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Abstract. An analysis of cw synchronously pumped dye lasers is presented. Under the 
assumption that the cavity (tuning element) bandwidth is much wider than the bandwidth 
of the transform limited pulses generated, the pulse forming dynamics is rigorously treated. 
It is shown that for a finite mismatch between the lengths of the dye and the pump lasers, a 
steady-state pulse develops in the dye laser cavity with a conserved pulseshape. The 
characteristics (energy, shape, peak power, duration) of these pulses of ultimate width are 
quantitatively determined as a function of cavity mismatch. An analytical solution for the 
pulse envelope is determined, which yields I(t)oc Sech2(t/tp) to a good approximation. 

PACS: 42.55, 42.60, 42.80 

Synchronously pumped dye lasers have recently been 
widely used for picosecond spectroscopy. Previously 
published theoretical studies of this method of mode 
locking have either been numerical or qualitative 
I-1-9]. A quantitative description of the properties of 
the ultrashort pulses generated in a synchronously 
pumped mode-locked dye laser necessitates an ac- 
curate description of the gain dynamics in the dye 
medium, taking into account the cavity configuration 
of a typical dye laser. In this paper, the evolution of the 
intracavity intensity from spontaneous emission 
through many round trips is rigorously analyzed under 
the conditions of a periodic and synchronous exci- 
tation of the dye medium and an existing cavity 
mismatch, for a typical dye laser. It is shown that in an 
ideal (no cavity length and/or pump pulse pertur- 
bations, no bandwidth limitation) synchronously 
pumped laser, a steady state develops in which the 
dye putseshape is indefinitely conserved, the saturable 
gain mechanism resulting in an effective shift of the 
pulse and compensating the existing mismatch. 
In Sect. 1.1-4 the properties of these ultimate pulses 
are quantitatively determined almost exactly in a 
semianalytical formalism. In Sect. 1.5 an approximate 
analytical solution is found which yields the pul- 
seshape I(t)=ImSech2(t/tp) with Im and tp given in 
terms of the fundamental system parameters. In 
Sect. 1.6, the condition for the formation of a satellite 
pulse following the main pulse is given. 

In Sect. 2, computed results are presented. The approx- 
imate (sech 2) solution is found to be an excellent 
approximation. The critical dependence of the pulse- 
width and energy on the mismatch between the dye 
and pump cavity lengths is elucidated. It is shown that 
under typical conditions, dye laser pulses of width 
_-< 2 ps can be generated only if the mismatch is ____ 5 gin. 
The reduction of pulsewidth in this region is at the 
expense of a substantial decrease in pulse energy and 
susceptibility to the formation of satellite pulses. The 
application of the theory to practical experimental 
situations and its limitations are also discussed in 
Sect. 2. 

1. Theory 

1.1. Interaction of a Dye Laser Pulse 
and a Pump Pulse in the Dye Medium 

Consider a jet stream, three mirror folded cavity dye 
laser [10] which is pumped by a cw periodic train of 
mode locked pulses of width 50ps~100ps. When the 
cavity lengths of the pump laser and the dye laser are 
set close to equal, a dye laser pulse is generated, which 
is much shorter than the pump pulses near perfect 
synchronism. A typical situation is described in 
Fig. 1. 
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Fig. 1. Typical relative positions of the pump and dye pulses in local 
time. Dashed curve describes the gain G(z) for the dye pulse, z = 0 is 
the threshold instant and z 0 is a local time at which the dye pulse 
begins to become appreciable. If the pump pulse has excessive 
energy, a second threshold is reached at zs after which a satellite 
pulse is to be formed 

In the rate equation approximation and neglecting 
excited state and triplet absorptions 1, it can be shown 
[7] that the gain the dye pulse experiences at a transit 
through the dye jet satisfies 

dG 
d~- + crG{I(z) ( G -  1) + Ip('c) [(G/Geq) n -  13 } = 0, (1) 

where t/=ap/o-, Geq=eXp(a~nrd), G~G e effective (in- 
cluding the effect of angular hole burning J i l l )  emis- 
sion cross-section at the dye laser wavelength, ap: 
effective absorption cross-section at the pump wave- 
length, nr: number of dye molecules/cm 3, d: path- 
length inside the dye medium. In (1), it is assumed that 
the pump and the dye pulses are collinear in the dye 
and the fluorescence within the short duration of the 
intense pump pulse is negligible. Typically a~nrd~-3 
and G(z)~ G~q, which correspond to a complete but 
unsaturated pump absorption. Then, (1) can be written 
to a very good approximation as 

