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PROPERTIES OF SHORT FIBRE COMPOSITES 

S. G. Advani and R. Talreja 

Short fibre composites with polymer or metal matrices are a class of composites with wide applicability since they 

provide improvements in properties of neat materials and have the advantage of providing stiffness levels comparable to 

continuous fibre composites combined with the ease of processing and the ability to be moulded into complex shapes. These 

composites are handled as bulk suspensions that are moulded into parts by processes such as transfer, compression and injection 

moulding. As a suspension flows through a die or a mould, the deformation leads to a change of the orientation of the fibres. As 

the polymer matrix solidifies, these orientations are subsequently frozen in and become a governing factor in determining the 

properties of the composite. If the fibres are randomly orientated in a region, the properties become isotropic in that region of 

the composite. If the fibres are preferably orientated, the composite attains the largest deviation from matrix properties in the 

direction of the main orientation. The orientation distribution in a manufactured part is generally nonuniform and can vary from 

region to region. 

There can be different approaches to the problem of determination of the composite properties, e.g. the elastic stiffness 

constants, for an arbitrary fibre orientation distribution. One of them, called the micromechanics approach, is to find the overall 

(effective) composite properties in terms of the phase geometry (fibre aspect ratio, fibre volume fraction, etc.) and the properties 

of the phases, i.e. their constitutive relations. The micromechanics solutions for unidirectional fibrous microstructure or for a 

single fibre surrounded by matrix are used together with an orientation averaging procedure to obtain the desired composite 

properties. A review of the micromechanics approach is given in [1] and [2]. 

An alternative approach, treated here, is the continuum approach. To model the orientation state of the short fibres, 

one of the approaches has been to adopt a continuum model and with its help, to ascribe a value of orientation state to every 

point of the composite. This assumption turns out to be good if length of the fibre is small compared to the scale over which the 

orientation of fibres and the overall dimensions of the composite change. To establish a way from processing to structure to 

properties of short fibre composites, one must track the orientation of the fibres during the flow of suspension which produces 

the composite, to predict the final frozen-in orientation structure. Knowing the orientation structure allows to predict its 

influence on the mechanical properties. Thus, the orientation of the fibres plays the role of a structural state variable which 

would permit to describe the nature of orientation at any point of the domain. Hence one must be able to characterize the 

orientation structure of a part in order to predict it during the flow and to evaluate the mechanical properties of the composite. 

In the continuum approach a composite is considered to be a homogeneous body with an internal field of distributed entities. 

These distributed entities could be a reinforcing phase such as the particles of fibres. Such internal field evolves during process- 

ing of the composite and is fixed when the manufacturing of a part of the composite has been completed. In a given state of the 

composite, the internal field is characterized by a set of spatially varying variables called the internal state variables. For short 

fibre composites we shall use certain statistical descriptors of the fibre orientation state as the internal state variables. We shall 

then use the well-developed continuum thermodynamics with internal state variables [3] to characterize the thermomechanical 

response of short fibre composites. 

The approach employed here is general enough to characterize the thermomechanical response of short fibre composites 

from the bulk suspension state to the solidified one as well as under subsequent thermomechanical service loadings. However, 

the present treatment is limited to determining the elastic properties of a solidified part with given fibre orientation distribution 

and fibre volume fraction. Our aim is to demonstrate the usefulness of the approach and to illustrate the methodology involved. 

Extension to more general situations will be done in the future. 
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Fig. 1. Coordinate system used to define ~o(0, 50) and ~0(0) in 

spherical coordinates. 

We shall first describe different ways of characterizing the fibre orientation state and of its use in predicting the effective 

elastic properties of the composite. We shall then apply the continuum approach, regarding the fibre orientation state as an 

internal one, and derive expressions for all coefficients of the anisotropic stiffness matrix. It will be shown that only nine 

independent constants are needed to complete determination of the coefficients of the anisotropic stiffness matrix. An experi- 

mental procedure for determination of the nine constants will be described. 

Characterization of Fibre Orientation. To begin with, we assume that all fibres are rigid axisymmetric particles of 

uniform length and diameter and that their concentration is uniform throughout the composite. A direction can then be 

associated along the fibre length using a unit vector p relative to some reference frame. Furthermore, one can also specify the 

orientation by the angles (0, 50), as shown in Fig. 1. The components of p are related to 0 and 50. 

