 3 for mode locked solid state lasers and even 
larger for dye lasers. Use of(8) implies that the accurate 
evaluation of the mode amplitudes close to the bound- 
ary m = +_ ( N - 1 ) / 2  is not important because of the 
little effect these modes have on the total field E. 

We are looking for solutions in terms of a Fourier 
series 

Em= ~2 Bt exp(- imO'h)  (9) 
l 
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with (weakly) time dependent expansion coefficients 
Bz(t). Application of the boundary condition (8) gives 

h = T / ;  t=0 ,  _+1 ... _+--N-12 (10) 

Inserting (9) in (7) leads to the solution 

Bz(t ) =Bzo x Vl(t), (11) 

where we introduce here the amplification factor of the 
l-th collective mode 

V~(t)=exp{~t+2[sin(Ao)t-OzO+sin~,] } . (12) 

The initial values B m at t =  0 have to be determined 
from the spontaneous emission at the beginning of the 
lasing process. 

Combining (4, 9, 11, 12) the summation over the 
longitudinal modes can be carried out yielding the 
total laser field 

(U- 1)/2 
E(t )=  2 /~,(t), (13) 

t = - ( N -  1)/2 

where 

ff.l(t)=BmVi(t) sin[NO(t-q)/2] exp (iCOot) . (14) 
sin [O(t-- zl)/2] 

The temporal shape of the field component /~  is the 
Fourier transform of the rectangular gain profile under 
consideration, q states the temporal position of/~z in 
the cavity. According to (14) the component /~ 
represents a pulse which is inherent to the laser field. 
The /~ ' s  will be termed collective modes in the fol- 
lowing. 

The starting point of the amplification process is 
provided by spontaneous emission. In our model, the 
mean intensity at t = 0 is given by 

C 2 C ~ 2 
Zo = 8~ IE(0)G-- ~ Z E , ( O )  . (15) 

The subscript "av" indicates the average over the 
cavity transit time, -T/2<t<T/2 .  Values of 
I 0 ~ 10 -4 W/cm 2 may be estimated as equivalent noise 
input for the Nd:glass  laser [-14]. 

Writing B m = IBz01 exp(i~l) we introduce the phase 
factors ~b t of the collective modes, the statistical nature 
of which should be noted. Evaluating the r.h.s, of (15) 
we neglect the sum over cross terms because of the 
random phases ~t and obtain 

ZIB/o[2~ ____87~ I o (16) 
z - c N "  

Equation (16) represents a normalizing condition for 
the initial amplitudes Bm. 
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Fig. 2. Amplification V0h ) versus time position zz of the collective 
modes after 100 and 1000 cavity round trips (broken and solid 
curves, respectively); t/mi, = 0.9 and 0.6, t/m~. = 1 ; cavity round trip 
time T 

Selection of Collective Modes. The analytic result of 
(12-14) predicts that the amplification V~(t) is different 
for the various modes I. The formation of a mode 
locked laser pulse is described by this/-dependence. An 
example is presented in Fig. 2 for a certain number of 
cavity round trips (t = const). The resonant case A c0 = 0 
is considered where 

V l = V(vt) = exp (at + fit cos f2vt). (17) 

A small net amplification of K=1 .01  and two 
different values for the mode locker efficiency, 
~/min = 0.9 and 0.6, are assumed (qmax = 1). The amplifi- 
cation V(q) is plotted in Fig. 2 versus the temporal 
position z~ of the collective modes. "h = 0 marks the 
position with maximum transmission ~/m,x = q0 + th of 
the mode locker while the modes at q = + T/2 meet the 
minimum transmission qmin=r/0--r/1. At t = 0  the 
amplification is completely flat, V(q)= 1 (see dash- 
dotted line), while highly interesting features develop 
after 100 and I000 cavity round trips (broken and solid 
curves in Fig. 2, respectively). Only the central part of 
collective modes finds positive gain while field compo- 
nents with infavourable position r t remain below 
threshold. In this way the effective number of amplified 
modes significantly decreases with increasing number 
of cavity transits. The selection process is favoured by a 
larger efficiency of the mode locker (smaller qmi.). 

