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Abstract. The method for processing perturbed Keplerian systems known today as the linearization 
was already known in the XVIII th century; Laplace seems to be the first to have codified it. We 
reorganize the classical material around the Theorem of the Moving Frame. Concerning Stiefel's own 
contribution to the question, on the one hand, we abandon the formalism of Matrix Theory to proceed 
exclusively in the context of quaternion algebra; on the other hand, we explain how, in the hierarchy 
of hypercomplex systems, both the KS-transformation and the classical projective decomposition 
emanate by doubling from the Levi-Civita transformation. We propose three ways of stretching out 
the projective factoring into four-dimensional coordinate transformations, and offer for each of them 
a canonical extension into the moment space. One of them is due to Ferr~ndiz; we prove it to be 
none other than the extension of Burdet's focal transformation by Liouville's technique. In the course 
of constructing the other two, we examine the complementarity between two classical methods for 
transforming Hamiltonian systems, on the one hand, Stiefel's method for raising the dimensions of 
a system by means of weakly canonical extensions, on the other, Liouville's technique of lowering 
dimensions through a Reduction induced by ignoration of variables. 

Key words: Linearization, KS-transformation, Keplerian problem, Canonical transformations, Hamil- 
tonian systems. 

Find what the Sailor has hidden. 

VLADIMIR NABOKOV 

Introduction 

In recognizing that most equations in celestial mechanics are Hamiltonian in nature, 
Jacobi broke away from traditional procedures when he offered to solve them 
approximately as perturbations of separable systems. For a long while before him, 
mathematicians had concentrated their effort on finding the right coordinates and 
independent variables in order to split the equations into sets of perturbed linear 
oscillators. Decomposing the position vector x of a mass point into the product of 
the distance r = I1 11 and the radial direction u = x/r is a preliminary step one is 
most likely to take in Point Dynamics at the outset of a problem, especially when 
no symmetry is available to offer an alternative. The pair (r, u)  makes what, after 
Ferr~indiz, we call the projective coordinates of the mass point. In such coordinates, 
the motion of the particle appears to combine a radial displacement with a rotation 
of the radial direction on a unit sphere. Changing the independent variable converts 
the equations of motion in projective coordinates into a linear system; should the 
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system be Keplerian, the coefficients in the linear system are constant. This artifice 
converts a perturbed Keplerian system into a set of perturbed harmonic oscillators. 
The idea behind the scheme is one of the valuable assets in the heritage of celestial 
mechanics. The technique became standard procedure in the hands of Clairaut, 
Euler and d'Alembert. It bred a plethora of artifices and stratagems, most of them 
now obsolete, yet still much alive in the folklore of celestial mechanics. Eventually, 
Laplace codified the basic algorithms for solving linear differential equations with 
constant coefficients in Book I! of his Mdcanique cdleste published in 1799, the 
fateful An VII in the Republican Calendar. 

But Laplace did nothing toward articulating the techniques for finding transfor- 
mations that would convert Kepler's problem into a set of harmonic oscillators. 
On that score, he was a "man in a hurry." He wanted most to pose in the eyes 
of the new master of the Republic as the French Newton, the one who brought 
the final solution to the Lunar Theory, a problem that had humbled Newton and 
his successors, luminaries like Euler and d'Alembert. Owing to Laplace's political 
opportunism, considering also that his much touted theory of the moon petered 
out, astronomers of the XIX th century went on contributing stratagems to linearize 
equations for individual state functions, leaving to their successors to come yet with 
more bags of tricks they in turn would claim were better suited to other combina- 
tions of variables. The literature on that topic is vast, unwieldy and cumbersome, 
available today only from historical collections in museum observatories. Take 
for example Hansen's theory of the "ideal frame." It does wonders for integrating 
numerically orbits of artificial satellites (Abad et al., 1991; Palacios et al., 1991; 
Palacios et al., 1992). But Peter Andreas Hansen expressed his ideas in habilita- 
tionsschrifi  Latin - the lingo a Schwabian cousin of the Limousin student would 
have spoken to Pantagruel.* To make matters worse, Hansen did not speak in vec- 
tors; they had not yet entered the astronomical language. Amazingly though, at the 
time Sputnik and Vanguard revived celestial mechanics as an indispensable tool 
in aerospace research and development, engineers resumed the old habits: an hap- 
hazard search for ad hoc linearizations in particular situations. On most occasions, 
we must confess, they end up reinventing the folklore of celestial mechanics. 

We have no intention whatsoever of surveying the theme of linearization in 
celestial mechanics neither in its sources** nor in its evolution. We confine our- 
selves to the monograph of Stiefel and Scheifele (1971). In the Preface to their 
book, these authors make confusing declarations about the novelty of their work. 
It behooves therefore to remind our readers, if any, that linearization has been a 
clich6 in celestial mechanics throughout the eighteenth century. Laplace (1799, 
Partie I, Livre 2, Chap. ii and v) summarized in an authoritative synthesis his own 

* (Euvres completes de Maftre Franfois Rabelais. Pantagruel, vol. VI. Paris, Imprimerie 
Nationale, 1957. 

** For historical references we suggest perusing the splendid reviews in the Encyklop~idie der 
Mathematische Wissenschaften, notably that of E. W. Brown, "Theorie des Erdmondes,", Vol. VI, 
Part 2, Section 14, pp. 667-728 and that of K. 'E Sundman, "Theorie der Planeten," Vol. VI, Part 2, 
Section 15, pp. 729-807. 
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contributions to the subject and those of his predecessors. Laplace's study has lost 
none of its relevance. 

Thus, in the first section of our paper, solely for the purpose of placing in an 
historical perspective the research undertaken by Stiefel and his followers, we show 
how to rehabilitate the Thesaurus of celestial mechanics by bringing to it logic, 
order and clarity. At the example of Milankovich (1939) and Musen (1954; 1961), 
we address the issue in the framework of vector geometry; in this way, we spare 
ourselves many analytical complications and makeshift arguments ascribable to 
selection of coordinates. The numerous linearized formulas scattered through the 
literature of the XVIII th and XIX th centuries we regroup around a handful of 
vectorial identities, most of which proceed directly from Darboux's Theorem of the 
Moving Frame. We start the reconstruction with the exposition made by Laplace. 
Once given a vectorial formulation, his classical formulas take on symmetric, 
concise, even elegant forms (Section 1). More importantly, a vectorial treatment 
makes one realize that linearization as a procedure for solving differential equations 
pertains to most, if not all, three/dimensional problems in Point Dynamics. 

Eduard Stiefel had for the authors of the XVIII th and XIX th centuries the 
tolerance one would expect from an algebraist of renown turned numerical analyst-  
minimal. He had experimented with linearization while integrating satellite orbits 
for the European Space Operations Centre; he had found the technique to be 
markedly stable, a definite advantage over what the specialists had realized so far. 
Yet, the mathematician he was wanted more than numerical stability in routine 
circumstances. He was looking for a global code, that is to say, one valid for any 
set of initial conditions. He heard Kustaanheimo (1964) expounding a scheme 
based on Pauli's representation of the atom of hydrogen by spinors; he jumped 
on the idea and joined with Kustaanheimo (Kustaanheimo et aL, 1965) in tying 
linearization with regularization by spinors. By raising the dimensions, he would 
change Keplerian orbits in three-dimensional Euclidean space into geodesics on 
a sphere in four dimensions. This gave him more than a handle on a systematic 
method for linearizing the problem; by completing Kustaanheimo's scheme with 
a change of independent variable, he would regularize the Keplerian system for 
its collision orbits. But Kustaanheimo's coordinate transformation raises by one 
the original dimension of the system. This feature motivated Stiefel (1968) and 
Scheifele (1968; 1970) to stipulate conditions under which a dimension-raising 
map in the coordinate space can be extended to the moment space without wiping 
the Hamiltonian character of the equations provided, of course, that one relaxes 
the reversibility requirement. Stiefel and Scheifele (1971, Theorem 2, § 31, pp. 
189-190) refer still to such extensions as canonical ones. Let it be said right here 
that this abuse of language is most regrettable, for it has created confusions. To 
prevent them, it should be enough to speak of extensions of Stiefel type as being 
weakly canonical. 

With a criterion in their hands to ascertain that a dimension-raising transfor- 
mation is weakly canonical, Stiefel and Scheifele went about proposing momenta 
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conjugate to the components of the spinor in the position x. At a crucial point in the 
construction, they faced a singularly "unwieldy" factorization of polynomials. They 
chose to skip it in favor of a geometric argument (Stiefel et aI., 1971, §43,270-281). 
True, a bit of geometry sheds much light onto the nature of the KS-transformation. 
Yet, the working conditions have changed much over the last twenty years. The 
symbol processors of today make it relatively easy to cut through algebraic com- 
plications and clear a straight path to the hub of the KS-transformation. We avail 
ourselves of these tools in Section 2 where we review the basic ingredients of 
the KS-formalism. Free as we are now of computational servitudes, we even put 
ourselves to the task of resetting the whole KS-theory in terms of quaternions. 
By the time Stiefel and Scheifele had completed their monograph, they became 
aware of the close connection between their matrix formalism and the theory of 
quaternions. It was suggested that they take advantage of it; they reacted to the 
suggestion in excessive terms (Stiefel et al., 1971, §44, p. 286). Did they really 
believe that a transfer from matrices to quatemions would lead to "failure or at least 
to a very unwieldy formalism"? Chi lo sa? Stiefel's dire predictions notwithstand- 
ing, we accepted the challenge. Did we fail? The reader is our jury. Building the 
KS-transformation as the emanation of an alternate bilinear form over the algebra 
of quaternions costs no more in complications than the matrix formalism of Stiefel 
and Scheifele. Besides, we find rewards in the exercise: theorems are sharpened, 
some to a significant extent; proofs are shortened; the overall design of Stiefel 
comes out much enhanced as to its global and intrinsic meaning, not to mention 
as a collateral a programming style for manipulating quaternions through general 
purpose Symbol Processors. 

The KS-transformation is modelled after the conversion from Cartesian to para- 
bolic coordinates in a plane and its standard canonical extension, a transformation 
Szebehely* named after Levi-Civita. The link between the two concepts is very 
close. Velte (1978) sees the KS-transformation as an LC-transformation followed 
by a rotation in three dimensions. There opened a deeper insight into the issue when 
Vivarelli (1983) remarked that the KS-transformation is a doubling oi' the LC- 
transformation. Better still, as one applies meticulously to her papers what Erwin 
Panowsky ** calls the "postulate of clarification's sake", one unravels from them a 
general technique for raising two-dimensional transformations to four dimensions 
and beyond. This possibility is what makes Vivarelli's insight so exciting. 

Give up the formalism of the KS-matrix altogether, concentrate on the algebra 
of quaternions, accept that, in accordance with the multiplication rule of Dickson, 
quaternions grow by doubling from complex numbers, octonions from quater- 
nions, sedenions from octonions, and so on. Then realize that Dickson's rule is 
best implemented in software by fashioning hypercomplex numbers after saturat- 
ed binary trees, that is to say, as pairs of binary trees that are themselves pairs 
of binary trees, and so on. Now you hold an all-encompassing scheme by which 

* Theory of orbits. The restrictedproblem of three bodies, Academic Press, 1967, p. 97 
** Gothic Architecture and Scholasticism, Latrobe, PA, Archabbey Press, 1951. 
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operations over hypercomplex numbers of height n spawn operations over hyper- 
complex numbers of height n + 1. That process of induction is of the essence for 
"doubling." In Section 3.1, we emphasize two points. Firstly: Core operations like 
addition, scaling, conjugation, multiplication, left conjugation and cross product 
can all be defined inductively by doubling, and this without recourse to multiplica- 
tion tables and decomposition into linear combinations of base vectors. Secondly: 
Inductive doubling translates into efficient schemes for computers to process hyper- 
complex numbers. Depending on how one interprets the LC-map in the complex 
plane, one gets distinct ways of doubling it in the algebra of quaternions. Vivarel- 
li's version begets the KS-transformation and its weakly canonical extension, ours 
in Section 3.3 leads to a standard canonical extension of the three-dimensional 
projective decomposition. This new kind of doubling provides the pattern match- 
ing two canonical extensions of Laplace's projective decomposition we had built 
some years ago as simpler substitutes for the KS-transformation - and too hastily 
remanded to oblivion. 

