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Abstract 

This paper treats the hyperbolic-elliptic system of two conservation laws 
which describes the dynamics of  an elastic material having a non-monotone 
strain-stress function. Following ABEYARATNE & KNOWLES, we propose a notion 
of  admissible weak solution for this system in the class of functions of bound- 
ed variation. The formulation includes an entropy inequality, a kinetic relation 
(imposed along any subsonic phase boundary) and an initiation criterion (for 
the appearance of new phase boundaries). We prove the Ll-continuous 
dependence of the solution to the Riemann problem. Our main result yields 
the existence and the stability of propagating phase boundaries. The proofs 
are based on GLIMM'S scheme and in particular on the techniques of GLIMM 
and LAx. In order to deal with the kinetic relation, we prove a result of point- 
wise convergence of the phase boundary. 

O. Introduction 

This paper deals with the following system of two conservation laws which 
decribes the motion of an elastic material 

(o.1) Otw - Oxv = O, Otv - Oxa(w) = O. 

Here w > - 1  and v represent the displacement gradient and the velocity of 
the material, respectively. The stress a : ] - l ,  c o [ ~ R  is assumed to be 
monotonically increasing except in an interval ]WM, Win[ (see Figure 0.1). Such 
a form of the stress is typical in the modeling of solid materials which admit 
different phases. A van der Waals gas also is described by a very similar 
system. System (0.1) is of mixed type, i.e., hyperbolic in the phase-1 region 

= [w < WM} and in the phase-3 region ~ = [w >Wm}, but elliptic in the 
intermediate region of phase-2 states. The phase-2 states are known to be both 
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mathematically and physically unstable (JAMES [23]). We consider here exclu- 
sively solutions which take their values in the phase-1 or phase-3 regions only. 

Solutions to (0.1) in general are discontinuous, and so must be understood 
in the sense of distributions; see LAX [25, 26] for background on weak solu- 
tions. Such discontinuous solutions are in general non-unique and those having 
a physical meaning must be selected through an admissibility (or entropy) 
criterion. We refer to DAFERMOS [7] for a review of entropy conditions in the 
setting of hyperbolic problems. As was pointed out by JAMES [23], the mixed 
system (0.1) possesses a high degree of non-uniqueness, which a number of 
authors have attempted to resolve by means of suitable generalizations of en- 
tropy criteria from the theory of hyperbolic conservation laws. First of all, 
SHEARER [38] considered the LAX entropy criterion [25, 26]. The viscosity and 
viscosity-capillarity approaches have been analyzed by SLEMROD [41, 42]; cf. 
also HAGAN • SLEMROD [18], PEGO [35] and SHEARER [39, 40]. HATTORI [19, 
20] has investigated the application to (0.1) of the entropy-rate admissibility 
criterion proposed by DAFERMOS [6]. HSlAO [22] has considered the Liu entropy 
criterion [32] which allows one to treat equations of state losing genuine 
nonlinearity in hyperbolic regions. Another approach to resolve the non- 
uniqueness can be found in a work by KEYF~TZ [24]. Additional material on 
system (0.1) is found in [12, 13, 36]. 

All the above works treat the Riemann problem only, i.e., a Cauchy prob- 
lem for (0.1) with initial condition that consists of two constant states. This 
problem can be solved explicitly (in a possibly non-unique way) by using sim- 
ple waves (i.e., shock waves, rarefaction waves, and contact discontinuities). 
Adding an "admissibility criterion" allows one to reduce the class of (ad- 
missible) solutions and in most situations to select a unique solution. However, 
it must be emphasized that the solution of the Riemann problem (when it is 
unique) depends on the chosen admissibility criterion. It turns out that there 
is no preferred criterion for the selection of the "physically meaningful" solu- 
tions of (0.1). 

A different approach was recently investigated by ABEYgATNE & KNOWLES 
in [2]. The main suggestion of these authors is that system (0.1) is not 
physically complete enough to describe the evolution of a phase boundary in 
an elastic material. It must be completed with a kinetic relation imposed along 
any subsonic phase boundary: This kinetic relation yields the rate of entropy 
dissipation across the phase discontinuity. Moreover, ABEVARATN~ & KNOWLES 
add an initiation criterion which controls the possible appearance of a new 
phase. We refer to [1] and the references therein for the motivation of in- 
troducing a kinetic relation and an initiation criterion which are actually 
classical in the context of quasi-static problems. Cf. also GURTIN [17] and 
TRUSKINOVSKY [44] for related ideas. 