Pl = sin0eos50,  P2 = sin0sin50 ; Ps = cos0 ,  

and are also interrelated, since the vector length is fixed, 

p$~ = 1 , 

where summation over repeated indices is implied. The set of all possible directions of p corresponds to the unit sphere. For a 

certain class of moulded parts such as sheet moulded compounds where the fibres are much longer than the mould thickness, 

most of the fibres will lie in one plane. This makes it possible to describe the orientation of a fibre by one angle 50 or a two-di- 

mensional vector p. The set of all possible directions for planar (i.e., two-dimensional) orientation is a unit circle. 

In a short fibre composite, the fibre may be orientated in many different directions. Figure 2 is a redrawn image of a 

radiograph of a compression moulded plaque from a sheet moulding compound and reflects the complexity of the situation [4]. 

It is more advantageous to convey the idea of the use of many directions for the description of fibre orientation and call this the 

fibre orientation state than to apply the description of the direction of each individual fibre. 

The most general description of the fibre orientation state is provided by the probability distribution function. If we 

consider a sufficiently small region of the composite, the distribution of fibre orientations in that region will represent the 

orientation state. The probability distribution function for orientation, also known as the orientation distribution function g(0, 

50) is defined so that the probability of the presence of fibres lying between angles 0 and 0 + dO, 50 and 50 + d50 is given by g(0, 

50) sin0 dO d~0. The orientation distribution function must satisfy two physical conditions. First, one end of the fibre should be 

indistinguishable from the other, and therefore g must be periodic, 

g ( o ,  50) = ~ ( ~  - o ,  50 + ~ )  . 

Second, every fibre must have some direction, so the integral over all possible directions of the orientation space must be equal 

to the unity: 

2Jg ~ 

f f g(O,T) sinO dO d4o = I . (1) 
0 0 

This is known as the normalization requirement.If the orientation statistics changes with position, g will be a function of the 

spatial coordinates xl, x 2, x 3 in addition to 0 and 50. 
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Fig. 2. Computer redrawn plot of fibre from the radiograph of a rectangular 

plaque made from SMC. 

The distribution function can be approximated by measuring the orientation of a large number of fibres selected from a 

region where the distribution function does not change drastically. The distribution function provides a complete and unambigu- 

ous description of the fibre orientation state. The disadvantage of the distribution function as a means for orientation represen- 

tation is that the calculations of predicting orientation in flowing suspensions become very complicated. Note that g is a function 

of two variables (either 0 and 90 or two of the Pi) and can also depend on the position in the part. Recently, one can say that 

processing this amount of information in a numerical simulation consumes much time, and considerable efforts are necessary. 

(For details see [5]). A more compact description would be extremely useful. 

To provide easily interpretable measures of orientation, a number of orientation parameters have been defined. The 

most often used is the Hermann orientation parameter [6]. This parameter consists of a scalar which represents the magnitude 

of orientation in axisymmetric cases. It is not possible to derive such orientation parameters for general cases of fibre orientation 

nor is it possible to evaluate them from equations of change for flow induced orientation. A description that combines the 

generality of the distribution function and the compact nature of orientation parameters is a tensor description of orientation 

[5]. Second and fourth order orientation tensors can be defined as 

aii =- <P~ Pj > ; a~ikl  = <Pi Pj Pt, Pl > ,  

where the angle brackets, ( ~ denote the integral over all p weighted by g(p). (This notation expresses the average over all 

possible directions weighted by the orientation distribution function). There are a number of physical interpretations of these 

tensors. They can be thought of as generalization of orientation parameters, moments of the distribution function or as a series 

expansion of the distribution function. Advani and Tucker [5] provide a complete review. They have shown that these tensors are 

free from a priori assumptions about the shape of the distribution function and can be readily transformed from one coordinate 

frame of reference to another complying with the rules of tensor transformation. The orientation tensors are symmetric, that is, 

ai]  =" a j i  , a U k l  "~ a i i k l  ~ ~ i j l k  ~ alJli.] �9 

The normalization condition, Eq. (1), implies that the trace of aij is unity, i.e. 