About alternatives to the KS-transformation, Stiefel and Scheifele (1971, p. 288) 
issued a warning little short of an injunction: "the authors are convinced that the 
search for other transformations [. . .  ] is not very promising." To many readers their 
omen conveyed the impression that the KS-technique is unique in achieving jointly 
regularization, linearization and dimension-raising for three-dimensional Keplerian 
systems. The facts disallow the claim. Kustaanheimo, Stiefel and Scheifele never 
mention the decisive step Fock (1935; 1936) had taken in that direction thirty- 
five years earlier, not even in their brief allusion to the same step taken, but 
independently, by Moser (1970). We have room here for the latest entry in the 
competition, the BF-transformation due to Burdet (1969) for the coordinate part 
and completed by Ferrfindiz (1986a; 1986b; 1987; 1988) for the moment part. We 
supplement it with a transformation of our own, the DEF-transformation, which 
we claim achieves equally well all the objectives of the KS-transformation - 
linearization, regularization and canonicity - although, we are inclined to believe, 
in a simpler and more intuitive way (Section 4.1). Admittedly the construction 
involves heavy algebraic manipulations, no more however than is the case with the 
KS- or the BF-transformation. Besides, we pass the chore to the Symbol Processor. 
Yet, lest we create misunderstandings we hasten to emphasize the obvious, that a 
Symbol Processor is no more than a mathematical accountant. However efficient its 
accounting methods are, it cannot relieve users from the responsibility of creating 
simplifications toward clamping final results in their most significant form. 

As one deals with weakly canonical transformations, one cannot help but feel 
that the constructions have been left unfinished, that there might be, in the final 
analysis, a way of supplementing the original variables with enough coordinates 
and momenta to make the maps both reversible and canonical. After all, the Fun- 
damental Theorem of Stiefel and Scheifele is meant to deal with dimension-raising 
transformations that cannot be made, for intrinsic reasons, into extensions of a 
coordinate transformation in lower dimensions. This, according to Stiefel (1971, 
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544, p. 287) is the case for the KS-transformation. Is it also true for the DEF- 
transformation? We do not answer the question. 

While grappling with this issue, we modified the moment segment in the DEF- 
transformation and came with yet another weakly canonical extension of the pro- 
jective point-transformation, namely the D-transformation (Section 4.3). This time, 
however, we found a pair of invariants x0 and X0 that we could bind into a couple 
of conjugate coordinate and momentum. We appended x0 and X0 to the position 
x and its conjugate momentum X ,  we embedded the D-transformation (from an 
eight-dimensional to a six-dimensional domain) into a genuinely canonical trans- 
formation from an eight-dimensional to an eight-dimensional domain. To boot, 
we found that the D-transformation so completed can be generated in the tritest 
manner as the gauge-free homogeneous extension of its point-transformation. We 
conclude the paper in the same vein with Section 4.4. After discussing briefly the 
contributions of Burdet and Ferrfindiz, we show how to extend their 8-to-6 weakly 
canonical map into an eight-dimensional canonical transformation in the classical 
sense. 

1. Linearization: synthesis in a vector perspective 

Laplace's exposition is limited primarily to Keplerian systems and their perturba- 
tions; at times, though, it reaches for gradients of a force function. For our part, 
we plan on pursuing the classical line as far as possible without any restriction. 
We start thus with the fundamental equation of Point Dynamics :h = F where F 
represents the force (per unit of mass) applied to a particle. We find convenient 
to handle the equation as a system of two differential equations of the first order. 
Moreover we introduce the angular momentum (per unit of mass) 

G = x x fi:. (1) 

As a result we can replace the fundamental equation of Point Dynamics by the 
overabundant system 

= X ,  J~ = F ( x , X , t ) ,  G = x × F (2) 

1.1. IN CYLINDRICAL COORDINATES 

Let S be a frame fixed in space made of three orthonormal vectors el,  e2 and e3. 
We decompose the position vector x into the sum 

X ~--- (X" e3) e 3 -t- (e3 X X) X {?3 

of its components respectively parallel and perpendicular to e 3; its projection onto 
the reference plane (el,  e2) we factor into the product 

(e3 × x) × e3 = p m  with p > 0 and I lm l l  = 1. 
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We also set z = x • e3 and e = e 3 × m.  In addition, we introduce the longitude of 
the particle in the plane (el ,  e2) as the angle A such that 

m = el cos .,~ q- e2 sin A with 0 _< ,~ < 27r, 

and the component of the angular momentum 

A = G .  e3 = p2~. 

It is then deduced readily that (2) is equivalent to the differential system 

2; = F . e 3 ,  

A: ! = 

= p ( F .  

A 
= ) 5 "  

(3) 

These are the equations of motion in cylindrical coordinates. 
In order to linearize them Laplace replaced the variables z and p by the quantities 

cr and C, and also the independent variable t by an angle f0, such that 

cr = 1/p, ~ = z/p,  and  p2 d f o  = Adt.  

For the sake of conciseness, we set F0  = p3F/A2; we note that the vector Fo  is 
dimensionless. We now claim that the equations in (3) are equivalent to the system 

d2; dC (Fo. + (Fo. 
dr2 + C  = - C ( F ° ' m )  - d ~  o 

d2o - do- ( F 0 .  e ) ,  
dfg + a = -or (F°  " m )  - d-~o 

dA 

(4) 

We spare readers (if any) an account of the train of deductions that led to recast 
Laplace's equations in so symmetric a format; rather we invite them to check the 
formulas, preferably with a general purpose Symbol Processor. In the case when 
F is the.gradient of a function L/(x, t) with respect to x, the system corresponds 
to the Set of equations labelled (K) in Laplace (1799, Livre II, Ch. ii, § 15). Brown 
(1896, p. 19) reconstructed the set but in its scalar form and only when F is the 
gradient of a force function, so he could spare himself the chore of identifying 
meaningful components among the terms in the fight hand members of (4). 
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Lunar theory is what motivated Clairaut, Euler, d'Alembert and Laplace to 
linearize system (3). In that problem, the force may be split as a sum of the type 

m .F = p2 + e P  

where e is a token parameter (that is to say, a parameter with no functionality other 
than that of ranking terms on an asymptotic scale). The perturbation being omitted 
from the model, equations in (4) break in two pieces: a pair of linear equations of 
order two with constant coefficients 

+ 1  o-= A--- ~ and + 1  ~ = 0 ,  

plus a quadrature for the longitude, owing to the fact that, in the absence of a 
perturbation, the polar component A of the angular momentum is an integral. 

1.2. IN SPHERICAL COORDINATES 

Cylindrical coordinates achieve linearization when the principal component of the 
force presents an axial symmetry. In the absence of an axial symmetry, linearization 
is best pursued in the orbital frame of reference. 

We start with the projective decomposition of the position as the product 

x = r u  with r > O  and I J u ] l = l .  

When turning our attention to the time derivative of x so decomposed, we call on 
the following statement: 

LEMMA 1. - Given a( t ) 5£ 0 and the projective decomposition 

a = a b  with a > O  and Hb[] = 1 ,  

there follows that 

&=b .&  and l/)=oz-2(axa,)xb. 

In application of this rule; one finds that 

G 
÷ = u . X  and ~ i = ~ x u .  

Likewise, from the projective decomposition 

G = G n  with G>O and I l n l l = l ,  

one obtains at once that 

r ( n .  F )  v = r ( v . F )  and n = - ~  
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v being the unit vector v --- n × u. The vectors u,  v and n are respectively the 
radial, transverse and normal directions; they define a frame 69 to be referred to as 
the orbi tal  frame. 

It now becomes clear that the original Newtonian equations are equivalent to 
the system of dimension 12 made of three vector equations 

/ L = w x u ,  "b=wxv, ' h = w x n  

to account for the rotation of the orbital frame (_9 at the angular velocity (see 
Darboux (1915)) 

G r 

and of the two scalar equations 

G 2 
0 = r ( v . F ) ,  

to account for the motion in the radial direction. The unknowns u, v and n satisfy 
the invariant orthonormality relations 

[f ll = Ilvll = II [f = 1, and u . v  = v . w  = w . u  = O. 

We now propose to replace the independent variable t and the distance r respec- 
tively by the dimensionless variable f (call it an angle) and the quantity q such 
that 

r 2 d f = G d t  and q = l / r .  

Accordingly, we rescale the force and the angular velocity to make the vectors 

r 3 r 2 
F * =  ~-gF and w * =  = • n + ( n  

dimensionless. After a few elementary manipulations we find that the orbital equa- 
tions take on the following form: 

d G  = G (v  . F * ) ,  (5) 
df 

dq d2q ( u  F * )  ~ f  
~ f~  + q = - q  • - ( v  . F * ) .  

Let us assume for a while that F belongs to the class of vector fields for which 
F • n = 0. Incidentally, the class includes non central forces like drag. Under that 
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assumption, the angular velocity w* is identical to n,  hence the direction n is an 
integral. Moreover, 

d2u d dv 
df 2 -- df (n  x u ) -  df - n  x v = - u "  

The equation restates the obvious. A system made of a particle acted upon by a 
force permanently locked within the orbital plane is invafiant for the rotation group 
SO(3), which invariance entails that the radial direction is in free rotation about the 
origin. Of course, Laplace and his predecessors did not acknowledge the symmetry 
group as such; for them, rotational invariance meant that the longitude A and the 
latitude/3 are solutions of the homogeneous linear system 

)  cos co  , 
d-~ + 1  | sin A cos /3] = 0 .  (6) 

\ sin/3/ 

These formulas, most certainly for pure Keplerian systems, have been known for a 
long time, so long a time indeed that they keep falling into oblivion out of which, 
owing to their elementary character, they are periodically recalled to be greeted - 
sometimes not without irony - as surprises. 

1.3. IN ORBITAL COORDINATES 

Even when the force has a normal component, the equation for the radial direction 
is still linear in its principal part (i.e. the part obtained by equating the perturbation 
to 0), but it is no longer homogeneous. Indeed, from the modified equations for the 
rotation of the orbital frame, we deduce easily that 

d2u d dv 
- = - -  = w *  x v = - u + ( n . F * ) u  x v ,  

df 2 df (w* x u) df 

hence the second order equation for the radial direction, 

+ 1 u = ( n . F * ) n .  (7) 

We need at this point the classical elements that specify the orbit and the position 
of the particle on the orbit: 

(i) the inclination as the angle I such that 

e3 • n = cos I with 0 < I < 7r; 

it goes without saying that we do not consider the singular cases when I = 0 or 
f z 71". 

(ii) under the assumption that I is neither 0 nor 7r, the ascending node l as the 
direction such that 

e3 xn - - - - - / s i n /  and H1N = 1; 
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(iii) the longitude u of the ascending node as defined by the conditions 

l = e l c o s u + e 2 s i n u  and 0_<u<27r ;  

(iv) the argument of latitude 0 such that 

l = u c o s 0 - v s i n 0  and 0_<0<27r .  (8) 

Thanks to these definitions, composing equation (7) in a dot product with the 
base vector e3 yields the Latitude Equation 

+ 1 sin/3 = (n .  F * ) ( n .  e3) = (n .  F*) cos/;  

doing the same with el and e2 produces the Longitude Equations 

+ 1 sinAcos/3 = (n .  F * ) ( n .  e2) = - ( n .  F*) cosusinI .  

Longitude and Latitude Equations are commonly regarded in celestial mechanics as 
long time acquisitions, so much so that they are usually quoted without attribution 
[see, e.g., Brown and Shook (1933, § 1.28, pp. 29-30)]. 

As an illustration, take the main problem in the theory of artificial satellites. 
The force function being there 

b / = / ~  1 - , ] 2  P2 (u ' e3  , r 

its gradient splits into the sum 

./7' = --T-~U# l@ ~ 2 ( ~ )  (1--5(~ 'e3)2)  -3J2~2 ( ~ )  (u'e3)e3 • 

Therefore 

#Oz 2 
n .  F* = - 3 J Z ~ r  sin/3cosI, 

hence the Equation of Latitude 

( d2 ) "--#°~2 • ~ 2r 
d-~ + 1 sin/3 = - o a 2 ~ r  smpcos 1 

recovered by Jezewski (1983, Formula 26, p. 351). 
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Finally, we return to the case of forces without a normal component. In that 
special situation, on the one hand, the node l is a fixed direction; on the other, 
according to (8), 

u = / c o s 0  + n x I sin0. 

Therefore, in view of (7), 

+ 1 cos0  = ( n .  F * ) ( n .  l) = 0, 

+ 1  s i n O = ( n . F * ) ( n . ( n x l ) ) = O .  

Brown paraphrasing Laplace refers to these identities as the Equations of the True 
Longitude. Like in the case of the Longitude and Latitude Equations, a vectorial 
treatment gets the Equations of the True Longitude to stand for what they are, that 
is, trivial consequences of Darboux's Theorem of the Moving Frame. Invoking 
that commonplace theorem spared ourselves the kind of unwieldy and cumbersome 

treatment - these are the words of Stiefel and Scheifele - that linearization of Point 
Dynamics received lately. 

Before we leave this review, we must mention another line of linearization 
schemes. It opened at the turn of this century with Bohlin (1911). Breaking away 
from the Laplacian tradition of using a true anomaly as the independent variable, 
Bohlin observed that, with t ~ such that r dt ~ = c~ dt in place of t, the equations of 
motion for the problem of two bodies are of the form: 

2 ~  A - j  

The functions 7-/and A stand respectively for the energy and the Laplace-Hamilton 
vector A = X x G - # u  whereas oz is a length scale introduced to give t ~ the 
physical dimension of a time. Wintner (1947, § 259 and p. 423) who knew Bohlin's 
paper tied Bohlin's linearization with the Levi-Civita transformation. Some twenty 
years later, Bohlin's idea resurfaced in the articles of Burdet (1967; 1968; 1969), 
and from there provided Stiefel with a guide toward other types of linearization. 