ABEYAgATNE & KNOW~ES [2] proved that the Riemann problem for (0.1) 
always admits a unique admissible solution, i.e., a weak solution satisfying the 
kinetic relation and the initiation criterion, as well as the entropy inequality, 
which reads 

(0.2) Ot(W(w) + �89 v 2) - Ox(a(w) v) <= O, 
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where W : ] - 1 ,  c~ [---,R is the internal energy function defined by 

w 

(0.3) W(w )=~a(y )dy  for w ~ l - l , ~ [ .  o 
Next they showed in [3] that the solution of the Riemann problem found by 
StEMROD through the viscosity-capillarity approximation corresponds to a 
special choice of  kinetic relation in their approach. It is not difficult to check 
also that the solution found by S~IEARE~, using Lax entropy inequalities coin- 
cides with the maximally dissipative kinetic relation investigated in [41. (I 
thank MICHAEL SHEARER for pointing this out to me.) 
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Figure 0.1 

The present paper is devoted to continuing the analysis of  system (0.1) 
through the approach of ABEYA~ATNE & KNOW~ES. As in [2], we restrict our 
attention to the case of a piecewise linear stress. This assumption simplifies 
the calculations, but it is not a real restriction to the results of this paper. 

Our purpose is first (Sections i and 2) to give a slightly different presenta- 
tion of  the ideas of  [2], which I think clarifies the concepts of kinetic relation 
and initiation criterion introduced by ABEYARATNE & KSrOWLES. Section 1 
presents the mathematical formulation of a well-posed problem (at least for 
Riemann data) associated with system (0.1). As is usual for hyperbolic prob- 
lems, we consider bounded solutions of bounded variation (BV). Our formula- 
tion follows [2] with however two main modifications. The kinetic relation is 
introduced from a completely dynamical point of view and not as a generaliza- 
tion of the quasi-static point of  view as was done in [2]. That leads us to 
a larger range of admissible values for what we call below the entropy dissipa- 
tion function in the kinetic relation. Furthermore, the initiation criterion at 
some point x is formulated here in two different ways, depending on whether 
x is in an interior point of  the space interval [a, b] where we set the problem, 
or x is a point of its boundary. For definiteness, we allow spontaneous 
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initiation of a new phase only at the extremities of  the bar [a, b], which is con- 
sistent with the classical static theory. 

Then Section 2 describes briefly the solution of the Riemann problem. 
We explain how to take into account the two changes mentioned above in 
the construction of [2]. The main result of this section establishes the 
Ll-continuous dependence of the Riemann solution with respect to its initial 
states. It must be emphasized that the two observations above are essential 
for the continuous-dependence property to hold, especially our condition 
that a new phase may occur spontaneously only at the extremities of the 
bar. The same results are also obtained for the Riemann problem in a half 
space. Note that, although uniqueness of the admissible solution holds for 
the Riemann problem, nothing is known for the general Cauchy problem. 
As a matter of fact, the issue of  uniqueness for conservation laws is 
understood in a few situations only. (See, for hyperbolic problems, 
LE F~OCH & XIN [31] and the references therein.) 

The second part of the paper (Sections 3 and 4) focuses on the solutions 
of  the Cauchy problem for system (0.1), which are BV perturbations of a 
single propagating phase boundary separating a phase-1 state and a phase-3 
state. We prove the existence of admissible weak solutions of this form, 
when the initial data on both sides of the phase discontinuity has small 
total variation. We treat the case of any non-characteristic phase boundary 
as well as the case of a characteristic phase boundary provided that no 
strong wave arises from perturbating the states on both sides of the phase 
boundary. The random-choice scheme due to G~IMM [15] is used to con- 
struct approximate solutions to the problem. Its stability in the BV norm 
is proved from an essentially linear estimate of  wave interactions between 
two Riemann solutions. Such linear interaction terms were used in a dif- 
ferent situation by CI-I~RN [5] and SCI-IOCHET [37]. Note that the strength 
of the phase discontinuity is not (and cannot be) assumed to be small in 
any sense. 

The stability of the scheme in the total variation norm is sufficient to ex- 
tract a subsequence converging to a weak solution of the problem. This con- 
vergence result holds almost everywhere with respect to the Lebesgue measure. 
This is sufficient to show that the scheme converges to a weak solution of the 
problem. But, proving that this solution is admissible requires a result of point- 
wise convergence of the phase boundary. In Section 4, we establish this proper- 
ty by using the technique of analysis due to GLnVIM & LAX [16]. We next prove 
that it is sufficient, at least for non-stationary phase boundaries, for the 
passage to the limit in the kinetic relation. 

An extension of the results in this paper to arbitrary large initial data 
would require a better understanding of the complex phenomena of  initiation 
of new phases. 