t r  a = au = 1 .  (2) 

The tensor description when replacing the distribution function allows to describe orientation using a fewer number of scalar 

quantities. For example, at planar orientation only two of the four components are independent. For a three-dimensional case 

only five of the nine components are independent. Figure 3 shows examples of planar orientation states represented by the 

distribution function, orientation parameters and orientation tensors. When a22 approaches unity all fibres are primarily along 

x2-axis and the distribution function tends to the Dirac delta function around that axis. When the fibres are randomly orientated, 

all and a22 are equal and if the principal orientation is not along coordinate directions a12 is nonzero. It is of interest to 

mention that orientation parameters (such as Herman parameters) erase vital information, e.g. the direction of the principal 

orientation if it differs from that of the coordinate. 
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Fig. 3. Different representation of planar fibre orientation. For a - f = o ;  ais= [0.500.5 ] 

I ] b - f = 0 . 7 5 ;  au = 0 . 1  0 . 7  ~; c - f = 0 . 9 8 ;  a~j  = 0 . 9 8  ' 

We shall now neglect the conditions concerning the geometry of fibres discussed at the beginning of this section. We will 

allow the fibres to be of any elongated shape (i.e., with the length much greater than the width and the thickness) arid of varying 

length. The unit vector p is now replaced by a vector v = vp, where v is the volume contained within the fibre surface. We define 

a second order fibre state tensor as 

aij = <v~vs> /V  l 

where V is the volume of the representative element around the point for which the fibre state is defined. 

The fibre state tensor and the fibre orientation tensor are interrelated by 

a,~ = o~ a , j ,  (3) 

where vf is the volume fraction of fibres in the composite. Also, we have, from Eqs. (2) and (3) 

t r a  = v~ . 

Orientation Averaging. If any continuum model of mechanical properties is introduced the two-phase fibre-matrix 

material is replaced by a homogeneous continuum. A way to calculate the properties of that continuum is averaging the 

properties of the two phases. When one of the phases (let us say, fibre) introduces anisotropy, the averaging procedure must 

account for the orientation of that phase. Many micromechanics theories begin by estimating either the properties of a material 

with unidirectional microstructure or those of a single fibre and nearby matrix. The properties of the composite are then 

calculated as an average of these unidirectional properties over all possible directions weighted by the orientation distribution 

function. Such an averaging should be performed over a domain that is both large enough to contain many fibres and small 

enough compared to the length scale of the global stress or deformation field for the orientation averaging procedure to be valid. 

Properties calculated this way might include thermal conductivities, elastic stiffness or compliance, viscosity, etc. Micromechanics 

treatments when performing orientation averaging do not use the complete description of the orientation state. They require 

only a limited set of even-order orientation tensors up to the order of the property that is being averaged [5]. 

For example, thermal conductivity is a second order property and one would need orientation description up to only the 

second order orientation tensors to calculate the average thermal conductivity. Elastic stiffness or compliance are fourth order 

properties which require description of the orientation state up to the fourth order. This would make the idea of calculation of 

the fourth order orientation tensors from flow induced orientation equations of change very attractive. This requires solving 

three times as many equations as for the prediction of second order orientation tensors from processing conditions [5 and 7]. 

In the present approach orientation averaging of the properties is not required. The average properties are derived from 

a response function which is assumed to be a function of the fibre orientation state. The fibre orientation state is represented by 

the orientation tensor of the chosen order. Thus, the choice of the fourth order orientation tensor would provide a higher degree 

of fibre orientation description than that achieved with the second order tensor. However, a reasonable choice of the orientation 

tensor must seek a balance between the accuracy and easiness of use. We assume here that the second order orientation tensor 
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is sufficient to represent the fibre orientation state. Hence, the fibre state tensor a defined above, which contains certain 

information about the orientation state, is further assumed to be the field quantity for microstructure of short fibre composites. 