d GG + o'G[I('c) (G - 1)-  Ip(z)] = 0. (2) 
dz 

As shown in Appendix A, G is here redefined such that 
(2) takes into account the two transits through the dye 
jet in a round trip by means of the appropriate initial 
condition. With ~o defined as the instant in local time 
after which the dye pulse rapidly develops, the dye 
pulse can be neglected for ~c <'c o and the round trip 
gain can be written as 

G('c) = G 2('co)G l ('c) , (3) 

Triplet absorption can be approximately taken into account by 
including it in linear cavity losses 

where G~('c) describes the rise of gain from the ground 
state absorption level G a = e x p ( -  ~anrd) (o-a: absorp- 
tion cross-section at the dye laser wavelength) under 
the excitation of the pump pulse, i.e., G~('c) is the 
solution of(2) (with I = 0) with initial condition Ga, and 
is given by 

GI(z) = Gegp(0, (3a) 

where Xp(z)=exp(aEp(z)) and Ep(z)= i Ip(t)dt. In the 
--oO 

above, a sufficiently long cavity length is assumed such 
that when the pump pulse arrives at the dye jet (dye 
pulse propagating to the output mirror and back) the 
excited dye molecules are all relaxed to the ground 
state (fluorescence lifetime__< cavity transit time), which 
in general is a good approximation. 
The initial condition that supplements (2) for % < r is 
thus G(%)= Gz(%)GI(%) where G1(%) is given by (3a) 
and G2(zo) describes the initial value of gain for the 
second pass and depends on the saturation level of the 
dye molecules, after the first transit of the dye pulse. 
(The time between the two transits and the corre- 
sponding relaxation is generally small.) It is given by 
(Appendix B) 

G2('c0) = G,{XXp/[1 + Gl('co)(X- 1)])', (4) 

where 

y = exp( -  T~n/Tf), Xp = exp [crEp(oo)], 

X=exp[o-E(oo)], and E(-c)= i I(t)dt. 
--oO 

In the above T,, is roughly two-way travel time to the 
spherical end mirror (~300ps) and TI=SI+So 
fluorescence lifetime. 
For "c > %, the dye pulse develops to a peak intensity 
much higher than the pump pulse within a few ps. 
Hence, the pump pulse can be neglected in the dye 
pulse region and the solution of (2) (with Ip = 0) with 
initial value G(%) can be written 

G(~) = G('co)X('c)/[1 + G(%)(X(z)- 1)3, (5) 

where X(z) = exp [aE(z)]. 
Starting with intensity I(z) and experiencing gain G(z) 
and linear cavity losses (defined by reflectivity R), the 
final dye laser pulse at the end of a full cavity round 
trip, I/, is given by (Appendix A) 

If(T + A) = RG('c)I('c). (6) 

In (6), d =(L-Lp) /c  is the mismatch parameter ac- 
counting for the difference in arrival times of the pump 
and dye pulses at the dye medium due to imperfect 
synchrony, where L and Lp are the dye and pump laser 
cavity lengths, respectively, and c is the speed of light. 
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1.2. Stable Pulse Energy 

It is shown in Appendix C that in an ideal synchro- 
nously pumped dye laser in which the bandwidth of 
tuning elements >>bandwidth of the generated trans- 
form limited pulses and A > 0, a steady-state develops 
in which the pulse shape and therefore its energy are 
conserved. This can be mathematically stated as 

I~(~)d~= ~ I(~)d~=E(oo). 
- - o 0  l O O  

Substituting (5) and (6) into the above equation and 
integrating the right hand side, we obtain for the 
conserved pulse energy 

X 1/R = 1 + O ( % ) ( X -  1). (7) 

Substituting the expression for G(%) from (3), (3a), and 
(4), we can rewrite (7) as 

X 1/R = 1 + GaGI(ZO) 

.{XXv/[1 + Gl('co)(X- 1)] }~(X- 1). (8) 