Many ideas in this paper are related to those in the developing theory of 
nonlinear hyperbolic systems in non-conservative form for which we refer the 
reader to DAL MASO, LE F~OCH & MURAT [8] and LE Fu3c~ & LIU [30]; see 
also [ 27 -  29]. 
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1. Mathematical formulation of the problem 

This section describes the formulation of the Cauchy problem associated 
with the mixed system (0.1). The formulation includes the system of  conserva- 
tion laws (mass, momentum) (0.1) together with the (Clausius-Duhem) entropy 
inequality associated with the entropy W ( w ) +  �89 v 2. It is made complete by 
adding to these both a kinetic relation along any subsonic phase boundary and 
an initiation criterion for the occurrence of  possible new phase boundaries in 
the solution. We specify below the assumptions on the kinetic relation and the 
initiation criterion which will be essential to the results of Section 2. This sec- 
tion also introduces notation which will be of constant use throughout this 
paper. 

For simplicity, we assume that the stress o- : ] - 1, oo [--+ R is a piecewise linear 
function of the following form (cf. Figure 1.1) 

(1.2) ( kl w for - 1  <_ w <_ WM, 

a ( w )  = [k3w,~ + (klWM - k 3 w m )  (w  - Wm)/ (WM -- Win) for WM <--_ W <__ W,~, 

k3w for wm _-< w. 

crC w) l 

I /  
I 

Figure 1.1 

The constants kl, k3, w m and w M in (1.2) are assumed to satisfy the properties 

(1.3) 0 < k 3 < k l ,  0 < w M <~ wm. 

We use the notation 

The phase-I region 
{w >__ win} correspond to observable and 

~M = klWM, (Tin = k3wm" 

= { - 1  <W=<WM} and the phase-3 region ~ =  
stable states. In our formulation 
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below, the solution cannot enter the unstable phase-2 region {Wu < w < win} 
and so must jump from ~ to ~U3 or conversely. A discontinuity between 
two states in different phases is called a phase boundary. 

System (1.1) is linear-hyperbolic in ~ and ~U3, and the corresponding 
characteristic speeds are 

4-c1= + ~  in 8 ,  + c 3 =  4-x/k33 in ~ .  

In view of (1.3), the waves in phase 1 travel faster than those in phase 3, i.e., 
Cl > c3. We may also use the notation 

(1.4) c(w) = Cl if w <= WM, c3 if w_--> win. 

Note that c(w) is not defined if w belongs to ]WM, wm[. With some abuse of 
notation, ~U1 and ~U3 sometimes also denote {(v, w ) / - 1  < w <= WM, v ~ R} 
and [(v,w)/wm <= w , v ( R } ,  respectively. We also set ~U= ~ w ~ .  

Since (1.1) is linear-hyperbolic in ~ and ~ 3 ,  possible discontinuities in 
the initial data for (1.1) are simply advected along the characteristic lines with 
slopes either +Cl or 4-c3. (This is true at least up to the time of appearance 
of a new phase.) The elementary waves in each of the regions ~U1 and 
are contact discontinuities. Hence, the special choice (1.2) for the constitutive 
law is very convenient. It makes the analysis quite simple in the hyperbolic 
regions and allows us to focus on the phase boundaries between )U1 and 
~U3. We shall see that the description of the appearance and the evolution of 

the phase boundaries is far from trivial. 
In the theory of  hyperbolic conservation laws, it is standard to consider 

solutions u = (v ,w) to (1.1) in the function space Lloc(R + • Yr (recall 
that Yr ~U1 w 8 )  which satisfy 

(1.5a) system (1.1) in the sense of distributions, 

( l .5b)  the entropy inequality (0.2), (0.3) in the sense of distributions, 

(1.5c) an initial condition u0 at t = 0 in the L~oc sense. 

Here u0 is a given function in Lloc(R, • )  and, for future reference, we 
rewrite the entropy inequality in the form 

(1.6a) 

with 

(1.6b) 

O~U(u) + OzF(u) <= 0 

W 

U(u) = W(w) + �89 v 2, F(u) = - a ( w )  v, W(w) = I a(Y) dy. 
o 

We recall that solutions in the sense (1.5) are unique (at least for Riemann 
data) in the standard situation of a (genuinely nonlinear or linearly degenerate) 
increasing stress a. This is no longer true in the case of the mixed system under 
consideration here: See for instance JAMES [23]. We also point out that the 
entropy function U is not a convex function. 

