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Abstract. A theory of cw injection phase locking in homogeneously broadened media is 
investigated using density matrix formalism to derive the interactions of three coherent 
fields with a two levels system. This powerful formalism leads to analytical expressions of 
the complex gain for each wave propagating inside the amplifier medium. Studies of the 
minimum signal intensity for single-frequency operation and power output are related. 

PACS: 42.55, 42.60 

Many applications require high-power laser sources of 
high spectral purity or large frequency tunability range 
or even both. In the cw regime, such sources may be 
used for nonlinear process studies [1 ], interferometric 
detection of gravity waves [2], long-distance space 
communication or optical pumping of far or middle 
infrared lasers. 

An injection phase locking technique, borrowed 
from microwave technology, seems able to solve this 
problem [3]. First used by Stover and Steier [4] for 
He-Ne laser, this technique has been studied by 
Buczek and Freiberg [5] for conventional CO2 laser. 
More recently, Dunn et al. [6] described mode selec- 2 
tion in He-Ne laser while Couillaud et al. [7] dealed 
with cw ring dye lasers and Man and Brillet [2] with 
the argon laser. The theory of injection phase locking 
has been established according to Lamb formalism 
[8-12] for both inhomogeneously and homogeneously 
broadened amplifier media. 

In this paper, we describe an homogeneously 
broadened amplifier medium by a two levels system 
and we use a semi-classical interaction theory for both 
injected wave and waves oscillating inside the cavity. 
We find the analytical expressions for gain and mode 
pulling. The minimum injected intensity for single- 
frequency operation is also investigated. Then we deal 0 
with frequency detuning of the master oscillator with 

respect to the resonances of the slave oscillator as a 
function of the injected intensity and frequency offset 
from the center of the laser line. 

1. Density Matrix Formalism 

We consider a system shown on Fig. 1 in which upper 
states are population inverted by any incoherent 
processes. This system is enclosed inside a ring cavity 
and we assume that the laser field is oscillating in the 

\ 

Fig. t. Simplified two-levels system 
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cw regime. This laser field is formed by two counter 
propagating plane waves E~ + and E~- with a common 
frequency co~. Because of the homogeneous broaden- 
ing, we also assume single-mode operation. An ex- 
ternal field Ei at frequency co~ is injected into the 
medium through one of the cavity mirror. These three 
fields connect the two upper levels of our system. 

Let us consider the time-averaged density matrix, 
elements of which are given by 

(i) 

�9 - 1  0 i 
Qmm = - -  Tmm (emm - -  emm) - -  h EO, H ]  mm, 

i 
O",. = - z,T,.~Q,.. + ~ D, H ] " . ,  

(1) 

(2) 

where m, n are I or 2. We assume, that there is no 
applied field at frequencies cool and COo2, and that 
spontaneous emission at these frequencies is negligible. 
The Hamiltonian matrix elements H" ,  are given by the 
following relations 

nmn= Em6mn- ltranE(t) 

with 

6 , . .= i  if n = m ,  

5 . , .=0  if n#~m, 

E,. being the eigenvalue,/Zmn the dipole moment matrix 
element, and E(t) the applied field. 

We also assume that the oscillators have no 
permanent dipole moment; i.e., 

#.,,. = 0 .  

Following these assumptions, the system (I) becomes 

011 = - ( ~ 1 1 - e O 1 ) ' ' g l  1 

i 
- (3) 

(II) 02== - ( O 2 2 - e ~  1 

i 
+ g&2(&2-O2,)'E(t), (4) 

i 
01 = -1 + g el) 

+ #12(L022 - O11)E(t)], (5) 

where zl, %, and z are the lifetime of both the levels 
themselves and of the off-diagonal matrix element 
which represents coherence between the levels. The 
eigenfield of the cavity may be described as two 
counter propagating plane waves 

= e + + e / =  �89 E(B/-  e -  + B / .  e e + ccl  

the propagating injected wave is also assumed to be 
plane 

E i = I (B  i �9 e -  iklz + io~it ..[_ CC) 

and thus the total field reads 

E( t) = Ec + Ei = �89 { Ac ei~a + Ai ei~ + cc } 

with 

A c = B + - e-ikcz + B [  �9 e i k ~  , A i = B i �9 e-ik'~. 