In general, aE(oo)<l  and (8) can be approximately 
solved to the first order as 

aE( oo ) = 2R[  R G, G I ( z o ~ p -  1]/ 

{ I+RZG~Ga(%~v[1-Zy(Ga(%)- I ) ]  }. (8a) 

Given G~(%) one can solve the algebraic equation (8) 
or use (8a) for the pulse energy. Even though the dye 
pulse can be neglected for ~<~o, the time z o [-and 
hence G1(%) ] depends on the mismatch A. In a typical 
experimental situation, a certain mismatch exists, 
which leads to a particular %. Hence, the evolution of 
the dye pulse under the conditions of a given mismatch 
and pump pulse must be studied in order to determine 
the corresponding z o [or G(%)]. This will be treated in 
the next section. 

1.3. Parameters Describin9 
the Steady-State Pulse Properties 

In Appendix C, it is shown that in an ideal synchro- 
nously pumped dye laser cavity, the spontaneously 
emitted fluorescence builds up into an ultrashort pulse 
which, after a sufficient number of round trips in the 
cavity, reaches a steady state with its shape conserved 
and satisfying 

I(z) = R G(v) I ( z -  A) + Isp[G('c ) -  1], (9) 

where I~p is the intensity of spontaneous emission 
within the solid angle subtended by the beam. 
As depicted in Fig. 1, the local time (z) domain is 
divided into three regions. ~= 0  is defined as the 
threshold time, where 

RG(0) = 1. (10) 

For z<0,  spontaneous emission is dominant and 
intensity reaches a steady-state given by 

I(z) = Isp { G(z)(1 - R) [-1 + R G ( z -  A) 

.[I+RG(z-2A)[I+ . . . [ . . . ] ] ] ] -  1}, (11) 
I(0) = Isp { O(0) (1 - R) [ 1 + R G ( -  A) 

�9 [ I + R G ( - 2 A ) [ I +  . . . [ . . . ] ] ] ] - 1 } .  ( l la)  

The above series converges to a finite value I(0)>> l~p. 
Hence, for z > 0, we can neglect spontaneous emission 
and the conserved pulseshape satisfies 

I('c) = R G(z ) I ( z -  A) (12) 

with G(z) satisfying (2). 
Given A, (12) and (2) can be simultaneously solved 
using the initial conditions G(0) -1 /R and I(0) as 
determined from (10). However, since G=G1G 2 and 
G 2 is a function of the total pulse energy, pulse energy 
X must be found to determine the threshold time ~ = 0. 
Hence, in order to determine the relation between z 0 
and A, I(z) must next be determined over 0_<z<%. 
Iterating (12) for n steps of A 

I(nA) = R"G(nA) ... G(A)I(O) 

= l(O)[ RGz('C~ exp [ak = l  Y)I' 
where (3) and (3a) are used and ground state absorp- 
tion is neglected (G a = 1). Letting nA = z, 

I(z) ~- 1(0) [RGz(%)y/A exp Ep(t)dt , (13) 

assuming that the pump pulse does not change signi- 
ficantly over intervals of the order of A. Hence 

I(Zo) = I(0) {[RG2(7:o)] z~ 
[ gO l l l /a 

As shown in Appendix C, I(z) increases monotonically 
with z until it reaches a high peak value. The local time 
v 0 is so far arbitrarily defined to be an instant at which 
the dye pulse starts to become significant. A study of 
(2) reveals that I(z) tends to deplete (saturate) the gain 
while the pump pulse Iv(z ) is increasing it. Initially I(v) 
is negligible, but near the pulse region it rises rapidly 
and attains intensities >> I v within a few ps. Within the 
pulse region Iv(z) is negligible. The boundary between 
these two regions can be conveniently defined to be at 
v = z o at which 

dG = 0 ,  

i.e., when the dye pulse has reached a value the 
saturation effect of which compensates the excitation 
by the pump pulse. Then, from (2) 

1(~o) = lp (zo) / [G(~o) -  I ] .  (i5) 
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Given the pump pulse and the fundamental dye laser 
constants, the important parameters that define the 
properties (energy, shape) of the generated steady-state 
ultrashort pulse are thus determined from a simul- 
taneous solution of (15), (14), (11a), (10), and (8), and 
use of (3), (3a), and (4). An appropriate procedure is as 
follows: Given Gl('co) (or time -Co) (8) can be solved for 
the total pulse energy (X), which through (4) yields 
G2(%). The threshold instant ~--0 is then determined 
from (10) using (3) and (3a). Using the value of G2(zo) 
and (15), one can simultaneously solve (14) and (l la)  
for A. Thus, simultaneous solutions of G(%) and A are 
found, together with I(%) and the total pulse energy. 