Mechanical Response. The theory of thermodynamics with internal state variables advanced by Coleman and Gurtin [3] 

provides a natural framework for describing thermomechanical response of materials with evolving microstructure. The micro- 

structure can generally consist of distributed discrete entities whose characteristic size fails within the range of the so-called 

microscale. A suitable average description of the microstructural entities in the neighborhood of a general point represents the 

internal state and the associated statistical descriptors are taken as the internal state variables. Several treatments of material 

response have been done using the internal state variable concept, see, e.g. [8] for metal plasticity, [9] for spallation of brittle 

solids, [10] for creep of polycrystalline solids, [11-13] for various aspects of damage of composite materials. 

We shall here consider a short fibre composite as a continuum with a microstructure consisting of short fibres. Assuming 

the fibres to be sufficiently small to be regarded of a microscopic scale, and their length, diameter and concentration to be 

uniform throughout the composite, we shall take the fibre state, tensor a to represent, with sufficient accuracy, the internal state 

of the composite. 

The Co leman-Gur t i n  formulation assumes the thermodynamic response to be given by five functions: the Cauchy stress 

crij, the specific Helmholtz free energy g2, the specific entropy s, the heat flux qi, and the internal variable evolution rate, here 

presented by aij" The thermodynamic state is given by the strain qj = 1/2(vi, j + vj,i) , for small displacement gradients vi, j, the 

absolute temperature T, the temperature gradient T,i and the internal variables aij. 

We shall here restrict the treatment to isothermal response of short fibre composites with a fixed fibre state which does 

not evolve during loading. A typical situation where this holds is that of a polymer matrix composite in a solidified form. 

Restricted to this, the set of response functions reduces to 

and 

~tj = %(ekt, c ~ )  (4) 

= ~ ( ~ ,  amn) �9 

The thermodynamic restrictions yield, in addition [3], 

where p is the mass density. 

(5) 

~,~ = p o ~ j ,  (6) 

Equation (6) allows selection of one of the two response functions, (4) and (5), for describing mechanical response. 

being a scalar function is a more appropriate choice. We shall choose to expand this function as a polynomial one with respect 

to its arguments eij and aij. With the assumption that aij forms an internal field in the matrix which is isotropic the function 

can be expressed in terms of the isotropic invariants, i.e. the full orthogonal group [14], given by 

tre,  t re  2, t re  3, t r a ,  trc~ 2, t r a  a ; tre a ,  tr(e2a), t r (ea  2) , and  tr(e2a2), 

where the product of two tensors is given by one index contraction, e.g. (e~)i j = e ikak j  and (e2)i j = eikekj.  

The most general polynomial form of W is expressed by 

; ~  = k~ + kda)  + fl(~,~) + o~(~,~), (7) 

where k 1 is a constant, k 2 is function only of aij, fl is a linear function of eij, f2 is a quadratic function of eij and 0 3 contains 

terms of the order three and higher in qj. 

From Eq. (5) and Eq. (6) we may write the rate equation as 

02W 02u2 
~ij = p 0e,i 0e,l ekt+ t90el] Oa,~ •,l �9 (8) 

The fibre orientation state in the solidified state of a short fibre composite is assumed to remain unchanged during 

deformation. Thus, the second term in Eq. (8) vanishes, giving 

&ij = C~iu ku , (9) 
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where 

Cii ,  t = p - -  
O2u~ 

de 0 0ekt " (10) 

From Eq. (7) and Eq. (10) we have, neglecting terms in eij of the order three and higher, i.e. restricting to small strains, 

02f2 
C~jkl = p 0 %  Oek~ (11) 

The function f2 is a homogeneous quadratic function of eij and contains terms of all orders in aij. We now restrict our 

treatment to composites with low concentration of fibres given by vf 2 < < 1. Most practical short fibre composites have fibre 

volume fractions satisfying this requirement. The polynomial expansion of f2 can be restricted to quadratic terms in cqj. The most 

general form of such polynomial in terms of the isotropic invariants [14] is given by, 

f2 = bl(tre )2 + b2tre2 + ba tr(eaa) + b4 tre tr(ea) + 

+ b 5 [tr(ea) ]2 + be tr(e2a2) + b7 tre tr(ea) 2 + b s t r e  2 t r a  2 + (12) 

+ b9 (tre) 2 t r a  2 , 

where the coefficients bl, b2, b3, and b 4 may be functions of the fibre volume fraction as they involve only the linear term 

describing the fibre state while the remaining bi's are constants as they are multiplied by the quadratic terms representing the 

fibre state. 