2. The KS-transformation: a quaternion version 

Stiefel and Scheifele designed the KS-transformation by tracing off the LC-trans- 
formation in two dimensions. In several places, they have been confronted with 
overdemanding algebraic manipulations like factoring polynomials of degree six 
in eight variables, which tasks they either set aside or circumvented by resorting to 
geometric constructions. We take a hint given by Stiefel and Scheifele (1971, §44, p. 
286) for reconstructing the KS-transformation and its canonical extension in terms 
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of quaternions. We insist on treating the KS-transformation for itself regardless of 
its possible application to Keplerian systems, in other words, merely as an exhibit 
in the gallery of canonical maps over an eight-dimensional phase space. Here and 
there we take the opportunity for sharpening several theorems stated by Stiefel. As 
for the situations leading to extensive calculations, we do not dodge them; rather, 
we commit them to a Symbol Processor-  we use Mathema t i ca  of Wolfram (1991). 

2.1. T H E  A L G E B R A  OF QUATERNIONS 

Let us begin with a few words about notations in the set Q of quaternions. Any 
element q of Q is here represented as a list {uo, ul,  u2, u3} of four real numbers, 
with uo standing for the scalar  part of u while ul, u2 and u3 form its vec tor  

part u ~. We say that u is a pure  vector when u = u~. The standard base is made 
of the four quaternions eo = (1 ,0 ,0 ,0) ,  el = (0, 1,0,0),  e2 = (0,0, 1,0) and 
e3 = (0, 0, 0, 1 ). We denote by g the conjugate of the quaternion u. 

With the symbolic Processor we are using, we found it more expedient to 
define the product of quaternion p by quaternion q as the operation that produces 
a quaternion r whose scalar and vector parts are respectively 

ro = poqo - p~ . q~ and r ~ = p 0 q  ~ + qop ~ + p~ x q~. 

Multiplication of quaternions is not commutative. Yet, for any u, v and w in Q, 

( u v w -  ~ v ~ ) o  = 2 ( u v w ) o -  2 v o ( u w ) o ,  

( u v w  - ~ v ~ ) ~  = 2 v o ( u w )  ~, 

hence this weak form of commutativity which will resurface later in the most basic 
properties of the KS-operators: 

LEMMA 2. - I f  v is a pure  vector, then u v w  - ~ v ~  is a pure  scalar, and  

( u v w  - ~ v g ) o  = 2 ( u v w ) o .  

The expression u • v designates the scalar product of the quaternions u and v; for 
the norm of u we use the notation HuH. The lemma below states that the operator 
v ~ u v  ' Q ~ Q of multiplication to the left by u transposes through the dot 
product into multiplication to the left by g; symmetrically, multiplication to the 
right by u transposes into multiplication to the right by ~. 

- F o r a n y u ,  v, a n d w  in Q, u v .  w = v .  ~ w  = u .  w ~ .  

the one hand, 

+ w( v))0 

+ 

u • w~. 
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On the other hand, 

~v.  ~ = (~v) .  ~ = ~ ~ .  ~,  

which, by virtue of what has just been proved, implies that 

U'0 • W = 2/" 1//7~ ~ V " ~ W . •  

The monograph of Stiefel and Scheifele contains the rudiments of a notion of 
cross product in R4; Vivarelli (1988) expanded them somewhat. We do not have 
the place here to examine the interaction between the structure of exterior algebra 
and that of quaternion algebra over R 4. We shall content ourselves with defining 
the cross product of two quaternions as the bilinear operator 

(u,v) , u A v = ½ ( v ~ - u ~ ) '  Q ×  Q . , Q. 

The definition implies that the quaternion u A v is a pure vector; moreover 

(u  A v)~ = uov~ - you ~ + u~ x v~. 

In particular, (e0 A u) ~ = u~ for any u E Q. Note that all cross products ei A ej 
are zero save 

e o A e i  = e i  for 1 < i < 3 ,  

e l  / ~ e 2  ~--- - -  e 2 A ¢ l  ~ ea~ 

e 2 A e3 ----- - -  e3 A e2 ~ el~ 

e3 A e l  ----- - - e l  A e 3  = e2 .  

The cross product is skew-symmetric, i.e., u A v = - v A u. It is not associative - 
we beg to disagree on this point with Vivarelli (1988, p. 361, Eq. 7): for example, 
( e l  A eo )  A e2 = - - e 3  whereas e l  A (eo  A e2)  = e3.  In general, 

((~ A ~) A ~)~ = ( ~  × ~ )  × ~ + ~o(~ ~ × ~ - ~ov~) 

- wo(u~ x v~ - vou~) + vo(w~ x u~), 

hence the rule of weak associativity 

( ( u A v )  Aw) ~ -  ( u A ( v A w ) )  ~ -  (9) 

(~.  ~ ) ~  - (~. ~ ) ~  - 2 ~ 0 ( ~ / ~  ~)~. 

When restricted to the subspace of pure vectors, the cross product of quateruions 
is identical to the cross product of vectors; more precisely 

( u A v )  ~ = u  ~ xv~ when u 0 = v 0 = 0 .  

This fact, however, should not invite to manipulate cross products of quaternions 
like cross products of vectors. On the contrary, there is so much incompatibility 
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between the two operations that one is well advised to use different notations for 
them. For instance, the formula 

((u/~ v) A ~,)~ + ((~/~ ~)/~ ~)~ + ((~/~ ~) A v)~ = 

~o(v~ × ~ )  + vo(~ x ~ )  + ~0(~  × v~) 

tells that Jacobi's identity is satisfied in Q only if all three operands are pure vectors. 
In the same vein, from the formula 

(~ A v) . w = u~ x v~ . w~ + uo(v " w) - vo(u . w),  (10) 

one deduces readily the identity 

which manifests that dot and cross products are interchangeable only if their 
operands are pure vectors. Nevertheless, some rules of vector algebra apply uncon- 
ditionally to quatemions too. As an illustration, start from the identity 

+ ~o(v~ • ( ~  x ~)) - vo(~ • (~ x ~ ) )  

+ ~0(t~. (~  × v~)) - t 0 (~ .  (v~ x ~ ) )  

for any u, v, w and t in Q. Set therein t = v; the result is a formula 

(u A v).  (w A v) = Ilvll 2 (u. w) - (u. v)(v. w), (11) 

valid not only for three-dimensional vectors but also for quaternions. In the partic- 
ular case where w = u, (11) is the Lagrange identity 

II~ A v i i  2 ---- Ilull 2 Ilvll 2 - (=. V) 2 

mentioned by Stiefel and Scheifele (1970, § 43, p. 278). 
We conclude these comments about the cross product of quaternions with a 

generalization of what Vivarelli (1988, p. 363, Eq. 19) calls the "w-relation." 

THEOREM 1. - For any u and v in Q, the relation 

((~ A v) A ~)~ = (~  A (~ A ~))~ 

holds true for  any w that is a linear combination of  u and v. 

Proof. - For any w in Q, 

((~ A v) A ~)~ - (~ A (~ A ~))~ = 

2u0(w~ x v~) + 2v0(u~ x w~) + 2w0(v ~ x u~). 

In particular, 

( u A v )  A g = u A ( g A g )  and ( u A v )  A g = v A ( g A g ) ;  

hence, for any c~ and/3 in R, 

(~ A v) A ( ~  + Zv) = (o~ +/3v) A (~ A ~).,- 
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2.2. THE KS-OPERATORS AND THE KS-ALTERNATE FORM 

To every quaternion u, we associate two linear operators 

Lu :v ' , Lu(v) --= ve l~ :  Q ' Q, 

M ~ : v  ~ M ~ ( v ) = v u g - f : Q  .... ~ Q. 

For u = 0, L0 = M0 = 0. Otherwise, the operators are regular since det(Lu) = 
det(Mu) = II u[14; moreover, on account of the identity 

nu(Mu(v) )  = Mu(v )e l~  = vuel elu = I]ull2v, 

there follows that M~/[[ul[ is the inverse of L**/[[u N. By virtue of Lemma 3, 

[Inu(v)ll 2 = HMu(v)[[ 2 = Ilull 2 Ilvll 2, 

which means that the operators L~/[lu]] and Mu/l[u]l are orthogonal. There also 
follows from the same lemma 3 that, for any v and w in Q, L~(v) .  w = v.  M~(w),  
or that Lu and Mu are transposes of one another. 

Alongside the operator L,~, we define the bilinear form 

The connection between J and the operator L is manifest: J(u,  v) is the scalar 
component of the quaternion L~ (v). 

The bilinear form J is non degenerate: since 

J(e0, v) = -Vl ,  J ( e l ,  v) = VO, S(e2, v) = V3, J(e3, v) = -v2,  

if J(u ,  v) = 0 for any u in Q, then v = 0. It is reflexive: by virtue of Lemma 3, 

J ( u , u )  = ( g u ) . e l  = [lull 2 (e0. gl) : 0.  

It is skew-symmetric: evidently, J(u,  v) = - J ( v ,  u). For being non degenerate, 
reflexive and skew-symmetric, J is what algebraists like Dieudonn6 (1955, p. 12) 
call an alternate form. 

THEOREM 2. - Given two linearly independent quaternions u and v, let P be the 
vector subspace in Q spannedby u and v. I f  J(u,  v) = O, then J (x ,  y) = O for any 
x and any y in P. 

Proof.  - Any element of P is, by assumption, a linear combination of u and v. On 
the other hand, 

J(c~u +/3v,  oz'u +/3%) = (o~/J - o//3)J(u, v). m 

Of a vector subspace P of dimension 2 for which the restriction of J to P × P 
vanishes identically, algebraists say thatit  is totally isotropic relative to J;  Stiefel 
and Scheifele (1971, p. 273-275) call it a Levi-Civita plane. 

All coordinate planes {ei, ej } in Q, i.e., the planes spanned by the base vectors 
ei and ej, are totally isotropic relative to J save the planes {e0, el} and {ea, e3}. 
There is a reason for that: 
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L E M M A  4. - Given u ~ 0 in Q, a quaternion v is orthogonal to u, equal in norm 
to u and such that J(u,  v) = 0 if and only if it is of  the form 

V = u ( e 2  COS/3 + e3 sin/3) (12) 

Proof.  - Since u is ¢ 0, for any v there is a w in Q such that v = uw. With v so 
factored, we find that 

J(v,  u) = w I I1 112, = wo I1 *112, and Ilvl[ 2 -- Ilwll 2 II,,ll 2, 

and deduce from these equations that v satisfies the three conditions mentioned in 
the theorem if and only if wo = Wl = 0 and w 2 + w 2 = 1. • 

THEOREM 3. - A vector subspace P of  dimension two in Q is totally isotropic 
relative to J if  and only it has a base consisting of  a quaternion u and a quaternion 
v such that 

v = u ( e 2 c o s / 3 + e 3 s i n / 3 )  with 0 < / 3 < r r .  

Proof.  - That the condition is sufficient follows from Theorem 2. But it is also 
necessary. Indeed P admits an orthonormal base (u, v), and if P is totally isotropic, 
then J(u,  v) = 0 and so by virtue of  Lemma 4, v must be of the form (12). • 

Lemma 4 supplies a procedure for constructing all the planes totally isotropic 
relative to J that contain a given u ¢ 0. For example, the planes through e0 that are 
totally isotropic are those spanned by e0 and e2 cos/3 + e3 sin/3; this one-parameter 
family includes the coordinate planes {e0, e2} for/3 -- 0 and {e0, e3} for/3 --- ~-/2. 

As we shall now see with the next theorem, planes that are totally isotropic 
relative to J are characterized by the way they affect the behavior of  the operators 
L u .  

THEOREM 4 (Reciprocity of  the KS-operators). - Concerning a vector subspace 
P of  dimension two in Q, the following properties are equivalent: 

a) P is totally isotropic relative to J; 

b) there is a base (u, v) in P such that Lu(v) = Lv(u); 

c) there is a base (u, v) in P such that 

(u . u)L~,(v) - 2 ( u .  v)Lu(v) + (v . v)Lu(u) = O. 