1.2. Parabolic Gain Profile 
Light amplification in the laser depends on frequency. 
For many cases, an expansion around the gain max- 
imum at ~o o to second order will be valid leading to a 
parabolic profile 

K ( ~ )  = K o  - K1 ( ~  - ~ o )  2 . (18) 

K 1 is a measure of the width of the net gain profile. 
Equation (7) for the amplitudes of the longitudinal 
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modes now reads 

dE,, 
= e(m)Em + �89 + 1) exp (i A oot)Em + 1 

dt 

+ �89 fi(m - 1) exp ( - i A oot)E,, -1, (19) 

where the parameters a, fl have the form 

~(m) = g o - a l m : ,  

fl(m) =f lo - f l l  m2. (20a) 

The peak values are denoted by % = (Kot/o- 1)IT and 
f l o=Koth /T .  The frequency dependence of the gain 
curve is expressed by the coefficients 

~1 =Kat loOZ/T;  fll = K l q z f 2 2 / T .  (20b) 

The number of longitudinal modes Em above threshold 
is given by (Fig. l d) 

N~_2( % Av ]~0~ 1/2 . (21) 

For an approximate solution we make a Fourier 
ansatz similar to (9) 

Era(t) = ~ B1(t) exp E-  (al + rio tin2 - imO%(t)],  (22) 
l 

where II[<=(N-1)/2 and the mode position q is 
allowed to drift slowly during the lasing process; %(0) 
is given by (10). Since the laser radiation has to be 
synchronized with the mode locker (selection of time 
modes) we restrict the discussion to the case ]0%] ~ 1 
and small frequency detuning, IAcot[~l. For these 
approximations and for small net gain per cavity 
round trip [-Ko010 + q l ) -  1 ~ 1] our ansatz (22) solves 
(19); we yield after some algebraic manipulation 

Bt(t) = Bw x V~(t), (23a) 

V z ( t ) ~ - e x p { % t + ~ [ s i n ( A o o t - f 2 z t ) + s i n f 2 " h ] } , ( 2 3 b )  

and 
2Aco c~ "t 3 ~l(t) ~ 17l(0) E 1 - -  ~0 (~1  -~ ~1)  t 2 ]  - -  3 ~ - / ~ 0 (  1 "[- ]~1.} " 

(23c) 

For the validity range of the approximation, the result 
for V~ is the same as for the rectangular gain profile, 
compare (12). 

Inserting (22 and 23) into (4) we reproduce (13) and 
find 

/c ~1/2 

~(t) ~- B~o V~(t) ( (~ + fl ,)t,~/ 

x exp [ -- (t - t M - %)2/t~ + i 0% t] ; (24) 

tM = M T  denotes the time required for M cavity round 
trips (M >> 1). As a consequence of the parabolic gain 

profile, the collective modes have Gaussian shape with 
1/e duration 

tc = 2E(~1 + ,80tM-I 1/~/~. (25) 

It is interesting to see that t~ slowly increases with the 
number of round trips. This effect corresponds to the 
well-known spectral narrowing of the amplification 
process. 

2. Discussion 

Comparing (23) and (11, 13) we note that the mecha- 
nism for selecting/-modes in the amplification process is 
very similar for rectangular or parabolic gain profile. 
Different modes starting from statistical initial ampli- 
tudes Bto find different gain Vl depending on the 
temporal position ~ with respect to the mode locker. 
Figure 3 illustrates this point. Using (12-15) the inten- 
sity IE(t)[ 2 of the laser emission has been computed for 
N =  103 longitudinal modes. At t=0,  103 fluctuations 
due to spontaneous emission are contained in the 
cavity and extend over the whole round trip time T 
(not shown in Fig. 3). After 500 round trips the 
radiation has been amplified by a factor of 2 x 10 4 but 
only ~28 collective modes in a small interval 
1%1~<1.5 x l O - 2 T  have survived (Fig. 3a). The result 
for 1300 round trips with amplification ~2  x 1011 is 
shown in Fig. 3b. A smaller number of ~ 17 spikes has 
survived which are positioned at [ql ~< 1 x 10-2 Y. 

