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Abstract. Partial differential equations are set up and solved partly analytically, partly 
numerically for the spatial and temporal variation of the amplitudes and phases of the four 
beams participating in four-wave mixing in a linear Passive Phase Conjugate Mirror. The 
instantaneous frequency of the resonating beam is also determined. It is shown that the 
duration and main features of the transient regime are determined not only by the 
properties of the photorefractive crystal but also by the external optical circuit, in particular 
by the quality factor and detuning of the resonator. 

PACS: 42.65, 42.80 

There has been considerable interest in the operation 
of Passive Phase Conjugate Mirrors (PPCM) because 
they do not require an additional source of pump 
beams. In particular, as it has been pointed out in 
[1, 2], the application of PPCMs to laser intercavity 
distortion correction appears to have good prospects. 

The theory of linear PPCMs in a lossless photore- 
fractive crystal in the transmission geometry under 
steady-state conditions has been formulated in [2, 3]. 
Also for the steady-state, numerical solutions which 
include the effect of absorption and are valid both for 
transmission and reflection gratings, have been re- 
ported [4]. 

The aim of this paper is to extend the calculations 
in 1-4] to the transient regime in a linear PPCM. 

1. Theoretical Model 

I.l. The Field Equations 

Let us consider the phase conjugate mirror shown 
schematically in Fig. 1. It consists of a photorefractive 
crystal inside a Fabry-Perot cavity with (amplitude) 
mirror reflectivities of M 1 and M 2. We shall assume 
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Fig. 1. Geometry of a linear PPCM 

that the crystal is cut in such a way that only one 
transmission grating may exist. This grating will 
emerge as the consequence of the interaction between 
beam 4, the signal beam, and beam 1, a "noise" beam 
which is present in the resonator due to the scattering 
of the signal beam by various kinds of nonuniformities. 
As a result of photorefractive gain beams 1 and 2 will 
grow, the grating will become stronger and beam 3, the 
phase conjugate beam will appear. We shall denote the 
frequency of the input signal beam by e)i, , the frequ- 
ency of the oscillating beam by o) 2 and then the 
frequency of the phase conjugate beam will be 
2(.o 2 - -  O ) i n .  
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Since the time constant associated with the 
emergence of the grating is much longer than the 
transit time of light through the crystal we can describe 
the dependence of the beam amplitudes upon x and t, 
the space and time coordinate, using conventional 
coupled wave equations [-3, 4] which in our case can be 
written in the following form 

0A 
- ~ A ,  (1) 

0~ 

where 

~ =  Az 

A3 ' 

A4 

(21 [o o o 
~/cos0 0 

B =  -~*/cos0 ~ 0 

-7 /cos0  0 0 - ~  

A~ is the complex, slowly varying (both in space and 
time) amplitude of the ith beam. The refractive index 
distribution may be written as 

n(r-) = no{1 - j y  expj(/(g �9 f +  Acot) + c.c.}, (3) 

where no is the average refractive index, ~ =j  r/e jw, q and 
~p represent an amplitude and a phase,/(g is the grating 
vector, f is a radius vector, Aco=~o2-m~,, ~=kx,  

= ~/k, k is the wavenumber inside the crystal, 5 is the 
absorption coefficient and 0~ and Oz are the angle 
between the x axis and beams 4 and 1 respectively 
(Fig. 1). Note that in deriving (1) and (2) we have used 
the usual approximations permissible for slowly vary- 
ing amplitudes but neglected optical activity, birefrin- 
gence and higher order diffracted beams. 

The boundary conditions for the differential equa- 
tions can be written as 

a4(0 , t) = h(t), A3(L , t) = O, 
(4) 

A~(0, t) =A2(0, t)M1, A2(L, t) = M2 ej2u, 

where h(t) is the step function, L is the normalised 
length of the crystal and I is the optical length of the 
resonator. 

We shall take into account only the longitudinal 
modes of the resonator in which case 

2kl = 2him + (co 2 - (_om)/ A mm] , (5) 

where o) m is the frequency of the ruth mode of the 
resonator in the absence of the nonlinear interaction, 
and Ao9 m is the frequency spacing between the modes. 
It has been shown [-2] that for photorefractive crystals 

the oscillation frequency detuning, Am ,~ Ac_o m. We may 
therefore express (4) as 

2kl ~ 2n(m + gin), (6) 

where gin=(ogin-o~m)/Ac%. Thus the boundary con- 
ditions may be taken as fixed although the frequency of 
oscillations is not known in advance and varies with 
time. We may further assume co 2 to be fixed which 
means that the variations of instantaneous frequency 
will be included in the phases of the beams. 