Proof.  - That a) ~ b) follows immediately from the weak commutativity of  the 
product of quaternions. Indeed, el being a pure vector, there comes by virtue of  
L e m m a  2 that 

Lu(v) - Lv(u) = v e l ~ -  u c l ~  : 2 ( V e l ~ "  eo)eo : 2 J ( u ,  v ) c  O. (13)  
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The proof that a) < "- c) follows the same pattern. First, one should realize that 

(v . v ) L ~ ( u )  + (u . u ) L v ( v )  = (v~)(uel~) + (u : ) (ve lv)  

:- ( u v ) ( v e l ~ )  -]- (v~t)(uelv) ;  

then, by reason of the weak commutativity (Lemma 2), one obtains that 

(v . v ) L u ( u )  + (u . u ) L v ( v )  = ( u v ) ( v e l ~ )  q- (v~)[Vel~ -{- 2(uel~ .  e0)e0] 

= 2 ( u .  + 2J(v, u)v:,  

hence the identity 

(u . u ) L v ( v )  - 2(u .  v) L u ( v )  + (v . v) L~(u )  : 

(14) 
2J (v ,  u) (u A v + (u . v)eo) . 

Now, for any u # 0, the relation u A v + ( u .  v)eo = 0 is satisfied only for 
v = 0. Therefore, in the formula (14), the left hand member is zero if and only 
J(u, v) = O.- 

COROLLARY 4.1. - Let P be a vector subspace o f  dimension two in Q. I f  P is 
totally isotropic relative to J, then 

n u ( v )  = L v ( u )  and (u . u ) L v ( v )  - 2(u .  v ) L u ( v )  + (v . v ) n u ( u )  = 0 

f o r  any u and v in P. 

The theorem of reciprocity is stronger than Theorems 1 and 2 in Stiefel and 
Scheifele (1970, § 9, p. 15) which, in fact, correspond to the above corollary. 

THEOREM 5. - For any u and v in Q, 

a) (u A v) . L~ (u )  = (u . u)  J (v ,  u); 

b) (u A v) . n ~ ( v )  = (u . v) a(v ,  u). 

Proof. - By definition of the cross product, 

(u A v) . L~ (u )  = ( v g -  (u . v)eo) . L~(u )  = (vg) . L~(u) .  

Then, by virtue of Lemma 3, 

(V~)" Lu(% ) = ( v : ) .  (~e l~ )  ---- v .  ( ' g e l : z )  ---- (?.t. ~ ) ( v .  ?.tel) ~--- (~ .  ~) J(v,  ~). 

This completes the proof of part a). As for part c), still by application of Lemma 3, 
we get that 

(V~-)" (ve i~ )  : (v .  v ) ( : .  ( e l : ) )  : (?z. ?z)(v. v)(e 0 • el)  : 0. 

Therefore we conclude that 

(u A v) . L~,(v) = - ( u  . v ) J ( u ,  v) = (u . v ) a ( v ,  u) . , ,  
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2.3. THE KS-POINT-TRANSFORMATION 

Given a > 0 in R,  the KS-transformation n~ is the mapping 

1 
,~,~ : v , x = - L ~ ( v )  : Q , O,  

OL 
(15) 

or, explicitly, the mapping defined by the equations 

CeXO = O, 

= V l  - v 2  _ + 

O~X2 ---- 2(VlV2 q- V3VO), 

O~X3 = 2(VlV3 -- V2VO). 

(16) 

We have introduced the parameter o~ to maintain a simple correspondence in 
dimensions between the quaternions x and v, which correspondence we achieve by 
attributing the dimension of x to a so that v will likewise be of the same dimension 
as x. Keeping homogeneity in dimensions is advantageous on two counts. (i) 
Symbolic calculations demand to be constantly on the alert for mistakes. Checking 
- by sight or by program - that a formula is correct in dimensions is the fastest 
way to detect gross errors. (ii) Homogeneity in dimensions means invariance with 
respect to a group of  similitude; exploiting this symmetry often produces interesting 
results. [See, e.g., Meyer (1984) or Deprit and Williams (1991).] 

For the sake of short notations, we do not mention the parameter when referring 
to a KS-transformation. 

Clearly, n is a homogeneous quadratic transformation, that is, ~(/3u) =/32 /~(U)  

for any/3 C R;  in particular, n ( - u )  = kappa(u). On the other hand, ]]n(u)l I = 
ff~lJ2/~ since 

~211~(u)112 = ((uea ~)(;~-~---~ ~))o = (~ea (~u )~ )o  = Ilull 2 (u(e*~)~)o = [full 4, 

There follows in particular that n(u) = 0 if and only if u = 0. Moreover, for any 
az ¢ 0 in R 3, both quaternions 

y + =  r + x l )  e l + - -  
r q - x l  

y - =  r - x l )  e 2 + - -  
7" - - X  1 

(x2e2 q- x3e3)] 
( ~ 2 ~ -  x3~o) 1 

with r = Ilazll are mapped by n onto x; in other words, ~ is a surjection of Q onto 
R 3 . 

Let n - l ( x )  designate the set of all u C Q such that n(u) = x. 

THEOREM 6 (Fibration). - Given x in R 3 and u in Q such that x ~ 0 and 
~(u )~  = x ,  
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a) the set of  quaternions v such that ~(v) = x is the great circle 

P+(u)  = {u(eo cos ¢ + el sin ¢) : 0 < ¢ < 27r}; 

b) the set o f  quaternions v such that ~(v) = - x  is the great circle 

r _ ( u )  = {u(e2cos¢ + e3 sinqS) : 0 < ¢ < 27r}; 

Proof. - Indeed, the quatemion e0 cos ¢ + el sin ¢ represents a rotation with axis 
(el)~ and amplitude 2¢, hence 

ec(u(eo cos q5 + el sin ¢)) 

= U (e 0 COS ¢ Jr- e 1 sin ¢) el (e0 cos ¢ q- el sin ¢) 

= u e l ~  = ~ ( u ) .  

Therefore P+(u) C__ ~;-1 (x). Conversely, the equality ec(u) = ~;(v) implies that 

= II ll4el. 

But < i x l l  = [l~ll 2 -- nvll 2, hence the quatemion (g v)/]]ui[ 2 is unitary. Therefore, 
according to the preceding relation, it represents a rotation with axis el, which 
means that it is of the form 

(~v)/ l lu[[  2 = (e0 c o s  ¢ + e l  sin ¢).  

There follows that v = u(eo cos ¢ + el sin ¢), or that ~-]  (m) C_ P+(u).  
A straightforward calculation analogous to the one made in part a) shows that 

~(u(e2 cos ¢ + e3 sin ¢)) = - x .  Conversely, the relation ~;(v) = - ~ ( u )  implies 
that 

(~  v ) e l  (V U) =- -Ilull 4el. 

It means that the quaternion (g v)/11 ~112 represents a rotation. We may decompose 
it into the product T¢(¢, ~(rc, e~)(e]))o 7-¢(re, e~). Yet, according to Rodrigues's 
Theorem of the Product of Rotations 

re(c, 4)(e ))ore(re, 4)= re( , 4) or (< d). 
Therefore, the quaternion (g v)/[[ u ]] 2 is of the form 

(gv)/[[u][ 2 = (e0 cos ¢ + el sin ¢)(e0 cos ½rr + e2 sin ½re) 

which means that v = u(e2 cos ¢ + e3 sin ¢) or that v E P_(u).  • 
Completing a remark made by Velte (1978), we signal the identities 

B;(~e 1 -{- ~e2)  : ~ ( ~ e  0 q-- ~]e3) = (0, ({2 __ ~2)/O~ ' 2{r//o~, 0) ,  

~(~e l  + r/e3) = ~({eo - r/e2) = (0, (~2 _ r/2)/c~, 0, 2{r//c~) 
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because they show that the restriction of the KS-transformation to any of the coor- 
dinate planes {e0, e2}, {e0, e3}, {el,e2} and {el,e3} is an LC-transformation 
from parabolic to Cartesian coordinates. At the outset the KS-transformation 
was conceived as an extension to higher dimensions of the LC-transformation 
{el, e2} ~ R 2. Eventually Stiefel and Scheifele (1971, § 43, Theorem 5) came 
to realize that such relationship holds in many more planes than just the coordinate 
plane {el, e2}: 

THEOREM 7. - The restriction o f  the KS-transformation to any plane that is 
totally isotropic relative to J is an LC-transformation. 

Proof. - A  plane P, we have already remarked after Theorem 4, is totally isotropic 
if it is spanned by a quaternion u # 0 and a quaternion v of the form given in 
(12). The pair (u, v) makes an orthogonal base of P. Observe, though, that the pair 
(e;(u), ~(v)) does not make a base of ~(P)  since e;(v) = -t~(u). To make such a 
base, take the quaternion w = (u + v ) / x /2  in P. It can be shown readily with a 
Symbol Processor that 

II  (w)II = II and ~(w) .  t~(u) = O. 

There follows that, for any ~ and 77 in R, 

/g(~'0, -1- 77V) = (~2 _ 772)g'(TZ) + 2{77~(W), 

which proves that ~ restricted to P is an LC transformation. [] 
Velte (1978) examined the inverse problem: Given a plane P in R 3, an orthog- 

onal base ( f l ,  f2)  in P, and a LC-transformation 

~2 _ 772 2<v 
A " ( f l  + 77f2 ) x -- - - f l  + ~ ' f 2  " P > P 

find the quaternions u such that 

/~(u) = "~(~f i  + 77f2)" (17) 

To solve the problem we introduce the vector  f 3  = f l  x f 2  to make an orthonor- 
mal base in R 3, and we designate by f i  the pure vector whose vector component 
is f i .  In those terms, A is readily seen to be the restriction to P of the mapping 

Now let q be one of the two unitary quaternions representing the rotation mapping 
ei onto f i  for i = 1, 2, 3. From the fact that f l  = qel-q we deduce at once that 

J~(v) = (vq)el (~qq) / c~ = i~( vq). 

By virtue of Theorem 6, any u such that a(u) = a(vq) is of the form 

u = vq(eo cos ¢ + e 1 sin ¢). 

In particular, the roots of equation (17) are the quaternions 

(~fl + 77f2)q(eo cos ¢ + el sin ¢) = q(~el + 77e2) (e0 cos q~ + ei sin ¢). 

In Velte (1978) only the solution for which ¢ = 0 is mentioned. 
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2.4. AN EXTENSION OF THE KS-POINT-TRANSFORMATION 

Stiefel and Scheifele undertook to extend canonically the coordinate transformation 
(15) into a mapping 

, ( z , x ) Q x Q  ,Q×Q.  

They built their extension in an ad hoc fashion by seeking to maintain an anal- 
ogy between the three-dimensional KS-transformation and the two-dimensional 
LC-transformation (Stiefel et al., 1971, §38, p. 234). We prefer the reasoning of 
Kurcheeva (1977). On account of the definition in (15), 

a d x  = (dv)el~ + ve l (dv )  = (dv )e lZ  + (dv)~i v 

= ( d v ) e l ~ -  (dv)el  ~ = Lv(dv )  - Lv (dv) ,  

hence the fundamental formula 

a d x  = 2 [Lv(dv) - J ( v ,  dv)eo] . 

Kurcheeva asks to build the one-form 

a X  . dx  = 2 [X . L~(dv)  - J ( v ,  d v ) ( X  . e0)] 

We observe that 

X . L~(dv)  -=- M ~ ( X )  . dv, 

and that 

J ( v ,  d v ) ( X . e o ) = O  when X 0 = O .  

This being the case, Kurcheeva chooses 

v = (18) 

to ensure that the one-form becomes the homogeneous identity 

X l  dxl  + X2 dx2 + X3 dx3 = V . dv. 

In explicit terms, we find that the new momenta are the functions 

17o = 2 (XIV 0 -I- X o v  1 - X 3 v  2 -1- X 2 v 3 ) / o ~  , 

V1 : -2  (Xovo - X l V l  - X2732 - X 3 v 3 ) / o z ,  

V~ = - 2  (X3vo - X2v l  + X l v 2  + X o v 3 ) / a ,  

V3 = 2 (Xivo + X3v l  + Xov2 - Xlv3) /oe  
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in 'mixed'  variables - new coordinates and old momenta. By inversion of  (18), we 
recover the extension made by Stiefel and Scheifele: 

, X = a L v ( V )  • Q , Q, (19) V 

where c~r = oLv~ • z = v • v. As a precaution against possible confusions with 
the corresponding, but not identical, formulas in Stiefel and Sche.ifele (1971, §38, 
Equation 31) we develop the expression in (19): 

X o  = 1( Vovl - Vlvo - V2v3 q- V3v2) / r ,  2 

X1 = 1(  Vovo ~_ Vl,Ol _ V2v2 _ V3~)3)/~, ' 

X2  = _ 1 ( g o ~ )  3 ~_ Vlv2 ~_ V2vl _[_ V3vo)/T,  2 

2 3 : l ( - V o v  2 -+- Vl~03 - V2v 0 -~- V 3 v l ) / r .  

It should be observed for further reference that 

Xo = 1 j ( v ,  V) / r .  (20) 

We find it convenient, in view of the applications, to group various facts about 
basic physical quantities when they are expressed in KS-variables. 