From Eq. (11) and Eq. (12) the coefficients of the elastic stiffness matrix Cijkt can be derived for an arbitrary fibre state 

given by aij. 

Using the relations: 

811 = ~:1 ~ E22 = ~:2 P '~33 = 83 ~ 2e2a = e4 , 2ela  = e5 ,2e12 = e6, 

and t:Xll = a l )  (222 -~ 0~2~ ~33 ----- 0~3~ ~23 = O~4p G~13 = OCS~ ~12  -'~ Cf6~ 

and the elastic stiffness matrix can be expressed in compact notation as 

02f2  
Cpq = 0% 0% ; P '  q = 1 , 2  . . . . .  6. (13) 

The coe f f i c i en t s  Cpq are given in the Appendix. Note that for a given fibre state, the 21 different components of the 

anisotropic and symmetric m a t r i x  Cpq are given by nine unknown coefficients b l - b  9. 

Transforming Cpq f r o m  arbitrary Cartesian coordinate axes to those formed by the principal directions of aij, we have, 

in the new coordinate system, a 4 = a 5 = a 6 = 0 and 

C p q -~. 

Cn 012 Cla 0 0 0 ] 
C22 C~.a 0 0 0 

C3~ 0 0 0 
C44 0 0 " 

C44 0 
sym. C6s 

Thus, the elastic stiffness matrix is orthotropic with nine independent constants determined by bl-b 9 and given by 

Cpq = 2 b  1 + 2 b  2 ~pq + ( ap + aq ) (b~ {~pq + b4) + 
(14) 

+ 2% ,~ ( b~ + a~, b~ ) + ( ,~ + ~ ) b, + 2 ( b~ , ~  + b~ ) r. 

for p, q = 1, 2 and 3, and w h e r e  ~pq = 1 for p = q a n d  ~pq = 0 for p # q. Here r a = a l  2 + a 2 + a32. For p = 4, 5 and 6 the 

coefficients are 

Cpp ---- b 2 + rp ba + sp b e + b s r a , (15) 
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where no summation is implied on the repeated index and 

rp  = 

1 
( a 2 + a s )  f o r p = 4 ;  

1 
( a l + a s )  f o r p = 5 ;  

1 
( a  1 + a  2)  f o r p = 6 ;  

and 

06) 

s p  = 

1 
5 (  ~ + ~ )  f o r p = 4 ;  
1 
5 (a~ + a ] )  f o r p = 5 ;  

1 
(a~ + a ] )  f o r p =  6 ; 

(17) 

It is now evident that once the coefficients of the orthotropic matrix Cpq are determined in the principal directions of 

aij, they can be transformed to any set of Cartesian axes by using the relations given in the Appendix. 

The coefficients b t and b 2 associated with the quadratic functions of e only in Eq. (9) may be written as 

bl = b ~  e l [ ( t r a  + ( t r a ) 2  + . . . ] ,  

b2 = b~ + c 2 [ ( t r a  + ( t ra  )2 + ... ] .  

Note that b 1 and b 2 are still independent of fibre orientation state as tr a = vf 2. Hence, Cpq from (12) and (13) may be ex- 

pressed as 

% = c o, = c , , (~) ,  

where Cpq 0 is independent of the fibres. Thus, for a -= 0, i.e. no fibres, we have 

C,, = C~q . 

The stiffness matrix Cpq 0 is isotropic and is determined by the two constants bl 0 and b2~ These constants are related to 

the engineering moduli E m and Vm, i.e. the Young's modulus and Poisson's ratio of the unreinforced matrix material, by the 

following equations 

Em '/]m 
b~ = 2 ( l + v m ) ( 1 -  2vm) 

and 

E m 

b ~ = 2 ( l + v , , ) "  