We assume a time-varying expression for the off- 
diagonal density matrix element of the form 

q12 = Ae " ei~ + A i  " e i ~ t - l -  A'c " e - i ~  + A'i " e - i w ' t  

with regard with these assumptions, the term 
(Qt2-OEOE(t)  in (3 and 4) of system (II) will generate 
oscillation of the populations density 011 and Ozz at the 
frequencies 2coo, 2c% (COc+~Oi), and (%-co~). By 
neglecting the terms oscillating at high frequency 
(rotating waves approximation), only the terms 
oscillating at frequency ___(co~-co~) will be regarded. 
This population oscillation will induce a modulation 
of the polarization resulting in a coupling of the 
gains at frequency co~ and co i. 

Then, the population density may be expressed by 

= n(1) _1_ 0(2) air/t_i_ nn =nn - ~n, - _ cc, n = 1, 2, 

with 

~ = O ) c - - f 9  i . 

Let A be the population difference between states 1 
and 2: 

A =#22--Qll  

and A o the value of A in the absence of the applied 
fields. A will be also of the form 

A = A (1} + A (2)" e lot + c c .  

By substituting this expression in (5) and collecting 
terms that multiply exp(+  icoJ) and exp(+ ico,t), we get 

A = i#12z.  A(I)A~ + A(2)A i 

c h 1 +iac 

with 6~ = (co~- e)o)" z, 

A i =  ili lzz A(1)Ai+ A(2)*A~ 
h 1+i5~ 

with fii= (ogl- COo). z. 

The quantities A'c and A'~ are negligible because they 
are proportional to [z(coc+c0~)-l-1. By reporting the 
expression of Q12 in (3 and 4), we can compute the 

values ox z~ values of Q~.~. ) and Q~2)(n = 1, 2) and then the ~A(1) 
and A (~). 
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Using the following definitions 

E ~  ~, / 1 \  ,. | :__2___/i' 2 and T -  77 1 + T 2 

#12 \z"  T /  2 ' 

where Es ~ is the saturating field at the line center 

I j  
I s= Aj" A*, ~ =  E ~ (1 + 52) ' 

a = �89 a,), 

1+ia 
X = (1 + 52) */2 , exp(ia) = - -  

X 

j=c, i ,  

1 + i6~ Xj .=(1  2 1/2 +,5~) , exp(ie~)= Xj 

S ~ =  (1+z~O2)(1+z2f22)l ' /2 
2 2 

1 -~- T~" T~ ~'~2 ) 
T 2 

- - ,  j=c, i ,  

.. , ( l+ i 'qO)( l+iz2~2)  
expt~eR) = 7 - - - ~ - - - - ,  

t l + i S @  Fa) " XR 

X 2 
N I = J  i --' cos(2q+c~) 

2Xc 

X 2 
+ J~" -- ~ cos (21/- oh) + X R c o s  (2J/-  c~g), 

2X~ 

X. 2 
N 2 = ~ .  - - '  ' exp [fit/+ ac)] 

2X~ 

X 2 
+ J~- ~ / / -  exp [i(r/-- ai)] + X R - exp [i(q -- C~R)], 

/ x 2 \ 2  / x2"~2 
. . .  

+ x~ + �89 cos(cq + .D. . .  

+XR ' COS(~R + X~ ~) +Jc--C cos(c~R- ~i) , 

S = I  + J ~ + J c ,  Aj=jr176176 j=c, i .  