THEOREM 8. - For any x and any X in Q, 

z .  X = z ~. X ~ = ½(v. V), (21) 

OL 
112112 = ~ 117112, (22) 

1 
l [ v  A V + - z ~ J ( v ,  V)]. (23) z~ x X~ = ~ r 

Proof.  - By straightforward calculation using the Symbol Processor. u 

COROLLARY 8.1. For any x and any X in Q, 

1/j/v,v//2 ] a) IIX~112 = ~ ~-IiVll 2 - ~ 

1 [II~AVII 2 (J(~,v))2]; b) IIx~ x x~[[2= ~ 

c) (~ A v ) .  x~ = -, .  J(v, v ) ;  

d) (v A V) . X~ = - l  (z~ . X~)J(v ,  V). 
T 



174 ANDRI~ DEPRIT ET AL. 

Proof. - Part a) follows readily from (22) and (20), part b) from (22) and the 
Lagrange identity for cross product of quaternions mentioned in Section 2.1. As 
for parts c) and d), they are immediate consequences of (23). • 

For the benefit of clarity, we denote by {f  ; g} the Poisson bracket of f and g. 
In the present context, 

( Of~v~ Ov~Og OVi Og ) { f ;  g } =  • 
0 < i < 3  

With the Symbol Processor, one evaluates readily all the Poisson brackets entering 
the theory of Stiefel and Scheifele. We list first those which are the quickest to 
e v alu ate: 

{x~;xj} = 0  for O<_i,j<_3, 

{ x o ; X i } = { x i ; X o } = 0  for 0 < i < 3 ,  

{xi;Xj}=5~,j  for l < i < j < 3 .  

Thereafter we engage the Symbol Processor into the arduous task of proving the 
following statement: 

THEOREM 9. - Let P be the matrix formed of the Poisson brackets { Xi ; Xj } 
for 0 < i, j <_ 3, and let P(w) denote the quaternion image of a quaternion w by 
the matrix P. Then 

P(w) = ~---~J(v, V)wx (24) 

holds uniformly in v and V by virtue of the KS-transformation. 

Replacing w by each of the standard base quaternions in (24) yields the matrix of 
Poisson brackets 

(o xi x 
p __ d ( v ,  V )  x 1 0 x 3  - x 2  (25) 

2 r  3 x 2  - - x 3  0 Xl " 

x 3 x 2 - -X  1 0 

Incidentally, we must inform the reader that the corresponding formula in the 
monograph of Stiefel and Scheifele (1971, §38, Equation 56) is in error. It should 
read: 

1 0 x3 

( { P i , P M } ) I < _ i , j < 3  - -  2l~l 6 (wlff4 - x 2 p 3  + x 3 p 2  - x 4 p l )  - z 3  0 1 • 

2c 2 - x  1 

We now have in our hands the tools we need to apply the KS-transformation to 
the Hamiltonian 

7-t = 1(X12 + X 2 + X32) # (26) 
2 r 
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of a Keplerian system. On account of the identity in part a) of Corollary 8.1, 

= g ( v . v )  
J(v ,  V)  2 # 

r 2 r"  
(27) 

To the independent variable t we substitute a variable t ~ such that 

2r d f f =  a dr. 

By virtue of our convention on the dimension of the parameter o~, t / is of the same 
dimension as t. With the new independent variable, the Cartan one-form governing 
the motion on the manifold 7-t = h becomes 

v . dv  - ( n - h ) d t  = V . d~ - 2~ ( ~ _ h) dr', 
o~ 

which form prompts us to substitute for 7-{ the Hamiltonian 

2# 1 T r 1C = 2r (7-{ - h) + V ) -  2h -# - j =  ~(v. 
J ( v , V )  2 

4ar 
(28) 

We do this for the purpose of establishing a one-to-one correspondence between, 
on the one hand, the orbits (parametrized by t) on the manifold 7-{ = h which are 
solutions of the canonical equations 

dv _ {~. ~} : ~--V J ( v , V )  V v g ( v , V ) ,  
d---t - ' 4 r 4 r ~ 

J ( v , V ) 2 )  J ( v , V )  V v J ( v , V )  
dV = { v "  Tj} = ' c~r 2h ~5r2 j r +  4r ~ 

and, on the other, the orbits (parametrized by t ~) on the manifold/C = 2#/c~ which 
are solutions of the canonical equations 

dv  {~ . ~) 1 J(~,  V )  v v J ( v ,  V ) ,  
dt--; = ' = ~ V 2 a ~  

dVdt, - {V',  1C} = (4h_~ J(v'  V)2)2c~2r2 j v + J(v,  V)2ct____7_ V v J ( v ,  V). 

(29) 

We finally come to the constraint that characterizes the KS-transformation, 
namely that it be restricted to the quadric 

j = {(~, v )  : J(~, v )  = o}. 

The restriction is legitimate from a dynamical standpoint. Indeed, by virtue of (20) 
and (25), 
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THEOREM 10. - The relations 

{ J ( v , V ) ;  x i } . . = { J ( v , V ) ;  X i } = O  for 0 < i < 3  

hold uniformly in v and V when the variables x and X are replaced by their 
expressions in (15) and (19). 

The theorem says.that `7 is an integral manifold for any system represented by a 
Hamiltonian F that is a function of x and X. On the invariant manifold `7, 

(i) X0 vanishes identically, and the KS-transformation may then be regarded as 
a dimension-raising map 

(v,V) > (Xl~X2~x3~Sl,X2~X3)'~f , R 3 × R3; 

(ii) The conditions for the KS-transformation to be weakly canonical are satisfied 
since, with J(v, V) = O, 

{ x i ; x j } = { X i ; X j } = O  and {xi ;Xj}=Si , j  for  l < i < j _ < 3 ;  

(iii) The KS-transformation linearizes and regularizes the Keplerian system. Indeed, 
on the invariant manifold ,7, 

hence the equations in (29) take on the simple form 

2 v = O .  

3. Doublings of an LC-transformation 

Giacaglia (1970, p. 20) may have been the first to have observed that the coordinate 
segment in the KS-transformation is of the form x = u ~b(u) where u is a quaternion 
and ~b a skew involution for quaternions. But he does it in passing without attaching 
much importance to that remark. Later Vivarelli made the same observation, but 
aligned it with the fact that the LC-transformation 

2 , R  2 

of the two-dimensional real plane onto itself can also be expressed as the mapping 

~ + i 7  , ( ~ + i 7 ) * ( ~ + i 7 )  : C , C  

of the complex line onto itself, that is to say, as a product of hypercomplex numbers. 
Considering that complex numbers make the first generation of hypercomplex 
numbers produced from the reals by doubling, and that quaternions are the second 
generation, she came to realize that the KS-transformation derives from the LC- 
transformation by doubling too. At the next turn of the recursive crank, Lambert 
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and Kibler (1988) produce the Hurwitz transformations over the alternative algebra 
of Cayley numbers. 

Vivarelli's approach broke new ground; it is important to us because, as we shall 
see, it leads to a new type of extension of the LC-transformation, in fact a pattern 
for the canonical transformations to be detailed in Section 4. 

3.1. THE DOUBLING TECHNIQUE 

We review the theory of hypercomplex structures for the twofold purpose of (a) 
emphasizing the doubling technique, and (b) indicating how the technique ushers 
in an efficient way of representing hypercomplex structures in a Symbol Processor. 
By taking advantage of it, we can afford to ignore the usual method of coding 
hypercomplex numbers as arrays of their components. Much is gained in brevity 
and transparency since manipulating these algebraic objects as binary trees spares 
the chore of repeatedly addressing multiplication tables. 

At the outset is a non empty set A. (For the applications we have in mind, A is 
the field R of real numbers.) On top of A is built a sequence 

A (0, A (2) , A(3) , . . . ,  A (n), A(•+U,...  (30) 

of sets by induction over n > 1: A (1) is the set of pairs (zt, z~) of elements of A, 
that is, the product set A x A, A (2) the product set A (0 x A (0 and, in general, 
A (n+0 the product set A (~) x A (n), or to say it in other words, A (~+1) is obtained 
by doubling its predecessor in the sequence. We speak of the elements of A (~) 
as the binary trees over A with height n. With a Symbol Processor at hand, one 
finds it natural to represent binary trees as lists of two elements, each one being 
in turn a pair of binary trees; the height of the tree materializes as the depth of its 
representative list. 

Transfer from parallel array formalism to inductive list processing is accom- 
plished through a constructor 3- for converting sequences of 2 n elements in A into 
binary trees of height n: 

( z  for z C A, 
T(Z) 

T(ZO,..., Z 2 ( n - l ) _ l )  , T ( Z 2 ( ~ - I ) , . . .  , Z2~-l) ) for z C A (n). 

When applied to the rows of the identity matrix of dimension 2 ~, the constructor 3- 
produces the standard base in the vector space A (~). For instance, 3- produces the 
trees 

= ( (3 ,o ) ,  (o ,o ) ) ,  el = ( (0 ,1) ,  (0 ,0) ) ,  

e2 = ((0, 0), (1, o)) ,  = ((0, 0), (0, 1)) 

as the standard base in the hypercomplex system A (2) of quaternions. The inverse 
operation 3--1 converts binary trees into sequences; to say it in typographic terms, 
3--1 strikes all parentheses off a binary tree save the first and the last. Current 
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Symbol Processors like MACSYMA, MAPLE, MATHEMATICA, REDUCE perform the 
operation through a command like f 1 a t t e n .  

Two elements of any A (~) must be singled out for their properties with respect 
to addition and multiplication: the zero element which is the binary tree 

0(n) = ~ (0, 0) for n = 1, 
[ (0(n- - l ) ,0  (n-l))  f o r n  > 1, 

and the unit element 

1(,~ ) = ~(1 ,0)  f o r n  = 1, 

[ ( 1 ( ~ - 0 , 0 ( ~ - 0 )  f o r n > l .  

Let it be assumed now that A is equipped with an addition. By inductive 
doubling, the addition in A induces an addition 

(z ,  w)  , z + w = (z~ + w~, z~ + w~) • A ('~) x A (n) , A ('~) 

for any set in (30). A good Symbol Processor will have designed its built-in addition 
to carry out such inductive extension in an automatic manner, ffthe addition endows 
A with a structure of Abelian group, the addition induced by doubling has the same 
effect in A (n) for any n. In which case, if 0 is the neutral element in A, then 0 (~) is 
the neutral element in A (~), i.e., 0(~) + z = z for any z in A (n). 

Likewise, a scaling multiplication (c~, x) > ozz : B x A ~ A induces by 
doubling a scaling multiplication 

( a , z )  , az  = (azt ,az~)  " B x A ( ' j  ~ A (~). 

One should expect the Symbol Processor to enforce automatically such an induction 
for its built-in multiplication. In case B is a field and the scaling multiplication 
endows A with a structure of vector space, the scaling multiplication induced by 
doubling has the same effect in the sets of (30). 

Conjugation brings in a feature that distinguishes the set A (n) of binary trees of 
height n from the product set A 2'~ of 2 n copies of A. This is an operator defined 
inductively by the rules 

fo rz  E A, 

for z 6 A (n). 

The conjugation, one will check easily, is linear; furthermore, it is an involution, 
that is, if w = ~ then zb = z, and that makes it an isomorphism of the vector space 
A(~). 
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With the conjugation one defines 2 ~ distinct multiplications in A (~). Let p = 
(P0,Pl, • • • ,P~- I )  be a sequence of scalars all equal either to +1 or - 1 .  For each 
such sequence, consider the binary operator defined inductively by the rules 

(Z~ W) > Z@pW = I 

(ZlWl Jr-pOWrZr, ZrWl + WrZl) f o r  n = 1, 

zr @~ Ut + wr @~ zl) for n > 1, 

where/~ is the sequence obtained from p by dropping the last element. The vec- 
tor space A (~) with the structure induced by one of  the products ®v is called a 
hypercomplex system; p is referred to as the set of structure constants for that 
system. 

A few properties of the multiplications of  binary trees are obvious: for any 
a E B and for any z, z ', w, w ~ E A (~), 

= = 

z ®p(w + w') = z ®;  w + z ®p w', 

(z + z  1)@pw = z ® p w  + z  ~@pw; 

1 ('~) @p z = z @p 1 (~) = z. 

These are precisely the properties a multiplication must enjoy to make an algebra 
with a unit element out of a vector space. When 

(z @p z') @p w = z ®p(z' @p w) for any z, z' and w E A (n), 

the algebra is said to be associative; when 

z @ p w = w @ p z  for a n y z a n d w  E A  (n). 

it is said to be commutative. 
Given that the multiplication in A is associative and commutative, the two 

hypercomplex structures on A (0 are algebras that are associative as well as com- 
mutative. When A = R,  for P0 = - 1, A 0) is the algebra C of  ordinary complex 
numbers whereas, for P0 = 1, it makes what some authors call the algebra of  
hyperbolic complex numbers. On A (2), none of the hypercomplex structures is 
commutative,  but all are associative, For A = R we recover with p = ( -  1, - 1)  

the algebra Q of  ordinary quaternions. On A (s), none of the eight hypercomplex 
algebras is either associative or commutative, but all of them are alternative, that 
is, for any z and w in A (s), 

% = z % 
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The algebra O of Cayley numbers - also known as octonions - corresponds to the 
case when A = R and p = ( -  1, - 1, - 1). Beyond n = 3, associativity, commuta- 
tivity and the alternative property are all lost. All the facts we just mentioned are 
readily checked by Symbol Processors. 