1.4. Numerical Solution of  Pulseshape 

In order to determine the pulseshape for r > r o one can 
iteratively solve 

G(~ + A)= G(z){1 - aAEI(~)(G(~)- 1 ) -  Ip(~)] } 

I('c + A) = R G('c)l('c) 

in steps of A, starting at ~o with the initial conditions 
G(zo) and 1(%). Such an approach has been recently 
described also by Catherall et al. [-1]. Note that the 
value of A which corresponds to the initial gain G(%) is 
as determined in Sect. 1.3 and it must be only a small 
fraction of the pulsewidth in order that the pulse is 
stably maintained. (The saturable gain mechanism can 
yield a forward shift of the pulse only a small fraction 
of pulsewidth.) 

t.5. Approximate Analytical Solution 

The numerical solution of the previous sections yields 
the pulseshape and energy of an ideal conventional 
synchronously pumped dye laser as a function of 
cavity mismatch and pump pulse and dye laser cavity 
characteristics (linear losses, cavity configuration, dye 
constants etc.) almost exactly. In this section, we 
introduce an approximation which leads to the 
analytical determination of the steady-state pulse 
characteristics. 
Let t = z - z  o and 1(%)= I o, G(z0)= G o. Neglecting the 
pump pulse Iv in the vicinity of the dye pulse, the 
steady-state pulse satisfies 

I(t + A) = RG(t)I(t), 

where G(t) is given by (5). Iterating the above equation 
in steps of A, and letting nA = t and G(t) = exp [g(t)], we 
obtain 

t 

assuming that g varies slowly over intervals of A. 
Typically, cavity mismatches are of the order < 10 grn 

and pulsewidths are ~ 1 ps. Hence, A ~ pulsewidth and 
the change in I and 9 over A is small. 
For small total pulse energies, gain G(t) is only slightly 
depleted; then, we can approximate (2) by 

dG 
+ aGI(t)(G o - 1)=0.  (17) 

The solution of (17) is 

g(t) = go - a i (Go - 1)I(t')dt'. (18) 
0 

Substituting into (16) 

I(t)= Io exp {2 i I~ -  fi i ~I(t")dt"l dt' } , 

where 

~=ln(RG~ (19) 

fi = (G O - 1)/2A. 
t 

Let E(t)= S I(t')dt'. Then, 
0 

dt - I~ exp 2 (c~- fiaE)dt' . 

Differentiating 

d2E = 2 ~t  ( a -  fiaE)= d (2~E-  

which we can rewrite as 

dE 
dt I o = 2c~E- fiaE 2 . (20) 

The above equation (Ricatti) for pulse energy is 
analytically solvable. Its solution yields 

E(t) = Io[1 - e x p ( -  2qt)]/[ql + q2 e x p ( -  2qt)], (21) 

where 

q = (e2 + f i a l o ) l / 2  ,.~ O: 

ql = q -- ~ ~-- fiO~Io/2a 

q 2 = q + a  ---2cr 

After differentiation of (21) the corresponding pul- 
seshape is given by 

I(t) = I m Sech 2 [q( t -  tin)I, (22) 

where 

im= q 2 / f f f l  = (lnRGo)2/2aA(Go_ 1), 

tm=ln(q2/ql)/2q. 

The full width at half-maximum pulsewidth is 

tp = 1.7627/q ~- 3.5A/ln(nGo). (23) 
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Hence, the pulseshape is "sech 2'' with the peak of the 
pulse occurring at -c o + tin. Notice that the important 
pulse characteristics (Ira, tp) are only very slightly de- 
pendent on I o (therefore on I~p). This is expected since 
as I(t) increases around t--  0, G(t) does not change until 
the pulse attains appreciable energy in the leading 
edge. Hence, a considerably different value of I o would 
equally well correspond to approximately the same Go, 
while for a given G o one must still get a unique 
pulseshape and energy. The value of I o affects tin, 
resulting in an unimportant shift of the pulse peak 
relative to %. 
With these analytical results and the relation between 
A and G o determined in Sect. 1.3, all the properties of 
stable pulses generated by conventional synchronously 
pumped dye lasers are quantitatively determined. 