Ideal mode locking in this picture corresponds to 
the survival of a single collective mode at q = 0. The 
build-up time tmz for perfect mode locking may be 
estimated from (23 and 25). We define tmz as the 
necessary time for the amplification Vo of the central 
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Fig. 3a and b. Intensity of the laser emission versus time for 
N=1000 longitudinal cavity modes and a rectangular gain 
profile; K=I . 01 ;  t/min=0.3; Am=0; (a)affer M=500  round 
trips; (b) after M = 1300 round trips. The intensity spikes repre- 
sent the collective modes l introduced theoretically; the strong 
selection of collective modes due to the active mode locker should 
be noted 
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mode to exceed the gain Vt of modes at h = t~ by a 
factor of e. For the resonant case (Aco=0) we find 

t,m = [2f10(a I + /30] -  1/2 ~ NT[8tl ,Ko(Ko - 1)] - 1/2. 
(26) 

Equation (26) allows an estimate of the duration of the 
transient mode locking region, i.e. the time required to 
reach stationary conditions for a homogeneously 
broadened laser line where gain .depletion does not 
effect % and fi~. Setting Ko=l .01  , th=0.25 , and 
T-~10-Ss we estimate the build-up time for the 
Nd :glass laser [N-~ 7 x 103, see (21)] to be t,, l ..~ 0.5 ms. 
The cw Nd : YAG system (N ~- 500) is characterized by 
t,,~- ~ 30 gs, which agrees with published data [6, 11]. 

The pulse duration of the laser emission is gov- 
erned by two processes: shortening due to selection of 
modes /~l and lengthening of the individual mode 
because of spectral gain narrowing, see (23 and 25), 
respectively. At t ~  trot the minimum duration tvo is 
produced which characterizes the steady state pulse. 
Denoting by tvo the halfwidth of the laser intensity 
(FWHH) we obtain from (25) 

tP~ (2 \ ~ o  / " (27) 

Equation (27) predicts similar values as the steady state 
theory of Kuizenga ct al. [8]. For  T---10-Ss and 
t h =0.25, a reasonable value of 9O ps is estimated for 
the cw N d : Y A G  laser. 

Experimental conditions must be stable over t,,~ to 
approach steady state. In particular the synchroni- 
zation between the active mode locker and the propa- 
gating collective modes in the cavity has to be main- 
tained; i.e. the tolerable detuning Acoo has to be 
sufficiently small. From (23) we realize that A coot < ~~'~'l 

in order to select the mode l=0.  Setting t~--tm~ and 
h ~- tpo/2 for the position of the competing modes we 
arrive at 

Acoo -~" ~ [2/3o(Cq +/31)3] 1/4 . (28) 

For the cw YAG-laser (T= 10 -8 s, t/1 =0.25) we esti- 
mate a value of _~ 200 Hz for perfect mode locking with 
minimum duration tpo. 

In the transient region t<tmt imperfect mode 
locking can be achieved, only. In these cases the active 
mode locker acts as an effective time gate for the 
sequence of amplified collective modes. Taking the full 
width tp at half maximum of the amplification profile 
V(zl) 2 as a measure of the duration of the laser emission 
we find from (13) for the rectangular gain profile 