1.2. The Materials Equations 

Having described the effect of the grating upon the 
propagation of the electromagnetic waves we shall 
now consider the response of the crystal to the input of 
the waves. We shall use the equations presented in 
[5, 6] under the following approximation. 

The total intensity of all four beams, Io=SI~ 
=S[Ai[ 2, is small enough so that the average free 
electron concentration no is much less than the con- 
centration of aeceptors NA, and the electron recombi- 
nation time ze is much less than the dielectric relaxation 
time za = eo~r/e#G (So and q are the free space permit- 
tivity and dielectric constant respectively, e is the charge 
of the electron and # is the mobility). In this case we can 
assume that n~ reaches its equilibrium value 
instantaneously. 

With the aid of the above approximations and 
taking into account the fringe movement resulting 
from the fixed detuning we obtain the differential 
equation 

67 +(jf  + a)7=ci, (7) 

where 

i = ( A 4 A  ~ -F A2A~)/Io, t' = t/t o , 

t o = z~(NAIo/I o onr 

Io0 is the input intensity in the signal beam, 6 = Acot o. 

E D dr- Eq +jEo reffn~ io Eq(ED +jEo) 
a = I  o EM+ED+jEo,  c= 4 EM+ED+jE o' 

eNAA EM-- A E o -  2nks T (8) 
g q -  2~r~30, 2rc/~z~ ' eA 

Here ref f is the relevant electro-optic coefficient, k B is 
Boltzmann's constant, T is the absolute temperature, 
E o is the electric field applied in the direction of Kg, and 
A is the grating period. It is worth noting that t o is 
independent of space and time but I o may vary due to 
absorption and therefore ne and % may also be 
functions of space and time. 
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In order to have a complete set of equations 
describing the transient regime in a PPCM it is 
necessary to add some initial condition which will be 
discussed in the next section. 

2. The Start of the Transients 

The unknowns in our equations are the complex 
functions Ai(x,t ) (i= 1 to 4) and co 2 the variable 
frequency of oscillations. It is however not difficult to 
prove a property of (1-8) which enables us to find the 
frequency of the oscillations after the solution has been 
obtained. 

Let us assume that &(x, t) are the solution for a 
given c5 (i.e. fixed c%). It may be shown then that 

A'i,2 = Ai,ze -)~c , A'3 = A3 e-j~r , A'4 = A 4 (9) 

are also a solution of(l) and of the differential equation 

03; , , ,  , , ,  
Ot ~ + aT = c(A4A1 + AzA2 )rio. (10) 

It may now be seen by comparing (7) and (10) that 
we may choose arbitrary fixed detuning 6 (i.e. (92) in (7) 
and the actual instantaneous frequency of oscillations 
may be found from the slowly varying phase of beam 1, 

&Pl 040=0)2+ 0~-" (11) 

Looking at Eqs. (1-7) it seems fairly obvious that 
an exact analytic solution is not possible. We may 
however obtain analytic results for the start of the 
transient process when [a]t' ~ 1 and A 3 ~ A1,2 ~ A4" So 
we shall assume that A 3 = 0, A 4 = 1 (since the photore- 
fractive effect depends only on the depth of modulation 
it is sufficient to use relative units). The amplitude of 
beam 1 (a noise beam initially) will grow due to two- 
wave interaction with the input signal beam 4. The 
amplitude of beam 2 will be determined by the 
amplitude of beam 1 at r - L .  Beam 2 will propagate in 
the crystal without any interaction (there is no signifi- 
cant grating as yet) hence its amplitude will remain 
constant provided absorption in the crystal is neglect- 
ed which, for simplicity, we do here. Equations (1, 4, 
10) then reduce to 

07 =cA*,  (12) &, 

3A* 7 
0~ cos0'  (13) 

A*(O, t)= lf/I A*(L, t), (14) 

where h~-=M1M 2 exp(j2ngi.). It is worth noting that 
(12-14) also describe the build-up of oscillations in a 

ring resonator with photorefractive gain [2]. The 
initial condition for A*, compatible with (13) and (14) 
may be written as 

A*G0)=/L (4+ L~ i ~ / c o s  0, (15) 

where /~, is a small constant representing a small, 
uniform noise grating due to scattering of the input 
signal beam. 