Material Constants. The theory described above shows that an unreinforced matrix material which is isotropic and 

requires two material constants, e.g., E m and v m, for description of its elastic response, when reinforced by short fibres of 

arbitrary distribution, becomes orthotropic along the principal directions of all and therefore requires nine material constants for 

description of its elastic response. It is natural to expect that these constants, given here by bl-b9, can be determined experimen- 

tally in the same way as bl 0 and b2~ , or equivalently, E m and v m, determined, e.g., by mechanical tests. However, in a general 

case, the fibre orientation state will have a spatial distribution and consequently, the principal directions of all will also vary 

spatially. It is therefore desirable first to determine the constants bl-b9, by testing a specimen material of orthotropic symmetry 

having the same fibre volume fraction as that of the manufactured part of interest and then calculate its properties by using Eqs. 

of the Appendix. This procedure would, however, be feasible if a test material of orthotropic symmetry can be manufactured. We 

shall therefore describe a scheme for determining bl-b 5 using such test material with practically achievable fibre orientations. 

Test 1. Unidirectional Composite. It may be possible using compression mould to manufacture a specific test material 

such as the long discontinuous fibre (LDF) material [15] which consists of fully impregnated aligned fibres in a ply form; so a 

test specimen with all fibres aligned along the same direction is obtained. The fibre state of such a unidirectional composite 
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is given by ap 

the following stiffness c o e f f i c i e n t s  Cpq 1 

and 

= (vf 2, 0, 0, 0, 0, 0) where the xl-axis is aligned with the fibre axis. Inserting this ap in Eqs. (14)-(17) we obtain 

C~1 = 2 (b~ + ba)  + 2v~ (ba + b , )  + 21)~ (b~ + ba + b7 + ba + b~) ; 

C~ = 2b~ + v~b~ + v ~ ( b T + 2 b ~ ) ;  

C~z = 2 ( b ~  + b z )  + 2 v ~ ( b s +  bg); 

C~a = 2bl + 21)~ b 9 

1) 4 

2 "a 

(18) 

Additionally, the remaining nonzero coefficients are 

�9 C~2 = C~a, C~3 = C~z, C~, = 1 / 2 ( C ~ = -  C~a) and C~6 = Cas~. 

The composite is transversely isotropic, i.e. isotropic in the plane normal to the fibre axis. The five independent 

constants given in (18) can be easily determined from well established mechanical tests or by ultrasonic techniques. 

Test 2. 2D Random Composite. A short fibre composite with fibres distributed randomly in one plane has the fibre state 
2 2 

( of of 
given by ap = ~ -~-,-~-, 0, 0, 0, 0 ) with Xl-X 2 plane being the fibres plane. It is possible practically to create such a specimen 

via compression moulding the sheet moulding compound with a very little deformation during the moulding process to prevent 

preferential orientation of the fibres [16]. The stiffness coefficients Cpq 2 are given by 

C ~  = 2 ( b ~  + b 2 )  + v~ ( b e  + b 4 )  + - ~ ( b  5 + b 6 + b 7 + 2b 8 + 2b 9 )  ; 

C~2 = 2b~ + v~ b 4 + - ~ ( b  5 + b~ + 2b9) ; 

C~a = 2b, + v~2 b 4 + - ~ ( b r + 4 b , ) ;  
(19) 

C 2 33 ~ ~-" 

The remaining nonzero coefficients are 

C~2 = C ~ ;  C~a = C~z; C]5 = C ~ , ;  C~6 = 1 / 2 ( C ~ - C ~ 2 ) .  

The composite is isotropic in the plane of fibres. The five independent constants for this composite, given by Eq. (19), 

can also be easily determined. The Eqs. (18) and (19) provide ten simultaneous equations to find nine unknowns bl-b 9. The 

matrix of coefficients is nonsingular and hence any nine relations from the set of simultaneous equations may be used to 

calculate b v b  9. We select the first of the nine relations. The solution for nine unknown material constants is as follows: 

- 4C~, + 4C~a - 2C~ - C~2 + 8C~3 - 4C~z - 2C~z + C~1 
bl = 8 ; 

- 4C~, - 4Ca28 - 2C~s + 3C~2 + 8C~a - 4C~2 - 2C~2 + C~1 
b2 = 8 ; 

2C~, + 2C~z - 2C~1 - 4C~, + 4C]a - C~z - 4C~z + C~ 
ba = -  v~ ; b4 = -  2v~ 

- 4C~, + 4C2a3 + 2C~a - C~ - 8C~a + 4C~2 - 2C~2 + C~1 
b5 = 4v~ ' 