T ( Acoln2 ~. 
tv ~- 7 arc cos \ 1 -- 4/3 sin(A coRM~2 ) ] '  (29) 
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Fig. 4. (a) Effective time gate t iT  of the amplification profile 
versus number of round trips for different modulator etficiencies 
qmin=0.9, 0.6, and 0; K=1.01. Three values of frequency 
detuning Am x T=0, 2.1 x 10 -a and 4.2 x 10 -a are considered 
(solid, dotted, and broken curves, respectively). (b) Measured 
pulse duration tp versus input RF power of the mode locker for a 
Nd : glass laser with Fabry-Perot cavity 

tp depends on t~t, i.e. number of round trips of the 
amplification process. At resonance, A co = 0, (29) yields 

T /ln2"~ l/2 
tp~- 7~,~7-s . (2%) 

This result also holds for the parabolic gain profile, tp 
decreases with increasing mode locker efficiency (pa- 
rameter/3) and amplification time. The result of (29a) 
is similar to earlier findings [11], but predicts longer 

pulses by a factor of -~ V8. We note that the statistical 
character of the initial condition has (partially) sur- 
vived, i.e. a substructed pulse of duration tp is gen- 
erated (Fig. 3). 

Some numerical results on the duration of  the laser 
emission are presented in Fig. 4a. A net intensity 
amplification of 2% per round trip (K = 1.01) and three 
mode locker efficiencies with minimum transmission 
~/mi,=0.9, 0.6, and 0 (t/max=l) are considered. The 
duration tp/T is plotted versus number of round trips, 
tM/T for three values of frequency tuning A co = 0 (solid 
curves), Aco=2.1 x 10-a/T (dotted lines) and 
Aco = 4.2 x 10- a/T (broken curves), respectively, tp first 
shortens with increasing number of round trips de- 
pending on the modulator efficiency and frequency 
detuning. For Ar = 4.2 x 10- 3/T, the shortening termi- 
nates after ~ 750 round trips because of the large phase 
shift (180 ~ which has built up between the mode locker 
and the propagating pulses in the cavity (broken curves 
in Fig. 4a). For frequency matching Aco=0 the syn- 
chronization of the mode locker is maintained and 
the shortening process continues. The minimum value 
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for G after I000 round trips is t v -~0.014 T (solid curve 
for t/mi . = 0). 

We note that the frequency matching requirements 
are relaxed in the transient case in comparison with 
stationary conditions. Following the same arguments 
as used above in context with (28) we estimate the 
tolerable mismatch Am to be 

tml tp 
Aco=Acoo x - -  x (30) 

tM tvo " 

It is interesting to compare tp with the bandwidth of the 
laser. From gain narrowing arguments the spectral 
width fiVE (FWHH) of the laser emission is evaluated to 
be 

1 (  21n2 "~1/2 
6VL = T \ ( e ,  +~)tM/ '  " (31) 

This leads to the product 

ln2 
tp X bVL= - -  [fio(0q -t-fil)/2] -1/2 (32) 

1~t M 

The laser emission is not transform limited (tu <tm,). 
Only, when the laser approaches the stationary regime 
(tM~t~l) one finds tp--*tpo and tpXSVL-*21n2/n as 
required for an ideal Gaussian pulse. 

3. Comparison with Experiment 

Some features of the active mode locking under 
transient condition have been demonstrated experi- 
mentally investigating a pulsed Nd'glass laser. The 
pulse duration of the mode-locked radiation was 
measured using the conventional intensity autocorre- 
lation technique with a nonlinear crystal (KDP) and/or 
a fast photodiode with a transient digitizer with ~ 1 ns 
time resolution. Duration of the flash lamp pulse 
pumping the laser rod is 300 ps. Some results of the 
effect of the modulator efficiency on the pulse duration 
are presented in Fig. 4b. tp is plotted versus the input 
power PRF of the modelocker. Assuming #]10CPRF 1//2, 
(29a) predicts tpOCPRF -t14 [11]. The experimental 
curve (solid line) in Fig. 4b is in qualitative agreement 
with this relationship yielding tp-~450 ps for a RF 
power of several watts. 