1.6. Satellite Pulses 

Another important characteristic o f  synchronously 
pumped dye lasers is the condition for satellite for- 
mation. If the pump pulse has sufficient energy a 
second threshold may be reached to develop a satellite 
pulse following the main pulse, as depicted in Fig. 1. 
The condition for the formation of a satellite pulse and 
its position in local time with respect to the main pulse 
is determined as follows: 
At the end of the dye pulse the gain is depleted to a 
value G~,t, given by the final value of (5) 

G~,, = G(to)X/[1 + G ( % ) ( X -  i ) ] .  (24) 

G(t) then increases due to the remaining energy in the 
pump pulse, in accordance with (2) (I = 0). Hence, for 
t ~ t  0 

G(t) = G~. t exp {a[Ev(t ) -  E;(to) ] }. (25) 

The condition for the formation of a satellite is 
R G ( ~ )  > 1, which, using (25), can be written 

RG~a t exp {a[Ev(oe ) -  Ep(zo)] } > 1. (26) 

If the above inequality is valid, the satellite appears 
slightly after t = t~, where 

RG~a t exp {a[E;(t~)-  Ep(zo) ] } = 1. (27) 

Given A, the solution in Sects. 1.1-1.3 yield the values 
of %, G(%) and the total pulse energy X. With the use 
of these values in (24) and (27), the position of a 
possible satellite pulse is determined. It is seen that R 
must be decreased (higher linear losses) to eliminate 
the satellite pulse since both z0 and t~ are then shifted 
towards the end of the pumping pulse. 

2 .  N u m e r i c a l  R e s u l t s  a n d  D i s c u s s i o n  

In Fig. 2, computed exact pulsewidth, peak power and 
pulse energy are plotted as a function of cavity mis- 
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Fig. 2. Characteristics of synchronously pumped dye laser pulses as a 
function of cavity mismatch. [-L : dye laser cavity length, Lp: pump 
laser cavity length, I n : intracavity peak power, tv: pulsewidth, and 
aE(oe) : intracavity energy/pulse.] The following constants are used: 
R = 0.5, G a = 1, Ip(t) = aEp(2aTv)- 1 sech 2 (t/Tv) ' aE v = 0.5 photons, 
Isp= 5 x 10 t7 ph/cm 2 s, and aTp= 1.13 x 10 26 cm; s. 2nd harmonic 
intensity is in arbitrary units 

match for a typical experimental situation. The peak 
2nd harmonic intensity, to be obtained in an autocor- 
relation pulsewidth measurement set-up, and the ap- 
proximate (sech z) solutions are also given. 
Since, typically, A is a very small fraction of a ps 
whereas pump pulses are ~100ps,  ( l la)  is simplified 
for computations as follows : Dividing the region t < 0 
into N intervals, each KA long, such that 'c = - N K A  is 
before the pump pulse, assume G=cons t  in each 
interval. From iteration of (9) in the jth interval over K 
steps of A, it follows that 

I~ = (RGyZl j  _~ + Isp[1 - (RGj) K] (Gy - 1)/(1 - RGj) .  

( l lb)  

N *h iteration o f j  yields I(0) [I(0)=IN] , starting with 

I o = I ( -  NKA) = I ( -  co) 

= l~p[G2(to)- I ] / [ I  - RG2(%) ] . 