12C~4 - 4CaZa + 2C~s - C~ + 8C~a + 4C~ 2 - 2C~2 - 8C~ + C]1 
b6 = 4v~ ' 
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- 4CI, + 4C28 - 2C~3 - C2~2 . -  4C22 + 2CI2 + Cl~ 
b7 = 20~ ; 

- 4C~, - 4C]3 - 6C~a + 7C~2 + 8C~s - 4C~2 - 2C~2 + C~1 
b8 = 80~ ; 

- ~Ch + 4 c h  - 6 c ~  - c h  + 8 c h  - 4 c h  - 2 o h  + c;~ 
b9 = 8v~ 

Conclusions. We have developed a method to calculate the elastic properties of a short fibre composite with an arbitrary 

orientation distribution of fibres. The approach utilizes a continuum concept in which a composite is regarded as a homogeneous 

body with an internal field consisting of distributed fibres. The fibre state, defined in terms of a second order tensorial descriptor 

of the fibre orientation state, is used as the internal state variable. Using concepts of thermodynamics with internal variables and 

invariant theory, the elastic stiffness tensor has been derived. The stiffness matrix, in general, has 21 constants and it is shown 

here that these constants are related to nine independent material constants. The material constants are the coefficients of the 

orthotropic stiffness matrix aligned with the coordinate axes formed by the principal directions of the fibre orientation tensor. A 

procedure has been developed by which, through familiar mechanical test on specimen materials of aligned and random in-plane 

fibre orientations, the material constants can be determined. Of course, it would be possible to estimate the material constants 

from micromechanics solutions for effective properties of atigned and random short fibre composites. However, the micro- 

mechanics solutions must be verified first by experimental data which may as well be used directly in calculating the material 

constants appearing in the formulation developed here. 

Appendix. The coefficients of the elastic stiffness matrix Cpq are derived using (13) with fz given by (12). The individual 

functions in (12) are written in a compact notation as follows: 

tre = e~ + e2 +ea  ; 

tr~ ~ = ~[ + ~ + ~i + 1 /2  ( ~,~ + ~ + ~ ) ; 

tr(e a) = ale 1 + a2e 2 + a3e a + a4e 4 + a~e 6 + a~e~ ; 

t r@a ~) = (a~ + a~ + a ~ ) e  1 + (a~ + a~ +a~)e~  + 

+ ( a ~  + a~ + a ~ ) e s  + (a~a4 + asa6 + aaa 4 ) e  4 + 

+ ( a las  + a3a5 + a4a8 ) e5 + ( ala6 + a4a5 + a2a8 ) e8 ; 

tr(e2a) + ale~ + a2e~ + a.~e~s + 1/4 [ ( a  2 + a a ) e ~  + ( a  1 + a a ) e ~  + 

+ ( a 1 + a z ) e~ ] + 1/2 ( a4eee  s -I-. aseae  e + t l ee le  ~ ) + el ( ase 6 + aee ~ ) + 

+ e z ( a4e4 + aet  e ) + e a ( a4e4 + ase 5 ) ; 

tr(e2a 2) = (a~  + a~ + a~ )e~  + (a~ + a~ + a~ )e~  + (a~  + a~ + a ~ ) e a  z + 

+ 1/4 (~, + al + ~ + ~ + ~ )  ~,~ + ~/4 (a, ~ + ~] + ~ + 2 ~  + a~) ~ + 

+ 1/4  ( a~ + a~ + a~ + a~ + 2a~ ) e~ + ( a l a  5 + a4a 6 + a~a 5 ) e~e5 + 

+ ( a~a6 + a2a 6 + a4a5 ) ele ~ + ( a2a,  + a~a~ + aaa 4 ) e~e, + 

+ ( a2a ~ + a,a~ + ala~ ) eze~ + ( aaai  + a~a~ + a~a~ ) eae, + 

+ ( aaa~ + a ,  aa + a~a~ ) eae ~ + 1 /2  ( a~aa + a~aa + a4a ~ ) e4es + 

+ 1/2 ( ala~ + a~aa + aaa5 ) e~e~ + 1/2 ( a~a~ + a2a~ + aaa4 ) e~ee . 