Since we are interested in the variation of A 1 in the 
vicinity of t' =0, we can assume that A t is constant in 
(12). The solution of the differential equations (12) and 
(13) satisfying the additional conditions represented by 
(14) and (15) may then be obtained in the relatively 
simple form 

A~'(~,t)= flcos0 [(1-M)exp(ct '~/cosO) _11  (16) a - - ~  L - I - ~  " 

For ct'L/cosO ~ 1 and assuming that E o >> ED, E M 

and cos0~ 1 we can further simplify (16) and obtain for 
the intensity and phase of the oscillations 

I l o  
IdL,  t)= [A I(L, 012 ~ 1 + (2nQgin) 2 

[ 2Q-(2nQgi.)2 1 
x 1+ l+(2nQgi,) 2 r , (17) 

tpl(L, t) = - 2~Ogin(l + Qz), (18) 

where Q = M 1 M z / ( 1 - M 1 M z )  is, in the absence of 
absorption and diffraction losses, proportional to the 
quality factor of the resonator, and 

( ? (19) 7:= reffn024 EqLt'; I1~ 1 - M I M 2 J  

We can now draw some conclusions with the aid of 
(17) and (18) about the character of the transient 
regime. First it may be noticed that if gin = 0 we have 
~p = 0 i. e. there is no change with time in the value of the 
instantaneous frequency. It may further be seen that a 
decrease in Q leads to (i) the slowing down of the 
growth of oscillations, (ii) less influence of gin on the 
initial "noise" oscillation intensity and on the rate of 
growth, and (iii) a decrease in the initial oscillation 
frequency detuning whose sign and amplitude depends 
of  c o u r s e  o n  gin" 

A further point of interest is that under our 
assumptions this initial stage of the transient process is 
independent of the applied electric field, Eo and 
depends only on the electro-optic properties of the 
crystal and on its length. 

The analytic solution presented in this section is 
valid only at the start of the transients. If we wish to 
investigate the emergence of the phase conjugate beam 
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and the transition to the equilibrium regime we have to 
resort to a numerical solution which will be done in the 
next section. 

3. Numerical Algorithm 

First we wish to note that the natural choice for the 
oscillation detuning 6 is its value at equilibrium which 
can be determined by the method represented in [4]. In 
this case the phase of the oscillation lpx will tend to a 
constant value as t' increases. If the equilibrium value 
of the detuning is chosen with some error then tpl will 
vary linearly with time in the equilibrium regime. 

The spatial distribution of the unknown functions 
,~(, + l~ = ~(r t', + 1) at t' = t', + A t' (where A t' is the time 
step) can be obtained from the solution of the linear 
differential equations (1) and the boundary conditions 
(4) where the coupling constant, ~ = r is taken as its 
value at t '= t',. We solved this system numerically using 
standard finite difference method with deferred correc- 
tion. The coupling constant for t '=  t', + 1 may then be 
obtained by solving (6) with the aid of the third order 
Runge-Kutta method giving 

+1 +1 

+1 --(a (" �89162189 (20) 

where 

K (") = 7(")i (")- (d") +j&)r (21) 

and the superscript (n + �89 means that the variable is 
determined by solving (1-4) with 

y = 7 (") + �89 t'. (22) 

We found that A t' < [20 Re {a}] - ~ provided sufficient 
(better than 1%) accuracy for the calculations. 

4. Results of the Numerical Calculations 

As our example we chose a BSO crystal in the usual 
orientation I-7] so that only one single transmission 
grating is significant for four-wave mixing applica- 
tions. We took the following values for the crystal 
parameters: 

%=6.4~ts,  ~r=56,  # =  10-5 m2/Vs, 

no = 2.62 , r~ff = 4  x 10- lZm/V, 

N A = 0 . 9 5 x 1 0 2 2 m  -3. The calculations were per- 
formed for a wavelength of 2=0.548 ~tm, the length 
of the crystal was taken as 1 cm, and the external angle 
as l ~ 

The rise of the transients, as in any self-oscillating 
system, may be expected to depend on the intensity of 
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Fig. 2. Intensity of the oscillation versus normalised time 
(Eo = 2.5 kV/cm, ~=0, M 1 =0.9, M 2 = 1, gi,= -0.044) for differ- 
ent values of noise intensity 

the "noise" oscillation 110. The set of curves presented 
in Fig. 2 for different values of I10 clearly show that for 
sufficiently weak initial noise intensity the shape of the 
transient response does not depend on the exact value 
taken for the noise; it determines only the delay in the 
build-up. For our further calculations we chose the 
noise intensity to be 104 times below the input power in 
beam 4. 

The results of our calculations for ~ = 0  and 
E0=2 .5kV/cm are presented in Fig. 3 for different 
values of resonator detuning (the corresponding 
equilibrium oscillation detuning 6 is given in the figure 
caption). One may immediately notice the following 
features of the transient regime. The oscillation beam, 
I1, is the first one to appear, the reflected phase 
conjugate beam, 13, emerges only a little later. Also, the 
intensity of the reflected beam changes more smoothly 
and more monotonically than the intensity of the 
oscillation. During the growth of oscillation, as may be 
expected, its phase changes rapidly but eventually 
tends to a constant, a proof that we guessed correctly 
the equilibrium value of 6. 