In Fig. 3, pulseshapes obtained for a mismatch of 
3 gm are plotted. It is seen from Figs. 2 and 3 that 

the sech 2 solution is a very good approximation. 
Notice that any bandwidth limitation due to a tuning 
element or dispersion would lead to broader pulses 
than these ultimate pulses for the ideal synchronously 
pumped dye laser considered in this paper. 
These theoretical results are in excellent agreement 
with experimental observations [12-15]. The sharp 
decrease in the 2nd harmonic intensity over a few pin 
as A ~ 0  is quantitatively demonstrated. It is seen that 
pulses with < i ps duration are possible only if the 
mismatch __<2pro, for a typical pulsewidth of lOOps, 

I I I I I o 
I0 20 50 40 50 60 

L-Lp (/xm) 
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Fig. 3. Pulses for the exact and the sech z solutions and their position 
relative to the pump pulse, for mismatch L - L ,  =3.13 ~m. (Peak of 
the pump pulse occurs at t=O.) Parameters are as in Fig. 2 
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Fluorescence Lifetime Tf 
Fig. 4. Gain dynamics for the two transits of the dye pulse through 
the dye jet in a cavity round trip. T,, is the time elapsed between the 
end of the pump pulse and the arrival time for the second transit, and 
is typically ~250ps. Gl(Zo) and G2(%) are the initial values of gain 
for the respective transits 

and  tha t  there  is a subs tan t ia l  decrease in energy/pulse  
as A ~ 0 .  Pulse energy decreases since, then, the pulse 
forms at  ear l ier  t imes z o for which G(zo) is smaller,  see 
(7). Since more  energy remains  in the t ra i l ing  edge of 
the p u m p  pulse as "c o shifts to ear l ier  times, suscepti-  
bi l i ty  to satell i te pulse fo rma t ion  also increases as 
A ~ 0 .  To ta l  p u m p  energy (Ep(oo)) a n d / o r  R mus t  be 
decreased  in o rde r  to supress the satell i te in this 
shor te r  pulse  region  (A~0) .  
A consis tent  obse rva t ion  in synchronous ly  p u m p e d  
dye lasers is the exponent ia l ly  shaped  intensi ty  au to-  
cor re la t ion  functions.  U n d e r  prac t ica l  exper imenta l  
condi t ions ,  cavi ty  length, dye je t  thickness and  p u m p  
pulse f luctuat ions  result  in pe r tu rba t i ons  in cavi ty  
mismatch .  Since the pulse proper t ies  (pulsewidth  and  
energy) are  sensit ively dependen t  on A as seen above,  
in pa r t i cu la r  for A--,0, r a n d o m  f luctuat ions  in A mus t  
resul t  in significant var ia t ions  in pulse character is t ics .  
W i t h  the a s sumpt ion  tha t  these f luctuat ions  are on  a 
t ime scale longer  than  the pulse evo lu t ion  t ime, the 
present  analysis  can be app l ied  to such a non- idea l  
laser  by  set t ing A a r a n d o m  var iable  in the solution.  
This  Can be shown [16] to resul t  in exponent ia l ly  
au toco r r e l a t i on  traces and  mus t  be t aken  into  account  
in exper imenta l  pu lsewidth  de terminat ions .  
I t  shou ld  be no ted  tha t  such pe r tu rba t ions  in A and  
cavi ty  b a n d w i d t h  l imi ta t ion  (not  cons idered  here) m a y  
resul t  in a quas i s tab le  so lu t ion  for A < 0 near  A = 0, bu t  
in acco rdance  with  the present  results,  exper imenta l  
obse rva t ions  indicate  s table  mode - lock ing  in the A > 0 
region,  
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A p p e n d i x  A 

A round trip inside the astigmatically compensated three mirror 
folded dye laser cavity [10] is composed of two transits through the 
dye jet. As described in Fig. 4, in the first transit the dye pulse 
coincides with the pump pulse which typically has a duration 
< 100 ps. The dye pulse then travels to the spherical end mirror and 
makes a reverse transit through the dye jet, typically ~ 330 ps later. 
In general, by this second pass the pump pulse has left the dye 
medium. 
tt can be shown that [7] after the first transit through the dye jet, the 
dye pulse which starts as I(z) (before first transit) becomes 

I1(z ) = Gt(z)I(z), (A.1) 

where, from Sect. 1.1 

dG~ 
d-~- + aG~[l(~) (G~ - 1)- Ip(~)] = 0. (A.2) 

It(z ) is the pulse incident on the jet for the second transit, at the end 
of which, the pulse becomes 

ta(z) = G2(z)ll('c) = Gl(z)Gz(z)I(z), (A.3) 

where 

dG2 + aG211('c ) (G: - 1) = 0. (A.4) 
dz 

Letting G(z) = GI(z)G2(z), 

1 dG 1 dG 1 1 dG 2 b 
G dz G 1 dr G 2 d 'c '  

from which, using (A.2 and 4), 

dG 
dz FaG[I('c)(G--1)--Ip(z)]=O. (A.5) 

