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Abstract. The temperature field generated by the weak absorption of a gaussian laser beam 
in an optically and thermally thin film bounded by two transparent plates is discussed. An 
analytical solution of the problem is presented together with an algorithm for the numerical 
integration. The influence of the finite thermal conductivity of the plates is shown in an 
example. 
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The temperature field generated in a weakly absorbing 
layer by a gaussian laser bern has been widely studied. 
The detections of the induced refractive index varia- 
tions, by means of the self-focusing or defocusing of 
the pump or of a probe beam, allows one to determine 
the thermal properties of the sample. In many cases 
(liquids, liquid crystals, etc.) the sample must be 
bounded between two plates, usually of glass. 

If the sample is thermally thick the plates may be 
considered perfectly conducting [1-4]. Such an appro- 
ach gives good results also for the steady state. On the 
other hand, if the light pulse is very short the transient 
behaviour may be studied with the assumption of 
perfectly insulating plates [5-7]. These approxima- 
tions do not give good results in determing the 
steady state temperature field induced in a thermally 
and optically thin sample: the conductivity of the 
plates has to be explicitely taken into account. In this 
paper we give an analytical solution for the tempera- 

ture field in terms of a Hankel integral, then we 
introduce an algorithm for the numerical integration 
and show in an example the influence of the plates' 
conductivity. 

1. Temperature Field 

In a typical experimental apparatus (see Fig. 1) the 
pump beam intensity is 

I(r) = Io exp(-  2rZ/w~). (1) 

The plates are assumed to be perfectly transparent 
and the sample to be weakly absorbing. The beam 
waist is assumed to be very small in comparison with 
the transverse dimension of the sample. The external 
surfaces of the plates (at z = do and z = d3) are kept at 
constant temperatures: convective heat exchanges in 
the sample are disregarded. 
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The steady state Fourier equation in the i th layer is 

V2T~(r,z)+OJk~=O i=1 ,2 ,3  (2) 

with the source term Q2 = ~l(r) (Q1 = Q3 = 0) and with 
the boundary conditions 

Tl(r , do) = Ta(r , d3) = 0, (3) 

Tl(r' dl) = T2(r' dO; (4) 

T2(r, d2) = T3(r, d2), 

k'O~--z-i~=a, =k2oTiOz I~ = a~ ' (5) 

a T  

where Ti(r, z) is the temperature difference with respect 
to the temperature at z = do or z = d3, k, is the thermal 
conductivity and a is the optical absorption coefficient 
of the sample. 

Let us consider the Hankel transform 0i(2) of T~(r) 
and $2(2) of Q2(r). We have 

T~(r, z)= S ;~d;~O~(;~, Z)Jo(;tr), (7) 
0 

Q2(r) = ~ 2d2S2(2)Jo(2r ) . (8) 
0 

Substitution in (2) yields 

(~20 0,~, 2 -4- Si 
Oz---y - ~ = 0  (9) 

whose general solution is 

0/()., z) = Ai(2 ) exp(2z) + Bi(2 ) e x p ( -  2z) 

-Jv Si / (k i22) .  (10)  

Imposing the boundary conditions (3-6) we have 

A1(2 ) = M{2kzk3E2Ez(E  2 + E~) 
2 2 2 E 2 - k 2 E ~ [ k z ( E 1 - E 2 ) ( E 2 -  3) 

-.t- k3(E 2 -4- E 2) (E 2 -b E2)] }, (11) 

A2(2) = M{k3E2(E ~ + E 2 ) [kl(E 2 + E 2) 

-- k2(E 2 - E~)] - k~E,(E20 + E 2) 

x [k~(E~- E~) + k~(E~ + E~)], 02) 

A3(2 ) = M{--  2kakEE~E~(E~ + E~) 

-- k2Ez[k~(E 2 + E~) (E 2 -- E 2) 

+ k2(E 2 - E 2) (E~ -- E2)]}, (13) 

B1(2)= --E~A~(2), (14) 

B2(2 ) = M{ -- klE1E2(E 2 + E 2) [kz(E 2 - E 2 ) 