A C~) and A (2) may be expressed as 

- 1  

A (z) = _ A (~). (Jij~)l/2X ~ -  exp [-i(q)~-- q~i)] �9 
/ 3  

In order to simplify further computation and 
considering that z 2 must be larger than % for produc- 
ing a high-efficiency and high-power laser, terms 
involving zt will be neglected in the expression of X R 

and c~ R. Then, these expressions reduce to 

XR=(1 +R2, " 62) ~/2, exp(ic~R)= 1 + iR ,6  - - ,  
XR 

where 

Ra T2 

T 

We are now able to express ~12 and then the 
induced polarization given by 

P=Tr{/~e} =/A12(~12 -'}- Q2 1) �9 

This polarization includes terms oscillating at 
frequency a)~ and 09 v As a result the complex suscepti- 
bilities relative to each wave are found to be 

2 . e - i a c  
- # 1 2  T 

Zc = l ~g 0 Xc 

�9 ~22T . e -  i~, 

)~i=l hgo Xi 

The amplitude gain reads 

.k 
g =  - - l ~ Z .  

"A~ 1-X'Xi'N2Xc D "Ji) '  

.A(,)(  I _ X  �9 N~ j ~ )  
X~ D 

Considering the small-signal gain at the line center 

k#~2"c 
go = ~-eo" Ao, 

where k is the wave number, we obtain 

2 Xc S - 2 ~  X z 

- X ~  
(IV) 

g '=  g--R~ " e - i = ' 2  X, S - 2 X 2j. . .~l ~ -L ) 

Xc 
x 1 - -2Xx i  D ~  , 

where ~ is equal to + or - 1 regarding to E + or E l .  We 
observe that gc may be deduced from gi by inverting the 
indexes c and i. 

Figure 3 shows the saturation of the normalized 
intensity gains [g+/gol 2 (dashed curves) and [gJgoi 2 
(solid curves) versus the normalized injected wave 
intensity Iu, Jls, t inside the amplifier medium, for 
various values of the normalized self oscillating wave 
intensity Ic/Is,t. For these computations, the fie- 
quencies of the waves were assumed to be for the line 
center and set up in resonance with the slave cavity�9 We 
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observe  that  when I~.~ reaches a sufficient level, the 
gain for I~ becomes  lower than  the gain for I~. As a 
result l~,j increases more  rapidly  than  I~. This  process 
accelerates the enhancement  of  Ig~12 and the decrease of 
Igd z down to the round- t r ip  gain tha t  would  prevail  
below oscillation threshold.  W h e n  this condi t ion is 
satisfied, the slave laser acts as a regenerat ive amplifier 
for the incoming light. 

2. Description of  the Ring 

The ring cavi ty  is shown in Fig. 2. The  cont inui ty  
condi t ions  for the injected field u p o n  mi r ro r  M read 

Ai(0)e i~~176 = t" Ain j e iq~i~j + st" Ai(L) e i~~ , 

Aou t e R~176 = _ erAin j ei~~ + tAi(L) e i~~ . 

i~out Aou t e 

i i~ ~ . e~inj Ai(O)e Ain3 

i#L A i (L) e 

Fig. 2. Injected ring-laser cavity and relevant notations 
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l i n j / I s a t  

Fig. 3. Normalized intensity gains GffG o (solid line) and GffGo 
(dashed line) versus normalized intensity of the injected wave 
l in f f l sa  t for three values of the normalized laser intensity 

I c = 0  b Ic lc/Is.t inside the amplifier medium, a /sat ' ~ = 1, 2, 

c i C = 2 , 4  
/sat 

A is the t ime- independent  ampl i tude  of the wave 
and  q~ its phase. The  subscripts  "inj", 'T ' ,  and  "out"  
refer to injected wave, inside cavi ty  wave  and  ou tpu t  
wave, respectively, r and  t are the ampl i tude  reflection 
and  t ransmiss ion coefficient of  mi r ror  M, and  ~ = ___ 1 
according  to the direct ion of the reflection on this 
mirror .  

Let  us set 

Ai(L) ei~l 
Ai(0 ) = g  , A = t & - C p o ,  g: real .  