After the second transit, the pulse I2(z) travels to the output mirror 
and undergoing total linear losses of T= 1 - R, it is reflected back at 
the dye jet as Ii(z ) = RI2(z) for the first transit of the next roundtrip. 
Hence, starting with I(z), the final pulse at the end of a full round trip 
is 

I /('c) = R G(z)I(z), (A.6) 



Theory of SynchronousIy Pumped Dye Lasers 

where G(z) satisfies (A.5) subject to the initial condition 
= Gt(zo)G2(zo). 

G(%) 

Appendix B 

At the end of the first pass of the dye pulse through the dye medium, 
the trailing edge of the pump pulse keeps increasing the gain. 
Assuming that the gain value at the end of the first pass of the dye 
pulse is Gl,sa t the dye gain is pumped to a value [solution of (A.2) 
with I = 0  and initial value of Gl,~at] 

I 1 GI(oo)=G i ~,texp cr ~ Iv(t)dt . (B.1) 

Neglecting the pump pulse in the dye pulse vicinity, G~, ~t is the final 
value of the solution of (A.2) (I~= 0) subject to the initial value 
GI(%) , and is given by 

G,, ~,, = Gi(zo)X/[1 + Gi(zo) ( X -  1)], (B.2) 

where X = exp [a _~ I(t)dt]. 

After both pulses exit the dye medium, it can be shown from the rate 
equations that the logarithmic gain relaxes exponentially by the 
fluorescence lifetime (Tfl to the steady-state value given by the 
ground state absorption. Then, defining G=exP(9), when the dye 
pulse reappears at the dye jet for the second pass (after an elapsed 
time of T,,), the logarithmic gain has reached a value 

9z(%) = ga + (gi(cO)-- g,) exp(-  Tm/Tf). (B.3) 

Defining 7=exp(-Tm/T r ,  the initial value of gain for the second 
transit is therefore given by 

G2(%) = G~[Gi(oo)/G,]', (B.4) 

where G,=exp(g,) is the ground state absorption at the dye laser 
wavelength, as defined in the main text. 
Substituting (B.1 and 3) into (B.4). 

G2(%)=G, {[G~(%)X exp ! aIv(t)dtl/G~[I + G~(%)(X-1)]}' .  

From (3) 

which, substituted into the previous equation, leads to 

62(%) = G~{XXv/[1 + Gl(zo) ( X -  1)]if, (B.5) 

w h e r e X v = e x p [ a ~ I , ( t ) d t  ]. 

Appendix C 

It was shown in Appendix A that, neglecting spontaneous emission, 
the dye laser pulse satisfies (6) over a round trip in the cavity�9 It can 
be shown, by iterating (6) over many round trips, that without 
spontaneous emission a stable pulse cannot be maintained in the 
cavity for any A, since its leading edge will always experience loss for 
r < 0  (Fig. 1) 2. Hence, spontaneous emission must be taken into 
account in the rate equations in order to determine the evolution of 

2 We consider only A>0 since for A=<0, there is no stable pulse 
solution in the present model 
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the pulse. It is shown below that, for A >0, a stable steady-state 
develops in an ideal synchronously pumped dye laser, in which the 
saturable gain mechanism effectively shifts the pulse forward, com- 
pensating the retardation due to the cavity mismatch. 
Consider the region z<z  o where the effect of the dye pulse on the 
excited state population is negligible�9 Neglecting ground state 
absorption, the interaction in the dye medium is described by 

10  

10 

d Y l o  _ 

dt n~ 

~0 ~-/~i ~ Y/T, 

where I~p is the intensity of spontaneous emission into the solid angle 
subtended by the beam�9 It follows from the above equations that at 
the exit face of the dye medium [7], the dye laser intensity I(z) 
satisfies 

I(~) + Lp = [Io(z) + Isp] Go(z), (C. 1) 

where Io( 0 is the intensity at the entrance plane of the dye medium 
and 

Go(z)~exp[a ) Iv(t)dt ]. (C.2) 