For any n > 1 and any sequence p made of + 1 and - 1, conjugation is a skew 
involution: for any u and v in A (~), if w = u @p v, then @ = ~? @p ~. 

In order to derive a concept of scalar product within the formalism of  hyper- 
complex structures, we need the operator 

z ~ ( z )  : A (n) , A  

defined inductively by the rules 

z for z E A, 
= 

~(zt)  f o r z E A  (n). 

Visibly, N is a linear form; moreover, for any z in A (~), ~(~) --- N(z), which 
implies that 2~(z )  = ~ ( z  + 5) and justifies calling N(z) the real part  of z. Note 
also that 

~ ( z  @p w) = N(w @p z) for a n y z a n d w  E A  (n), 

whether or not the multiplication is commutative. 
On this form is built the operation 

(z ,w)  , z ® p w  = ~(z®p~5)  : A (~) x A (') , A, 

obviously a symmetric bilinear form, that is to say, for any z and w in A (n), 

Z@pW = W@pZ~ 

+ % = % w) + 

For any z E A (~), z ®p 0 (~) = 0; conversely, if z ®p w = 0 for any z E A (~), it is 

so in particular for each element in the standard base of A (n), which means that all 
components of w are 0 or that w = 0 ('~). Algebraists say in this case that the form 
@p is not degenerate; a symmetric bilinear form that is not degenerate is what they 
call a scalar or dot product. 

Let it be assumed now that A = R.  A simple reasoning by induction proves 
that the condition 

z @p z = 0 for any z E R (n) ,-' z = 0 

is satisfied only when all structure constants are equal to - 1 .  Only for those 
hypercomplex structures over R does it make sense to introduce the function 

z , IIzll = v Opz. 
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Should we want to make it a norm compatible with the structure of algebra induced 
by ®p on A (n), we must ask that 

Ilz ®p wlJ = Ilz[I IlwlJ for any z and w E R (n). 

According to a famous theorem of Hurwitz (1923), such requirement is satisfied 
only for n = 1,2, 3, that is to say, in the hypercomplex algebras C of complex 
numbers, Q of quaternions and (9 of octonions. 

Let it be mentioned that the concept of cross product for quaternions extends at 
once to any hypercomplex system. It would be defined as the operation 

(z ,w) , z A p w = l ( z @ p @ - W @ p £ )  • A (~) x A  (n) .... >A (~8. 

Visibly the cross product is a skew bilinear operator. It shares some properties with 
the cross product of quaternions. With the Symbol Processor, for instance, it is 
readily checked that 

THEOREM 11. - In the algebras A (1), A (2) and A (3), 

for any u, v and w and any set p of  structure constants. 

From the theorem we deduce that the Lagrange identity is verified in the algebras 
Q and (9: 

COROLLARY 11.1. - I n  the algebras A (1), A (2) and A (3), 

for any u and v and any set p of  structure constants. 

It is checked likewise that neither the theorem nor its corollary holds in A(@ for 
n > 4 .  

The doubling process is due to Dickson (1918, p. 158, Eq. (6)) not yet, though, 
as a general technique for constructing hypercomplex systems and their attendant 
algebras, solely as a way of passing from complex numbers to Hamilton's quater- 
nions, and from there to Cayley's numbers or octonions. Various authors have 
taken credit for having given the process its full generality: see, e.g., Kantor and 
Solodovnikov (1973) and Wene (1984). 

Notations create confusions. For instance, the reader should realize that the 
definition of a hypercomplex product 

(a l ,  a2) (a3, a4) = (a la3  + ]-ta4a2, a la4  n t- a3~2) 

given by Wen® (1984, Eq. 2.3) corresponds, in our terms, to the product 
(a3,a4) ®p(aa,a2) with factors in inverse order. Our definition of the product 
agrees with that of Lambert and Kibler (1988). 
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Hypercomplex systems whose structure constants are not all equal to -1 have 
their use in theoretical physics: the algebras R (2) with either (1, - 1 )  or ( - 1 ,  1) as 
constant structures figure prominently in the class of Reductions treated by Iwai 
(1985). 

After we completed our coding in Mathematica,  Anthony Hearn drew our 
attention to the programming work of Kibler for checking the calculations in the 
paper he authored with Lambert (1988). Kibler gives no indication whatsoever 
about his implementation with Hearn's Symbol Processor also known as REDUCE. 

3.2. KS-TRANSFORMATIONS BY DOUBLING 

We explain here why the KS-transformation can be seen as a doubling of the 
LC-transformation. Actually we do no more than fitting Vivarelli's treatment to 
the quaternion version of the KS-transformation. We find here an opportunity for 
defining her special "anti-involution" in intrinsic terms. Her concept is now open 
to extensions in higher dimensions through inductive doubling. We pay special 
attention to the re-labelling of subscripts needed to return from her formulas to 
Equations (16) in Section 2. 

In the context of the preceding subsection, the key feature of our explanation is 
an operator z ~ 2 : A (n) ~ A (n) which we propose to call the left conjugation. 
It is defined by the rules 

= ~ z E A, for 

t (~t, zr) for n E A (~). 

For example, 

= ( ( zO, - - z l ) ,  (z2, z3)) 

= (((zo, -~1),  ( -z2,  -~3)),  ((~4, ~5), (~6, ~7))) 

for z E A (2), 

for z E A (3). 

Clearly, the left conjugation is a linear operator in A ('~) and an involution and, to 
boot, a skew involution since, for any set p of structure constants, 

z ®--~w = ~b ®p ~ for any z and w C A (n). 

Let it be mentioned also that z = 2 and that ~(~) = ~(z).  There follows from these 
facts that the left conjugation preserves the norm, that is to say, that I1 11 = Ilzll. 

We use the left conjugation to build two kinds of transformations 

z , ~ ( r ) ( z )  = ~ ®p z • A (n) ~ a (n), 

z ~7@ R ) ( z ) = z ® p 2  • a (n) - , n  (n). 

They belong to the classes of what Lambert and Kibler (1988) call respectively 
left and right Hurwi tz  transformations (relative to the left conjugation). For n = 1, 
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left and right Hurwitz transformations coincide, on the one hand, with the ordinary 
LC-transformation 

(~, 7]) > (~2 _ 712, 2~71), 

for p = ( -  1) and, on the other, with the so-called hyperbolic LC-transformation 

(~, 71 ) > (~2 _[_ 712, 2471 ) 

~ ( n )  
for p = (1). For n = 2, , ~(-1,-1) is determined explicitly by the equations 

xo = z0 + 4 -  4 ,  

Xl = O~ 

X2 = 2(Z0Z2 -- ZlZ3), 

X3 = 2(ZlZ2 + Z0Z3). 

We could accept these equations as equivalent (up to a re-labelling of  subscripts 
in x and z) to the equations (16) set up in Section 2 to define explicitly the KS 
transformation. Yet, we prefer to take advantage of  the resources available in the 
representation of  hypercomplex systems in order to recover exactly the equations 
(16). We do this most simply by composing the Hurwitz transformations with yet 
another mapping. First, we define a reverse function 

z , p(z)  : A (~) , A (~) 

by the inductive rules 

z for z C A, 

p(z)  = (p(zr ) ,p (zz ) )  f o r z  C a (n). 

Of  course, p is a linear mapping and an involution, hence an isomorphism of A (n). 
Then we build the map 

z , ¢ ( z )  : A ('~) , A (~) 

according to the rules 

{ i  f o r n  C A, 
¢ ( z )  = N 

p(zt) ,  p(zr))  for n e A (n). 

Evidently ~ is linear. It is not an involution; nevertheless, it is an isomorphism of 
A (n). Indeed, whereas ¢ '~(z )  is not generally equal to z for m < 4, ¢4(z)  = z for 

any z E A (n). And now we prescribe the left and right KS-transformations to be 
the quadratic mappings 

z , 1C(L)(z) : ~ (7-t(L)(z)) : A ('~) , A (~), 

Z ) I ~ ( R ) ( z )  = ~) (Ja[ . (R)(z ) )  " A (n) , a (n). 
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Their explicit equations for n --- 2 are listed in Table 3.3. Observe there that the 
equations at the bottom of the second column are identical to the equations (16) 
of Section 2. We should have anticipated that result had we noticed that, for any 
z E A (2), 

~ ( Z )  ~--- e 1 @ ( - 1 , - 1 )  Z, 

E(R) ( _ I , _ I ) ( Z )  ~--- Z @ ( - 1 , - 1 )  e l  @ ( - 1 , - 1 )  ~' = 2: e 1Z. 

There is no room left in this paper for examining what contributions, if any, 
the seven other KS-transformations make to the problem of linearizing perturbed 
Keplerian systems. We only wanted here to make the point that the doubling 
technique we abstracted from Vivarelli's papers makes a handy tool for widening 
in scope the concept of Kustaanheimo and Stiefel. 

3.3. PROJECTIVE TRANSFORMATIONS BY DOUBLING 

Vivarelli wanted a doubling of the LC-transformation that yields KS-transforma- 
tions. We now contribute another way of doubling the LC, this time to produce 
projective transformations. 

Having realized that the ordinary LC-transformation is the mapping 

z ~ z ®(-1) z : A (1) ) A 0), (31) 

we extend it for any height n and any set of structure constants into the quadratic 
transformations 

z ) £ p ( Z ) = Z ® p Z  : A (~) , A  (~). 

Their effects are most concisely described in terms of the linear mapping 

z , ~(z)  : A (n) , A (~) 

defined inductively by the rules: 

0 for z E A, 
= 

(~(zz), zr) for z E A (n), 

In a way, -.~ is complementary to ~ in that, for any z E A (n), 

= 0 a n d  z = 1(n) + 

For these reasons, we refer to ~(z)  as the imaginary part of z. 

THEOREM 12. - For any n, any z E A (n) and any set p of structure constants, 

(Ep(Z)) = ~}~2(z) - ~(z)  @p .,~(z), (32) 

(Ep(z)) = 2 ~ ( z )  ~(z) ,  (33) 

,Ep(Z) Qp Ep(Z) = (N(z) 2 + .~(z) Qp .~(z)) 2 . (34) 
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Left  Right 

p=(+1,+1) [ 

971 .= Z 2 -  z2 @ Z22 - -  Z32, 

972 .= - - 2 ( Z l Z 2  - -  Z0Z3),  

Z3 = 2 ( Z l Z 3  - -  ZOZ2) 

x l = 4 + 4 + 4 + z~, 
972 .= - - 2 ( Z l Z 2  - -  ZOZ3), 

971= zo ~ - 4 + 4 -  4 ,  

972 ~--- 2 ( Z l Z 2  q- ZOZ3), 

X 3 = - - 2 ( Z o Z  2 q- Z lZ3)  

l P =  ( + 1 , - 1 )  ] 

971 = 4 + 4 + 4 + 4 ,  

972 = 2 ( Z l Z 2  + Z0Z3),  

z3 = -2(ZlZ3 + zoz2) z3 = 2(ZlZ3 - -  z o Z 2 )  

Iv = (-1, +1) 

*1 = Z 2 - -  2 : 2 -  2:22-1- 2:5 , 971 = Z 2 - -  2:2 - -  Z 2 - -  2:5 , 

972 = - - 2 ( Z l Z 2  - -  Z0Z3),  972 = 2(ZlZ2 + ZOZ3), 

973 = 2(ZlZ3 - -  Z0Z2) 973 = --2(ZOZ2 + ZlZ3) 

p = ( -1 , -1)  [ 

971 ~--- Z2 -+- Z 2 -  Z2 - -  Z2, 971 .= Z2 "+- z2 - -  z2  - -  2:5, 

972 = -2(ZlZ2 - zoz3), z2 = 2(zlz2 + zoz3), 

973 = -2(ZlZ3 + Z 0 Z 2 )  373 = 2(ZlZ3 -- ZOZ2) 

For example, in the algebra Q of  quaternions, 

12(z) = (z 2 -- z 2 -- z~ - z2, 2ZOZl, 2zoz2, 2zoz3) 

Formulas (32) and (34) can be sharpened when the hypercomplex systems are 
normed algebras. 
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THEOREM 13. - F o r  n = 2 and  n = 3, p rov ided  all s tructure constants  are equal  

to -1, the m a p p i n g  

(l~<z)l, II~(z)ll) - ~  (~ (Cp<z)), 113 (Cp<Z))II) " R+ x R+ , R+ x R 

is an  LC- t rans format ion .  