The individual coefficients acquire the following form 

C n  = 2 (b~ + b~) + 2a~ (bs + bO + 2a~b~ + 2{a~ + a~ + a~} (b e § b,) + 

+ ~{~,~ + ~ + ,~ + 2,~ ~, + 2,~ + ~,~ } ( b. + b. ) .  

+ 2 ( a[  + a~ + a~ + 2a~ + 2a~ + 2a~ ) b 9 . 

c.=c~,=2b~ + {~  + ,~} b, + 2 , ~ b ~  + {,~ + ~i + ,~ + ~,~ + ~ }  b, + 
+ 2 ( a~ + ct~ + a~s + 2a~ + 2a~ + 2a~ ) b 9 . 

C ~  = C4~ = o:~b~ + 2a~a~b~ + ( a~a~ + aaa 4 + a~ct~ ) b 7 ; 

C~5 = C~ = a~ ( b a + b4 ) + 2cqasb~ + ( oqa~ + a~aa + (xaa~.) (ba + b~ ) ; 
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Cle = Csl = a 6 ( b.q + b 4 )  + 2cqa6b s + ( a la  6 + a2a 6 + a4a 5 ) ( b e  + b? ) ; 

Cz2 = 2(b 1 + b 2) + 2a2(b 8 + b 4 )  + 2a~b 5 + 2(a]  +a~ + a ~ )  (b e + b 7) + 
+ 2 ( a ~  + a ]  + a ]  +2a~ +2a~ + 2 a ~ ) ( b s +  b9) ; 

C~.3=Cs2=2b~ + (a2 + a3) b, + 2a2a3b5 + 2 (a] + a] + 2a] + a] + a~) b~ + 

+ 2 ( a~ + a~ + a] + 2a~ + 2a] + 2a~ ) b 9 ; 

C24 = C42 = a 4 ( b a "Jr" b 4 ) + a2asbri  .-t- ( a 2 a  4 -I- aact  4 -4- a~ia 6 ) (b 6 + b T ) ; 

C2~ = C52 = asb4 + 2a2a~b~ + (a~a~ + a4a~ + aaa~ ) b~ ; 

C2~ = C~2 = ae ( ba + b4 ) + 2aa~aeb~ + (a2a ~ + a4a 5 -I- r 6 ) (b e + b~ ) ; 

c ~  = 9. (~ + ~)  + 2.~ (~  + ~,) + 2 . ] ~  + 2 (~] + ~,~ + ~]) (~  + ~,) + 
+ 2 ( ~  + 4 + ~] + 2~,~ + 2~] + 2;~ ) ( ~ + ~, ) ; 

Ca~ = C4~ = a4 ( b~ + b 4 ) + 2aaacqb ~ + (aaa 4 + a~a6 + a2a~ ) (b~ + b~ ) ; 

Ca~i = C5~ = a6 ( b3 + b~ ) + 2a~a~b~ + (a~a~ + a4a ~ + a~a~ ) (b 6 + b~ ) ; 

C ~  = Ce3 = aeb~ + 2a~aeb ~ + (a~a~ + a~a~ + aza e ) b~ ; 

Ct~ = C ~  = l/2a~b~ + 2a~a~b~ + 1/2 ( a~ae + aza~ + a~a~ ) b~ ; 

C46 = C64 ~--- 1/2a4ba + 2asaeb~ 

C56 ----- b2 "~" 1/2(a~ + as) ba + 2a~b~ 
+ ( ~  + ~ + ~ ]  + 

C56 = C85 = 1/2asbz + 2a4aeb5 + 

+ 1/2 (a2a  t + a s c q  + a 3 a  4 ) b 8 ;  

+ 1 / 2 ( a ~ + a ] + 2 a ~  +a~  + a ~ ) b 6 +  

2a~ + 2 a ]  + 2 a ~ ) b s ;  

1/2 ( a4ae + ala~ + asa6 ) b6 ; 

C66 = b2 + 1/2 (a~ + a2) b8 § 2a~b, + 1/2 (a~ + a] + a~ + a~ + 2a~) b6 + 
+ (a~ + a ]  +a~  + 2a 2 + 2a 2 + 2 a ~ ) b ~ .  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 
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