Considering two transits [iterate (C.1) twice using the final pulse of 
the first pass as the input pulse of the second pass, during which 
there is no pumping], as in Appendix B, the final pulse at the end of 
a full cavity round trip becomes 

11 (z) = RG(z)Ie(z- A) +/sp[G(z)- 1], (C.3) 

where G(r) = G2(ro)Go(z) and G~(zo) denotes the constant gain in the 
second transit through the dye medium�9 
Suppose that an arbitrary pulse I0(0 exists in the cavity�9 In the next 
n round trips [iterating (C.5) n times] 

11 (z) = RG(z)Io(z- A) + Isp[G(z ) - 1] 

I2(z) = R2G(z)G(z- A)Io(z- 2A) + Isp 

�9 [RG(z)G(z-A)+ G(z) (1 - g ) -  1] 

I,(z) = R"G(z)G(z- A)... G(r-  ( n -  1)A)Io(z- hA) + llP(O, 

where 

Ff+ t(z) = I~p[R"G(z)G(z - A) ... G(z - hA) + R" 1 

�9 (1 - R)G(z)G(z- A)... G(z -  ( n -  1)A) 

+ ... + RVG(z- pA)... G(z-  A)G(z)(1 - R) + ... 

+ RG(z - A)G(z) (1 - R) + G(0 (1 - R ) -  1]. (C.4) 

After a sufficient number of round trips (large n), the first term will 
vanish a~d 

I (z~ ~ I~P(z) (C.5) 
n ~  i n ~ Q o  ~ J � 9  

The above indicates that any injected pulse vanishes, and the dye 
laser intensity evolves from spontaneous emission. Equation (C.4) 
can be rewritten 

I~, p l(z) = I~p[ RnG(z)G(z- nA) + (1 - R)R ~- 1 

�9 G(z) . . .  G ( T -  (n + 1)A)] + S 

Ff(z) = I~p[ R"G(z)G(z- A) .. . G(z(n- 1)A)] + S. 
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Hence, 

ISf+ l(z) = I~pR'G('c)G('c - A) ... G(z -  (n + 1)A) [G(z - nA)-  1] + I~P(z). 

For z4nA,  the first term vanishes, Hence, for "c<qA, where q~n,  

G ~(~) = I~f(~) -= IS~(~) �9 ( c . 6 )  

Equations (C.5 and 6) imply that, for z < z  o and after a sufficient 
number of round trips, the evolved laser intensity reaches a steady 
state with its shape conserved during subsequent cavity round 
trips. 
Substituting (C.5 and 6) into (C.3), we obtain, for z < %, a conserved 
pulse shape satisfying 

I(z) = R G('c)I(z- A) + Isp[ G('c)- 1]. (C.7) 

In the above, which is valid for z__<%, G(z) was considered inde- 
pendent of the dye laser intensity. For z ->_ %, I(z) is significant and its 
effect on G(z) must be taken into account. From (C.4) it can be seen 
that for z < 0 [where RG(O)= 1], I(z)= ISV('c) monotonically increases 
with z. Typically, the series (C.4) converges to a value I(O)>>Isp. 
Hence, considering the development of the spontaneously evolved 
dye laser intensity over a ca~-ity round trip for z >0, we can neglect 
the spontaneous emission occurring in that round trip. Then, for 
z>_0, the intensity at the end of the n th round trip is given by 

In(z ) = RG(z)I,_ ~ ( z -  A), 

where, from (C.4 and 6), I~(z) has the property that I,(z)= I,_ l(z) for 
z--0. Redefine n=  1. In the next N round trips, 

I~(0)  = Io(0 ) 

I i(A ) = RGI( A)Io(O) 

1do) = I ~ ( o )  

I2(2A)= RGz(2A)II(A) = RZGz(2A)GI(A)Io(O) 

I3(0 ) = 12(0 ) 

I3(A ) = RG3(A)Io(O ) = I2(A ) 

I3(2A ) = RGa(2A)I2(A ) = I:(2A ) 

I3(3A) =RaG3(3A)Gz(2A)GI(A)Io(O). 

Hence, IN('C)=IN_z(Z) for ~ < ( N -  1)A and after a sufficient number 
of round trips (large IV), I(z) approaches a steady-state, with a 
conserved pulseshape for all z. 
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