Proof. - Indeed, by virtue of (32) and (33), 

~c~(£p(Z))  = ~}~2(Z) --[[~(z)ll 2 (35) 

and 

[l~(Z2p(Z))ll = 2 I~(z)l [[-~(z)ll." 

From the theorem, we infer that 

[IZ;P(z)ll 2 ({;l~2(z) i1~(z)112)2 = - + 4 ~ 2 ( z ) [ [ ~ ( z ) l l  2 = ]]z[] 4. 

Furthermore, if ¢ and ~ are the angles such that 

(36) 

(Cp(z)) : IlCp(z)ll cos¢, 

113 (Cp(Z))II = IlzZp(z)ll sin ¢, 

0___ ¢ <_ re, 

~ ( z )  = Ilzll c o s ~ ,  

II~(z)ll : Llzll s in% 

0 _< ~ _< 7r/2. 

(37) 

then ¢ = 2~b. In other words, as one should expect from an LC-transformation, the 
mapping mentioned in the theorem "squares the distances and doubles the angles 
at the origin." 

Doubling of a projective decomposition into a Levi-Civita transformation con- 
ceres solely the coordinates; the technique offers no hint on how to extend the 
point-transformation into a canonical transformation. In practice, one tries to find 
the extension that enhances best some features of the particular problem at hand 
like its symmetries and integrals, not to mention, of course, the textbook recipe 
of which we already made an application when, at the suggestion of Kurcheeva, 
we extended the KS-transformation. Our object now is to use that standard proce- 
dure to produce a canonical extension by which the momenta Z and X conjugate 
respectively to the coordinates z and x = £p(Z)  are required to satisfy identically 
the differential relation X • dx  = Z .  dz.  Provided all structure constants are equal 
to -1, one will find in this manner that 

~(z) = 2(~. x), 

~(z) = 2 (~(~) ~(x) - ~(x) ~(z)), 
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and, by inversion, that 

~ (X)  = ~ ( z ® p Z ) ,  

-.~(X) - 2 {R(z) H~II ----w- 

1 [ ~ ( e ) a ( z )  + 1 (a(z) Ap a ( a ) )  Ap a(z)] 
- 2 [ i z l r  2 • 

We want to emphasize that these formulas hold not only in four but also in eight 
dimensions. 

4. The projective factoring and its extensions 

One may derive satisfaction from the prospect of Stiefel's concept of a KS-trans- 
formation and Laplace's technique of projective decomposition stemming from a 
common root in the theory of hypercomplex systems. In practice, however, the 
point-transformation in (31) and its canonical extension in (38) do not suit well 
the common problems in Point Dynamics. One would like, for instance, that ~(Z) 
stand for the radial component of the velocity ~(X)  and that ~(Z) be related in a 
simple way with the transverse component of .~(X). Meeting these specifications 
while maintaining the canonical character is not possible lest a modification in 
the moment segment of the transformation be compensated by an adjustment in 
the coordinate segment. Among the specimens of canonical extensions for the 
projective decomposition in a three-dimensional space, one will thus see posted 

= 2 

for the BF-transformation, and 

~:~(x) = ~(z)2 (1 -II-..~(z)[[ 2) 

for the D-transformation instead of (35). More drastic is the stratagem adopted in 
the DEF-transformation: the canonicity requirements are abandoned in favor of 
Stiefel's criteria of weak canonicity. 

4.1. THE DEF-TRANSFORMATION 

The DEF-transformation in our terminology is the mapping 

(uo, u, Uo, U) , (x, X )  : R+ x R 3 x R x R 3 , R 3 x R 3 

defined by the equations 

I 
X = U o u + - - ( u  x U )  x u .  

~z o 

(39) 
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The classical decomposition I[a]l 2 b = (a • b)a + (a × b) x a of a vector b into 
its components respectively parallel and perpendicular to a vector a guided our 
choice for X .  

As Stiefel and Scheifele did for the KS-transformation, we solve the problem 
of initial conditions for the DEF-transformation, not a trivial exercise considering 
that the transformation raises the dimensions and, therefore, is not reversible. 

THEOREM 14. - Given a pair (x, X ) ,  the elements 

x . ~  # II~II B II=II U o  - - -  u = U - -  X - ( 4 0 )  

uo - /3 , /311~1l' II-~ll ~ '  #3 I1~11 ~ 

dependent on the parameters/3 and B satisfy the definitions in (39). Conversely, for 
any quadruple (Uo, ̀ `) and any quadruple (Uo, U), the coordinates and momenta 
defined in (39) satisfy the relations (40) if and only if 

/3 = I1``11 and t3 = i~ull (uoUo - u . U). 

Proof. - The first part of the theorem is proved simply by replacing the variables 
u0, u,  U0 and U in the right hand members of (39) by their expressions given in 
(40). As for the second part, we begin by deducing from (39) that 

~0 = II~l l / II~l l ,  

`` = - - ~  = II``iL , 

1 x . X  
u0= ~ ( ` ` .  x ) _  

iI~11 ii``I1 
Also on account of (39), we find that 

x x x --11``112(`` x u ) .  ( 4 1 )  

We regard this relation as an equation in U. By virtue of Lemma 5 below, since 
the vectors `` and x x X are perpendicular, the sum 

I1~11 x ( ~0u0  1 (xxX) xu+~U_ll_~7 ~ + A u 
U -  Ilul[4 . _ 11, ,112/  

represent all possible solutions to equation (41). Taking the dot product of both 
members by ``, we find that 

;~ -- 11``11-2(``. u ) .  

It thus appears that we can adopt 

/3 = I1``11 and B = i~ull(uoUo - u .  U) 

as the parameters in (40). • 



LINEARIZATION: LAPLACE VS. STIEFEL 189 

LEMMA 5. - Let a and b be two linearly independent vectors. The equation 
a × x = b has a solution if and only i fa  • b = O, in which case the solutions are 
all linear combinations of the form Ilall-2(b × a) + eta where ~ is an arbitrary 
scalar. 

Proof. - By assumption, the vectors a, b and a × b constitute a base in the space of 
three-dimensional real vectors, and any vector x may be decomposed in a unique 
way into a sum of the form 

x = a a ÷ / 3 b + ' y ( a x b ) .  

There follows that x is a solution of the equation if and only if 

/ 3 = 0 ,  7 ( a . b ) = O  and l + ' ~ ( a . a ) = O .  

These conditions are satisfied only when a • b = 0. In that case, one must take 
= - I l a ] [ - 2 . ,  

In the phase space (u0, u,  U0, U),  we adopt the standard symplectic structure 
so that the Poisson bracket of any pair of smooth functions f and 9 is the function 

Of ag Of Og ) 
{ f ;  9} = ~ Oui cOUi OUi Oui o<i<_3 

In contrast to the complexity it encountered with the KS-transformation, the Symbol 
Processor takes hardly any time for evaluating the Poisson brackets of the DEF- 
transformation. The results are strikingly simple: 

{ x i ; x j }  = 0  for 

x j }  =   ,j/32 

{X i ;  X j } = O  for 

1 < i , j  < 3, 

for l < i < j < 3 ,  

l < i , j < 3 .  

Let us now show that the DEF-transformation linearizes the equations of motion 
for Keplerian systems. From the definition (39) we deduce that 

IIxN 2 . -  9 2 + Ilu  yff2  

This expression indicates that the angular momenta 

Q = u x  U and Q = l l Q [ [  (42) 

will figure prominently in the equations of motion. For a clean coding of its partial 
derivatives with the Symbol Processor, we recommend using the vector identities: 

V u Q  = - ( Q  x U) /Q  and V u Q =  (Q x u) /Q.  
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With these notations, applying the DEF-transformation to the Keplerian (26) will 
produce the function 

/c = 5-  U°2 + ~ 0 '  

The "new" equations of motion are then 

duo 
dt = {uo; K:} = fl2Uo, 

) dt - {Uo; /(7} = fl~u ' 
(43) 

du { u ;  tO} = f12 
d-7 = ~ Q x u, 

f12 1 (  # )  dU = { U .  IC} = Q x U -  2 ~  + 3 u. 

As is done usually for Keplerian systems, we replace the independent variable t by 
a generalized true anomaly f such that 

~2 df = 92Q dr. 

We deduce readily from the first equation in (43) that 

d2u d ( Q x u )  Q du Q 

df 2 -dr (7 = ~ x  ~ Q 2 × ( Q × u ) = - u  

while, for the (dimensionless) variable 

= Q2/(#uo) , (44) 

we find that 

d~ Q 
- -  UO~ 

df 

d2o - Q dUo 1 
df ~ -  # df - c r + ~ .  

(45) 

There remains to establish the correspondence between the solutions of the 
canonical equations derived from (26) and those of the system (43). The presence 
of the factor f12 in the Poisson brackets {xi ; X j }  calls for restricting the vector u 
to the sphere fl = Ilu]l = 1, which condition establishes the DEF-transformation 
as a weakly canonical extension on the manifold S = R+ x S 2 x R x R 3 in the 
space (u0, u,  U0, U). On the hypersurface S, u and u0 are the radial direction and 
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the radial distance respectively while U0 is the radial component of the momentum 
vector X .  The restriction to S is acceptable in Dynamics because the Poisson 
brackets 

{ f l ; x i } = { / 3 ; X i } = O  for 1 < i < 3 ,  

imply that {/3 ; F} = 0 for any smooth function F(x, X),  and this, in turn, means 
that fl is an integral for any Hamiltonian system in the phase space (x, X) .  We 
must also add that the restriction to S has the good effect of changing the second 
equation in (45) into a linear differential equation 

+ 1  c r = l  

with constant coefficients. This completes the linearization of Keplerian systems 
in three dimensions by means of the DEF-transformation. 

4.2. CANONICAL EMBEDDINGS 

Lowering the dimensions of a Hamiltonian system is a step most frequent in 
Mechanics. Given a Hamiltonian 7g(p, P )  in n coordinates p and their conjugate 
momenta P ,  one creates a canonical transformation 

3 ~ : ( q , Q )  , ( p , P ) : R  n × R  n . , R  ~ × R  n 

that will render m coordinates, say (qi) I <i<m, ignorable in the pullback of 7-{, that 
is, the function 

7*~(q, Q) = 7-t(p(q, Q), P(q, Q)). 

The transformation ~y is designed to reveal that the conjugate momenta (Qi)l<_i<_ra 
are integrals of the system; the general technique known as Reduction uses them 
to lower the dimension of the original system by 2m. Not until the publication of 
Linear and Regular Celestial Mechanics had the reverse problem, that of increasing 
the dimensions of a Hamiltonian system, been explored somehow in a systematic 
manner. 

The framework set up by Stiefel and Scheifele is well known (1971, Theorem 
2, pp. 189-190). Assume that -y maps a domain of dimension 2(n + m) in the phase 
space (q, (2) into a domain of dimension 2n in the phase space (p, P ) ,  and define 
the Poisson bracket {f  ; g} of any pair of smooth functions f and g of (p, P )  as 
the function 

{ f ;  9} = Vq(7*f) 'VQ(7*g)  - VQ(7*f)" Vq(7*9).  

Provided that 

{p i ;p j }={P i ;  Pj}=O for 1 < i < j  < n ,  (46) 
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and that there exists a so-called multiplier/z independent of q and Q such that 

{Pi ; Pj } =/z~i,j for 1 < i < j < n (47) 

where ~i,j is the Kronecker symbol, then 

7*p(t) = p(q( t ) ,Q( t ) )  and ~*P(t) = P(q( t ) ,Q( t ) )  

is a solution of the canonical system 

/ ~ - - V p ~ ,  P = - V p T - (  

whenever (q(t), Q(~)) is a solution of the system 

Of a transformation 7 with properties (46) and (47) we say that it is weakly 
canonical. For a slight generalization of the condition (47), the reader is referred 
to the Appendix. 

The theorem of Stiefel and Scheifele calls for complements in two directions. 
Firstly, it does not supply a technique for building canonical transformations capa- 
ble of raising the dimension of a Hamiltonian system - something that Liouville 
and Routh do not do either for lowering the dimension. Usually, though, one starts 
with a coordinate transformation 

~ : q ~ p = p(q) 

of a domain in a coordinate space (q) of dimension n + m into a domain in 
a coordinate space (p) of dimension n, in which case Kurcheeva (1977) has 
provided an algorithm for building some types of canonical extensions of y~ which 
satisfy the conditions of the theorem. We have applied Kurcheeva's technique 
in Sections 2 and 3. Secondly, Stiefel and Scheifele are silent on the question of 
establishing the complementary between the raising and the lowering of dimensions 
for Hamiltonian systems. Lidov (1982) was the first to broach the issue. Evidently, 
if 7*7-/ is the Hamiltonian obtained from 7-/by reduction through a canonical 
transformation in the classical sense, then one can look back at 7-[ as having been 
obtained from 3'*7-/ by increasing the dimension of the system. But what is of 
interest here is the reverse question: given 7-/in a phase space (p, P )  of dimension 
2n, construct a transformation 7 that is canonical in the classical sense, raises the 
dimension of the system by 2m units, preserves its canonical character, and gets 
the "old" Hamiltonian to result from its pullback 7 " ~  by reduction. Practically, 
starting from a transformation 

q ~ p = p(q) 

with p E R ~ and q E R n+m that raises the dimension of the coordinate space, one 
must find a vector function P(q ,  Q) of dimension n and also two vector functions 
v(q, Q) and R(q,  Q) of dimension m to define a canonical homeomorphism 

(q, Q) , (p, r, P ,  R)  
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that satisfies the requirements. If this is feasible, then one can say that the dimension 
increasing transformation has rendered the coordinates r ignorable, or that the old 
Hamiltonian H is obtained from 7*7-/by reduction through the integrals R. 