Now,  Ai(0), Ai(L), and  Aou t m a y  be expressed as 

t 
Ai(0) eR~176 = 1 - erg e ia Ainj" eiqhnJ , 

hi(L ) ei~O L = gt e iA 
1 -- erg e izl " Ainj "ei~~ ' 

�9 er + g e izl 
A o u  t e lq~~ = 1 -- ~3rg e ia "Ainj ei~~ ' 

and  the cor responding  intensities read 

(I - r  2) 

/i(O) ---- 1 d- r 2" g2 _ 2erg cosA I inj ,  

(V) Ii(L)--g2Ii(O), 

r E + g2 _ 2erg cosd  I~,q. 
/out = 1 + rEg 2 -- 2erg cosA 

(6) 

(7) 

(8) 

3. Minimum Intensity for Single-Frequency Operation 

Let us consider  now the expression of the gains derived 
in Sect. 1. W h e n  I~ reaches a sufficient high level, gc is 
saturated.  Then  the threshold  condi t ions necessary to 
main ta in  oscillation, Ec will not  be satisfied. Let  us 
regard  the t e rm of zero order  with respect  to I~ in the 
expressions of  gains 

) 
g o  e - iai 1 

g i = - f "  Xi  S '  

where 

X 2 
N2 : J~'i - - z  exp [-i(t/+ ~) ]  + XR exp [-i(t/-- aR)] 

2X~" 

X 2 V X. 2 7 
_r ~ / ~  n = J i  - i - - ~ - X R C O S ( O ~ R - ~ O ~ i )  ~ - X  2 . 2x k 
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Then, the evolution of the intensities ~r and the 
phase ~oj will be governed by 

dJj  1 
= (& + g*)dz, d~oj = ~ (g j -  g*)dz, j = i, c. 

Integration along one round trip leads to 

(vn) 

X 2 . lnG~- 2~2 In G~ = ~ -  
X~ Xc 

ME 04 
x In Moo - 2 ~ (PL-- Po), (8) 

1 X21 04 - ML 
q~iL)- ~oc(0)=-~6~22 n G i + x [ l n ~ o  

Oa L -x~(PL--Po)--k~~ c, (9) 

in G, + (Gz- 1) J,(0) = ~[2" La, (10) 

] (&(L)-- qh(O) = - �89 i In G,- k,Lc, (11) 

where 

Ol=l-Ra'~5.c~c, 02=Ra.6+6e, 
O a = l  + f i c - 3 i + 2 - 6 2  , 04=~.(J-6c.c~i) , 

2Xc02 
PL = tn-  1X 2" ai" ~7i(0) -[- 2Xc01' 

Xc ~ ~2 f2Xc .02}2. M 2 =  + ( 

Po and Mo are the quantities deduced from PL and 
ML by changing Gi into 1. q~c(L)-q~c(0 ) and 
opt(L)-q~(0) are the changes of phase that are under- 
gone by the waves E + and E i along a round trip and 

J~(L) 4(L) Q -  

L~ and L~ are the amplifier and the cavity lengths, 
respectively. 

The oscillation condition for the wave I + may be 
written as 

Y?(L) 1 
J+(0) < R e. (12) 

It is then possible to compute the minimum 
injected intensity required for single-frequency oscil- 
lation: Eqs. (6, 10, and 11) make it possible to compute 
I~(0) and G~ versus I~n j and the other parameters of the 
system. Reporting the so found values in (9), we can 
compute 6c for the resonant field taking into account 
the dispersion induced by the energy stored in the 

cavity from the injected signal. Equation (8) will then 
be used to verify if the gain G~ is brought under 
oscillation threshold condition (12). 