_ ka(E 2 + E2)] 2 2 
- -  k3E1E2(E2 + E 2) 

• [kl(~o ~ + ~ )  + k ~ ( ~ -  ~)3, (~ 5) 

SAMPLE 

Fig. 1. Typical experimental set-up. The sample is bounded by 
two transparent plates; the external boundaries of the whole 
device (at z = d o and z = d3) are held at a constant temperature. 
The laser beam is a TEMoo mode (gaussian intensity profile) 

B3(2) = --E2A3(2) (16) 

with 

M = S2/kz~2{kx(E~, + E~) 

x [k2(E~ + @ (E~-  E~) + k3(e~ - E~) ( ~  + E~)3 

+k~(E~-E~)[k~(E~ ~ 2 - -  E2) (E2 - -  E3) 

+ k~(~ + ~ )  (e~- ~)3}-1, (17) 

E i = exp(2di) (18) 

and, for a gaussian beam, 

$2(2) = Mo(Wo/2) 2 e x p ( -  w0222/8). (l 9) 

2. C o m p u t e r  I m p l e m e n t a t i o n  

Equation (7) allows the computation of the tempera- 
ture as a function of r and z. Nevertheless for practical 
purposes the value of the temperature is usually 
required at several thousands of points. Direct in- 
tegration of (7) could be quite cumbersome in these 
cases. 

We observe, from (11-19), that, for a gaussian 
pump beam, 0(2, z) goes zero with increasing 2. Let us 
take a real number R and an integer N so that 

T(r ,z )=O for r > R  (20) 

and 

0(~,z)=0 for 2>=jN/R, (21) 

where JN is the N ta z e r o  of the Bessel function of the 
zero th order Jo. Following the method presented 
in [8] we have 

2 L n Jo(j.rm/R) T(r,., z) = - ~  L [ ~ . ) ~  O(jJn,  z) (22) 

or, in matrix notation 

T =  G. 0, (23) 
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Fig. 2. Longitudinal temperature profile along the beam axis, 
T(0, z), for different values of the ratio between sample and plate 
conductivities, p=0.1, 1, 10. In this example we assume a 5W 
beam with Wo = 50 pm and a sample with absorption coefficient 

= 10- 4/lim 
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Fig. 3. Radial temperature profile at the middle of the sample, 
T(r, 0), for different values of the ratio between sample and plate 
conductivites, p=0.1, 1, 10. In this example we assume a 5W 
beam with Wo = 50 pm and a sample with absorption coefficient 
~ = 10-4/i.tm 

where T is an array whose elements t,. = T(rm, z) are, for 
each z, the temperature at M arbitrary values of r, 0 is 
an array of N values of 0: 0. = O(j./R, z), and G is an 
M • N matrix whose elements are 

2 Jo(j.r,./R) 
g, . .=  R2 [jl~Jn)] 2 (24) 

and do not depend on the pump beam intensity or 
beam waist, provided that conditions (20,21) are 
satisfied. Hence the matrix G may be computed only 
once and then repetitively used for several different 
applications, and the computat ion of the temperature 
field reduces to a matrix product  for each z value. 

3. Conclusions 

In Figs. 2 and 3 we show the results obtained for a 5 W 
beam with Wo = 50 lira and a sample absorption coeffi- 
cient ~ = 10-4/pm;  the ratio between sample and plates 
conductivities, p, is assumed to be 0.1, 1.0, and 10. In 
Fig. 2 is presented the longitudinal temperature profile 
along the optical axis T(0, z), while in Fig. 3 we show 
the radial temperature profile in the middle of the 
sample T(r, 0). The influence of the finite conductivity 

of the plates is clearly shown, and hence the perfectly 
conducting or the perfectly insulating plate approxi- 
mations would not be accurate in the case under 
consideration. 

We conclude by observing that, despite the quite 
intricate expression involved, the computat ion of T in 
30 • 200 points by means of the computer  implement- 
ation of(23) requires only a few minutes on a IBM PC. 
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