4 .3 .  THE D-TRANSFORMATION 

As a case in point, let us consider the transformation 

(uo, u, Uo, U) ~ (x, X )  : R+  x R 3 x R x R 3 > R 3 x R 3 

defined by the equations 

X ~ UOU ~ 

x = u0~ + L [ u  - ( ~ . u ) ~ ] .  
U0 

(48) 

We call it the D-transformation. With a Symbol Processor one checks easily that, 
f o r l < i < j _ < 3 ,  

{ x i ; x y } = { X i ; X j } = 0  and { x ~ ; X j } = 6 ~ , j ,  

that is to say, that the D-transformation is weakly canonical. To make it properly 
canonical as a mapping of an eight-dimensional space into an eight-dimensional 
space, a coordinate and a momentum must be added to x and X.  Finding these new 
variables is a matter of trials and errors with the Symbol Processor. Grouping the 
many terms arising from a Poisson bracket into combinations easily identifiable is 
the most delicate part of the assignment. For instance, given an arbitrary smooth 
function F of x and X ,  we found that 

{u0; F} = (u. V x F ) ,  

{ l ( u . u )  ; F }  = Uol(1 -11~112)(~. V x F ) .  

From these identities we inferred that, for any constant a, 

{(1 -[lul[Z)u~ ; F )  = ( 2 -  a)u~-l(1  - I l u l [ z ) (u  • u ) V x F .  

In particular, for a = 2, there follows that {u2(1 - u .  u ) ;  F} = 0. Likewise, 
combining the formulas 

{u0U0 ; F} = X -  V x F -  x .  V x F ,  

{ u . U ;  F} = ( 2 u o l U - X ) . V x F - a z .  V x F ,  

we came to realize that 

(~g(-oVo - - .  u ) ;  F} = ( 2 +  ,,)~;-L(~oUo - ~ .  U ) ( ~ .  V x F ) .  
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Therefore, taking a = - 2 ,  we concluded that 

- v ) ;  F }  = o. 

A simple code in Mathematica then enabled us to check that 

{ a u 2 ( 1 -  Ilul]2) ; buo2(uoUo - u .  U ) }  = 2ab. 

In particular, for a = 1 and b = 1/2, the functions 

xo = xo(uo, u)  = u02(1 - IiUll2), 
(49) 

Xo = Xo(~o,  ~ ,  Uo, u )  = ½~o2(~oUo - , , .  u )  

are such that {xo ; Xo} = 1. This statement concludes the proof that the transfor- 
mation 

(u0, u, U0, U) ) (x, x0, X ,  X0) : R +  × R  3 × R × R  3 ) R 4 × R  4 

is canonical in the full sense of the word. On the one hand, the transformation raises 
the dimension of any dynamical system defined over the phase space (x, X ) ;  on 
the other hand, it sets x0 and X0 as integrals for the pullback Hamiltonian ~,*7-t 
over the phase space (u0, u,  U0, U),  thereby giving to think that the 'old' system 
proceeds from the 'new' Hamiltonian 7"7-t by reduction. 

The D-transformation being invertible, we can look for its inverse. Solving 
the system made of equations (48) and (49) makes no complications save for the 
momentum U. We handle that case, as we did when we solved the initial value 
problem for the DEF-transformation, by deducing from (48) that 

x × X = u × U ,  

then applying Lemma 5 to solve this equation. The equations of the inverse trans- 
formation, namely 

V/IL II x ~t 0 ~--- X 2 . . ~ X o  ~ ~t - -  

V/ll~[I 2 + xo 
x .  X + 2x0X0 ~/ 

Uo = , U = ( X  - 2Xox) Ilxll 2 + xo, 
X/lixll 2 + xo 

(50) 

say that, only at the intersection of the manifolds x0 = 0 and X0 = 0, does u0 
represent the central distance and u the radial direction; furthermore, if X stands 
for the velocity, then U0 stands there for the radial velocity. 

To our surprise we found that the D-transformation is nothing but the canonical 
extension of the point-transformation (u0, u)  , (x0, x) defined by the first 
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equation in (48) and the first equation in (49). Indeed it satisfies the differential 
identity 

Xo dxo + X • dm = UO duo + U • du. 

Furthermore, the momenta 

'Un 

U1 

u2 

\~5 J 

{OXO OXl OX2 0X3 
Ouo Ouo Ouo Ouo 

Oxo Oxl Ox2 0x3 
0~i OUl 071,1 OUl 

03go OXl Ox2 0x3 
07z 2 01z 2 021, 2 0 u  2 

Oxo OXl Ox20x3 
Ou3 0u3 0u3 0u3 

f I 
X1 

I 

I 

x2 ] 

\ 

obtained from this differential relation are identical to those obtained in (50) by 
inversion of the D-transformation. 

There remains to show that the D-transformation linearizes the Keplerian sys- 
tems. To this end, we apply it to the Hamiltonian (26). A few straightforward 
manipulations will decompose the new Hamiltonian into the sum 

~c = ( ~  ~) + + -~ 

xo [X~u~(U'U)+2Xo(u 'U)  ] .  + ~ 

The equations of motion in the phase variables (u0, u, UO, U) are now: 

duo 
dt 

dUo 
dt 

du 
dt 

dU 

= {u0;  iC} = ~ . X ,  

- -  " = - -  + - -  2 X 0 ( u . U )  
u 0 U 3 

- { u ; l C } -  q x u  z0 
2 

= { v ;  ~ }  - 

- 2 X o  + 

U . U  

(51) 
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To the D-transformation we associate the generalized true anomaly f defined by 
the differential form 

u~ df = Q dr. 

Accordingly, for cr as defined in (44) and the direction u,  we deduce from the above 
system that 

) 1 

~ + 1  ~ =  -Q-~ x . x + - ;~-)  ~. 

The function x0 being an integral for any Hamiltonian system represented by a 
function dependent solely on x and X ,  it is allowed to restrict the D-transformation 
to the manifold :co = 0. On that hypersufface, I1~11 = 1, and the equations in (52) 
turn out to be the linear system with constant coefficients: 

+ 1  (7= 1, + 1  u = 0  

familiar - we recalled in Section 1 - to Laplace and his predecessors. 

4.4. THE BURDET-FERR,~NDIZ TRANSFORMATION 

Femindiz gave two versions of the transformation: 

u P U) x pPu], x = - ,  X - [ ( u  × ~ - 
p I1~112 

and 

X ~ ~0~ 

x - 11~112 g o u  + ! ( ~ u o  × u )  × ~ . 

(53) 

We refer to the latter as the BF-transformation. One goes from one version to the 
other through the canonical transformation (p, P)  ~ (u0, U0) defined by the 
equations 

p u 0 = l  and Pp+Uouo=O. 

Whereas Burdet and Ferrgndiz worked principally with the first version - the 
original one - ,  we favor the second one for it enhances the affinity of the BF-trans- 
formation with the doubling £p manufactured in Section 3.3 as well as with the 
DEF- and D-transformations of the preceding subsections. 
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With a Symbol Processor, one checks readily two statements proved by Ferrfin- 
diz (1988, Lemma 1 p. 347 and Theorem 2 p. 348), namely, 

(i) that the BF-transformation is weakly canonical, which statement we recall 
means that, for 1 < i < j < 3, 

{ x i ; x j } = { X i ;  X j } = O  and { w i ; X j } = 6 i , j ;  

(ii) that, given the functions 

x o = ( u ' u )  and B = u . U - u o U o ,  

the relations 

{x0; F ( x , X ) }  = { B , F ( x  ; X ) }  = 0 

hold uniformly in (u, U)  for any smooth function F by virtue of the BF-transforma- 

tion. 
We want to sharpen the way Ferr~indiz characterizes the BF-transformation (i) 

by completing it to make of it a standard canonical map over an eight-dimensional 
phase space, and (ii) by verifying that the moment segment in the completed map 
is the Mathieu extension of its coordinate segment. 

To this end, having observed that {x0; B} = 2(u  • u) ,  we introduced the 

function 

B 1 
X0 - 2xo -- 2x0(U" U - uoUo) 

so as to have that (xo, Xo) = 1. As it was the case for the D-transformation, we 
are now in a position to embed the BF-transformation into a completely canonical 
mapping 

(~0, ~, Co, u)  , (x0, x, x0, x) .  

We found that the inverse of that canonical mapping is defined by the equations 

~ 0  - v ~ '  u = x I I~ [ l '  

u0 (~ v ~  x II~ll + 2 x 0 ~ v ~  
= .x) 211, u =  [[xll 

Then we checked that these are precisely the equations we would obtain by choosing 
the momenta U0 and U as we did for the D-transformation in Section 4.2 to satisfy 
the differential form 

Xo dxo + X .  dx = Uo duo + U • du, 

which goes to show that the duly completed BF-transformation is the canonical 
extension of a point-transformation. 
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Applying the BF-transformation to the Hamiltonian (26) yields the function 

/C = 2x0 + #r 

and the equations of motion in the new variables: 

~0 l u 0 ,  a _  1 
= ~0 ~0~0 ~ Q × ~' 

1 (Q02 # v f ~  U =  1 u ( ~ )  
s0 : ~o ~g / '  ~0~0 ~ Q × v + x0- 2~c + 

(54) 

As the generalized true anomaly associated with the BF-transformation, Femindiz 
(1988, Eq. 34 p. 353) chooses an angle f such that 

xou g df = Q dr. 

It is somewhat easy with a Symbol Processor to establish that the equations (54) 
are equivalent to the system 

+ 1  c r=x /~o  , + 1  u = 0  

where cr is the variable defined in (44). We conclude this review of the Burdet- 
Ferrfindiz transformation by noting that, on the integral manifold x0 = 1, the latter 
system turns to be identical to the classical linear equations for a Keplerian system. 

Conclusions 

Three themes are weaved on the weft of these Notes. The first concerns the construc- 
tion of canonical extensions for dimension-raising point-transformations, which, 
as one should have expected, remains an exercise of improvisatio n in craftsman- 
ship. The second theme turns on the eighteenth century practice of decomposing 
the motion of a mass point into a radial displacement and a rotation of the radial 
direction. For good or ill, that heritage fell into oblivion. The account given in 
the Notes emphasizes the modernity of prevectorial Dynamics without turning a 
blind eye to the genuinely cumbersome and archaic. Finally these Notes attempt to 
confront directly the painful problems of algebraic complexity. Anxious lest they 
find themselves caught in insufferably long plots of simplification machinations 
and other algebraic intrigues, experts in celestial mechanics have erred on the side 
of squeamishness in dealing with this issue. We have returned it to the center of 
the story since it seems to us that it is not merely the disagreeable tool by which 
other more substantial ends are accomplished. In some exhilaratingly unavoid- 
able sense, extensive algebraic calculations belong to the processes of creativity 
in celestial mechanics. As Symbol Processors grow smarter from year to year, the 
more insistently they will beckon their devotees toward projects deemed "not very 
promising" by the standards of today. 
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A p p e n d i x  

Stiefel and Scheifele proved more than what they stated (1971, §31) about dimen- 
sion raising transformations. With just one or two minor modifications in the 
demonstration of Stiefel and Scheifele, one easily proves the following 

THEOREM 15. - Given the transformation 

(q,Q) > ( p , P )  : R  m+~ × R m+~ > R ~ × R ~, 

assume that the corresponding Jacobian matrix has the maximum rank 2n and that 
the Poisson brackets with respect to q and Q satisfy the relations 

{pi ; Pj } = O, {pi ; Pj } = ~ Si,j, { Pi ; Pj } = O for l < i < j <_ n, 

where • is a function of q and Q. For any Hamiltonian ~ ( p ,  P) ,  let h: be the 
function obtained by inserting the transformation into 7~. I f  the functions q( s ) and 
Q (s) satisfy the differential system 

dq OIC dQ O]C 

ds OQ ' ds Oq ' 

then the functions p( t ) and P ( t ) obtained from q( s ) and Q ( s ) by the transforma- 
tion satisfy the canonical equations 

dp 07{ d P  07-t 

dt OP ' dt Op ' 

provided the independent variables s and t are linked by the differential identity 

dt = ~ ds. 
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