4. Single-Frequency Oscillation 

If I~ is strong enough to verify the conditions defined in 
the former section, the field Ec does not oscillate. The 
normalized intensity supplied by such a system may 
then be computed by solving the system 

I 2 , ,  go 
lna ,+(G,-  1 m L a  ~ (13) 

A = - �89 6~" In Gi - kiL~, (14) 

(IX) (1 - - r  2) 

J~(0) = 1 + r2g 2 - 2erg cos A Jinj, (15) 

r 2 +g2_2erg cosA Jlnj. (16) 
Jout = 1 + r2g 2 - 2erg cosA 

By combining the first three equations, it is possible 
to compute the round-trip amplitude gain g and the 
phase shift A corresponding to a given injected in- 
tensity. Inserting these values in the fourth equations 
leads to Iuw 

5. Corresponding Equations for Waveguide Lasers 

We consider now the case when the laser amplifier 
medium is located inside a waveguide. The relation 
which makes it possible to compute the round-trip 
gain, has to be modified in order to take into account 
the distributed loss due to guided propagation [13]. 
Neglecting the change of phase induced by the guided 
propagation and assuming a distributed loss per unit 
length %, Relations (VI) and (VIII) have to be replaced 
by 

= (gj  + gJ' - 

d%= j=c,i. 

If discrete losses are present inside the cavity 
(coupling loss, window, lens, etc.) it will be convenient 
to account for them into the round-trip gain acting in 
the cavity relationships (System V) by replacing g by 
g ~  where 1-Ic is the transmission of the cavity 
without distributed loss. 

More indicated are the relations expressing Gc as a 
function of G i and Ji(O) for the single-frequency ope- 
ration threshold. Consideration similar to the one 
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exposed in Sect. 3 leads to 

l n Q =  flc-lfli_l l n G i -  \fl~-l-l(flc-fli +2flck2 ) 

In Gi "~(0)-  fli + 1 
X 2tick 2 

E + 1 

x In M~ - k2 - 2flck~(Pz- Po), 

r-Pc(L)- ~G(0) = 2(fl-~_ 1) lnGi+flc 

(x) x 

x In Gi" ~tff i (0)  - -  fli q- 1 
Ji(0)-/ i + 1 

+ k l  ! n - ~ - - k 2 ( P L - - P o ) ]  

-- kr , 

4 ( o ) -  + 1 
In Gi - fli In = (fli - 1)a~L,, 

E + 1 

qh(L) - ~oi(0 ) = - ~ (ln G i + a~. La) -- kiL~, 
Z. 

where 

(17) 

(18) 

(19) 

(20) 

flj= go j = c , i ,  
~e" X2 ' 

0 5 = X ~ . ( f l i - 1 ) + 2 X c . 0 1 ,  0 6 = 2 X c ' 0 2  , 

kl 0 3 " 0 6 + 0 4 " 0 5  0 3 " 0 5 - 0 4 " 0 6  
= ' k 2 =  o +o6 

It is now possible to compute the threshold con- 
dition for single-frequency operation using the scheme 
described in Sect. 3 for non-guided propagation. We 
may also compute the output intensity using (15, 16, 
19, 20) with the same method explained in Sect. 4. 
Examples of such computations will be exposed in [ 14] 
which will deal with experimental results. 

6. Conclusions 

Using a density-matrix formalism, we have derived 
exact equations describing the injection phase locking 
process for homogeneously broadened lasers. The 

expression of the gain and the dispersion experienced 
by both the injected wave and the slave-laser eigen- 
wave are reported. The effect of saturation by the 
injected intensity has been investigated and we dem- 
onstrate that, since the injected intensity wave is 
increased, its gain is enhanced while the slave- 
oscillator eigenwave gain is depleted. Starting from 
these equations and the conditions imposed by the 
slave cavity, we have laid down coupled steady-state 
equations making it possible to determine single- 
frequency operation conditions and the output inten- 
sity when phase locking is achieved versus both inten- 
sity and frequency of the injected wave. We deduce that, 
when the injected light frequency is set in the neigh- 
bourhood of a slave cavity resonance, a large amount 
of the injected power is stored in the slave cavity. As a 
result, the gain of the slave-cavity eigenwave saturates. 
If the stored power is strong enough in order to bring 
this gain under oscillation threshold, the slave laser 
does not oscillate. It acts then as a multipass amplifier 
for the injected light. The number of passes will depend 
upon the injected-wave round-trip gain with regard to 
the slave cavity oscillation threshold. The theoretical 
formula have been laid down for both conventional 
and waveguide lasers. 
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