It is interesting to note that the qualitative conclu- 
sions drawn on the basis of our analytical treatment of 
the initial stage of the transient regime turn out to be 
valid for the whole transient regime. In full accordance 
with (17) and (18) the rate of growth of the intensity 
drops significantly and the phase change becomes 
more rapid as [gi.I increases from zero. In particular, 
the growth of intensity at the very beginning of the 
transients is strongly delayed as Igi,J is increased. The 
delay becomes infinitely long when Igin[ is SO large that 
according to the results of [2, 4] oscillation can no 
longer take place. 

Let us discuss now the influence of the applied 
electric field on the transient regime in a PPCM. The 
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Fig. 3a-f. Intensity of oscillation, It,  of the reflected beam, 13 and the phase of oscillations (Px versus normalised time for Eo = 2.5 kV/cm, 
c+=0, M1 =0.9, M 2 = ], (a) gi, =0.051, 6 = 12].9, (b) g~, =0.03, 6 = 127.5, (c) gj, = 0, +5 = 125, (d) gi ,= -0.044, +5 =92.7, (e) gin = -0.073, 
+5=77.8, (f) g i ,=-0 .094 ,  +5=68.6 

grating time constant, characterized by 1 ~ R e { a }  is 
known to increase with increasing electric field as 
shown in Fig. 4. But, according to Fig. 5, the increase of 
Eo hardly affects at all the rise of I1, a result predicted 
by our analytical solution for the initial stage of the 
transient regime. It may be further seen in Fig. 5a that 
an increase in E0 causes a decrease in the equilibrium 
magnitude of oscillation. The explanation seems to 
follow from Fig. 5b namely that the stronger coupling 
to the resonator appears to favour the phase conjugate 
beam. 

The effect of lower mirror reflectivity, shown in 
Fig. 6, is also in agreement with the predictions of (17) 
and (18). It may be seen by comparing Fig. 6 with Fig. 3 
that the decrease in mirror reflectivity leads to slower 
variation in the transient regime and to a diminution of 
the dependence upon resonator detuning. 

Absorption in the crystal may be expected to have a 
similar effect to that occurring with reduced mirror 
reflectivity, and this expectation is indeed born out by 
Fig. 7, plotted for eL=0.22. In comparison with the 
e L = 0  case the curves become smoother, the ripples 
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Fig. 6a-c. Intensity of the oscillation, 11, of the reflected beam, 13, 
and the phase of the oscillation qh versus normalised time for 
E o = 2 . 5 k V / c r n  , c~=0, M1 =0.8 , M2 =0.9 , (a) gin=0.05, ($=67.2, 
(b) gin=0, 6=64 ,  (C) g i , =  --0.095, 6=53.3  

which occur for large [ginl disappear, the sensitivity to 
resonator detuning decreases, and the growth rate 
decreases as well. Thus absorption leads not only to a 
drop in phase conjugate reflectivity but also to a 
considerable slowing down of the response of a PPCM. 

5. Conclusions 

It has been shown that the duration and character of 
the transient regime in a PPCM is determined not only 
by the intensity of the input beam and the properties of 
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Fig. 7a-c. Intensity of the oscillation, It, of the reflected beam, 13, 
and the phase of the oscillation ~o 1 versus normalised time for 
E 0 =2.5 kV/cm, eL= 0.22, M 1 =0.9, M2 = 1, (a) gi, =0.1, 6 =41.5, 
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the electro-optic crystal but also by the properties of 
the external optical circuit, in particular by the detun- 
ing and the quality factor of the resonator. The higher 
is the quality factor the faster is the response of the 
PPCM.  The role of absorption has also been shown 
strongly to affect the character of the transient regime. 
We expect that an optimum value of absorption exists 
which will lead to a minimum duration for the 
transients. This is because the decrease in absorption 
constant leads to a decrease in photoexcited electron 
concentration which, in turn, leads to an increase in 
dielectric relaxation time. 

We hope that the general conclusions drawn in the 
present paper for PPCMs are also valid for other kinds 
of geometries making use of photorefractive gain, e.g. 
the ring phase conjugate mirror described in [3]. 

Comparison with experimental results (which, as 
far as we know are not available as yet) may be 
expected to yield good qualitative agreement. The time 
scale will of course depend on the initial value of the 
"noise" which may vary considerably between crystals 
but it seems also likely that good quantitative agree- 
ment will require some refinement of the model by 
including optical activity and birefringence. 
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