It is important to compare the pulse duration with 
the spectral width of the laser emission. Our experi- 
mental result of 5VL/C = 5_+ 1 cm- ~ indicates a large 
product t vx6vL~-70 for G=450ps  far above the 
Fourier limitation. Only imperfect mode locking is 
achieved as expected from our theoretical model. 

Equation (13) presents an analytical result for the 
amplification process which can be tested by the 
threshold behaviour of the laser. The threshold is 

found experimentally detecting the laser emission at a 
certain intensity level necessary for the measuring 
system. A constant total amplification Vth~ is required 
to reach the detection threshold. From (12) we find 
maximum gain for time modes with f2z~ =--AcotM/2 
and derive 

1 + r In Vth. 
tM 

Kth.(A co) = ~o + 2t/i sin (A cotgl2)/A cot M" (33) 

Kth r represents the necessary single pass gain at laser 
threshold. This quantity may be also expressed in 
terms of the mirror reflectivities R1, R2, the amplifi- 
cation of the laser material exp(Gthr) and additional 
cavity losses represented by a factor T o 

K,hr = R1R2 To exp (G,h~). (34) 

Assuming a quadratic dependence of the laser amplifi- 
cation on the pump voltage U of the flash lamp, 
Gth~ = (U~hr/Uo) 2, we arrive at 

.. f-, Kthr(ACo)~ l /z  
Uthr(ACo) = UO t i n  ~ )  . (35) 

Uo denotes a scaling factor of the pumping process 
which can be determined varying the linear losses To of 
the cavity. We are now in the position to compare (33 
and 35) with experimental data. Results are shown in 
Fig. 5. It is convenient to keep the mode locker 
frequency constant and vary the cavity length. We 
therefore introduce the length mismatch A L of the (full) 
round trip length L 

L 2 
A L =  - (36)  

(AL~L). Vth r is plotted in the figure in units of Vth~ 
(AL= 0) versus AL. A value of L= 3.0 m and two mode 
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Fig. 5. Threshold voltage versus length mismatch for a pulsed 
Nd:glass laser with Fabry-Perot cavity and two modulator 
efficiencies (t/mi,=0.85 and 0.3, respectively; t/max=l); experi- 
mental points, calculated curves. A threshold minimum is 
predicted in agreement with experimental findings 
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locker efficiencies, t/,~in=0.85 (open circles) and 
t/rain=0.3 (full points) are experimentally adjusted. 

Changing the cavity length over several mm a 
variation of the threshold voltage of a few per cent is 
observed. The curves in Fig. 5 are calculated from 
(33-36). The only fitting parameter in the calculation is 
the number of round trips, M = tM/T while the other 
parameters are known from independent measure- 
ments. Vthr--~105 is estimated from spontaneous flu- 
orescence and the detected threshold level of 
-~ 106 W/cm2; the precise value is of minor importance 
for Uth r It is interesting to see that the calculated 
curves account well for the experimental points for 
M = 2000. The minimum of the threshold curve has 
practical importance to adjust the resonance case, 
AL=O [-11. 

4. Conclusions 

In summary we point out that an analytical model has 
been derived for active mode locking in the transient 
case in the absence of nonlinear effects. Our theoretical 
derivation accounts for the statistical initial condition 
of the laser emission starting from spontaneous flu- 
orescence. Salient features of the model agree with 
experimental findings. In particular, imperfect mode 
locking is predicted and experimentally observed in 
the transient case, in contrast to conclusions from a 
different treatment reported recently [-11]. Our model 
also yields reasonable estimates for the stationary case. 

The analytical description is based on collective 
modes of the laser field instead of the conventional 

frequency modes. A mode selection mechanism during 
the build-up of laser radiation strongly reduces the 
effective number of collective modes by a factor of 102 
to 103 . The corresponding simplification of numerical 
computations makes the collective mode picture also 
highly valuable for a nonlinear stage of the lasing 
process where additional effects, e.g. nonlinear absorp- 
tion of a passive mode locker or gain depletion of the 
laser material, have to be taken into account. 
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