To complete the formulation (1.5), we follow ABEYARATNE & KNOWLES [2]. 
Let us first give some motivation for their suggestion. Suppose u ~ = (v e, w e) 
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is the solution of  a regularized version of system (1.1) obtained by adding 
high-order terms, depending on a (small) parameter e, in the right-hand side 
of the equations (e.g., by using the viscosity-capillarity terms as was done by 
S~EMROD [41]). AS was pointed out by LAx for general systems of conservation 
laws, the limit u = l imu ~, if it exists (and if the convergence holds in a 
suitable topology), must be a solution to (1.1) in the sense (1.5); in particular, 
the entropy inequality (1.6) must hold. Since (1.5) is incomplete, it seems 
natural to "keep more information" about the limiting function u from its 
regularization u e. Specifically ABEYARATNE & KNOWLES' suggestion is equiva- 
lent to replacing (1.6) with the stronger requirement that 

(1.7) OtU(u) + O f ( u )  = p ,  

where/~ is a given non-positive measure that clearly must satisfy certain restric- 
tions. Note that in principle tt could be determined by the formula 

tt = weak-starlim (OtU(u ~) + OxF(u~)) 
e-,O 

(at least when u e has uniformly bounded total variation in ( t , x ) ) .  This for- 
mula may not give a very explicit expression for p. Fortunately it turns out 
that (1.7) is needed (to achieve uniqueness) only for one kind of discontinuity: 
the subsonic phase boundaries. Moreover, in that case, we can allow a large 
range of measures p. Here, we call subsonic and supersonic those phase 
boundaries that respectively travel with speed less than and greater than the 
contact discontinuities in phase PU3. 

The precise formulation of condition (1.7) given below requires that u be 
a bounded function of bounded variation. When u has bounded variation, we 
call entropy dissipation the value of  the measure OtU(u)+ OxF(u) along a 
curve of  (contact or phase) discontinuity of u. According to [2], the kinetic 
relation yields this entropy dissipation along any subsonic phase boundary, as 
an explicit function, say q~(V), of the speed V of propagation of this discon- 
tinuity. In applications, the actual kinetic relation, that is, the function ~, 
must be determined from the properties of the specific material under con- 
sideration. This kind of constitutive model is already in extensive use in the 
quasi-static setting for problems of phase transition in solids. We refer the 
reader to [1] as well as to TRUSKINOVSKY [441 and the references cited there. 
The speed V can also be interpreted as an internal variable and the kinetic 
relation indeed determines the evolution of this internal parameter. 

Remark 1. L 1) That  subsonic and supersonic phase boundaries must be treated 
in a different way is clear, for instance, when solving Riemann problems. A 
wave structure with a supersonic phase boundary contains two waves, while one 
with a subsonic boundary is composed of three waves. This latter case suffers, 
without a kinetic relation, from a strong lack of  uniqueness. Cf. JAMES [23] 
and Section 2. 

2) The approach considered here has some similarity to the theory of 
nonlinear hyperbolic systems in non-conservative form; cf. Dm~MAso, 
LE FLOCH & MURAT [8] and LE F m c ~  & LIU [30]. Namely, as is the case for 
systems (1.1), the weak solutions to these systems are not uniquely determined 
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by the partial differential equations and an entropy inequality, but an addi- 
tional constitutive relation must be added to ensure uniqueness. This fact was 
first pointed out in [27-29] .  

3) Conservation laws with measure source-terms like (1.7) have been 
useful in various contexts, cf. DIPERNA [9], DIPERNA & MAJDA [11], Hots & 
LE FtOCH [21]. 

Let us introduce some notation and recall some facts about functions of 
bounded variation, which can be found in VOLr~RT [45] and FEDER~R [14]. 
Let f2 be an open subset of R m. A function u : f 2 ~ R  p belongs to the space 
BV(f2, R p) (or BV~oc(f2, RP) ) if u(L i ( t2 ,  R p) (or L~oc(f2, RP)) and the 
distributional derivatives Ou/Oyj for 1 __< j __< m are bounded (or locally bound- 
ed) Borel measures on f2. In what follows, we always consider functions in 

oo a o  p L (Q,R p) c3BV(Q,R p) or Lloc(Q,R )(3 BVloc(Q, RP), often called for short 
BV functions or BVlo~ functions. For each BVloc function u, we have the 
decomposition 

f2 = C(u) u S(u) w E(u) ,  
where 

C(u) is the set of all points of approximate continuity for u, 
S(u) is the set of all points of approximate jump for u, 
E(u) is the set of exceptional points with the property Hm-1 (E(u)) = O. 

Here Hm-1 is the ( m -  1)-dimensional Hausdorff  measure on R m. For each 
point y in S(u), there exists a unit normal v E R m and approximate left and 
right limits for u that we denote by u• (y). The set S(u) consists of the 
union of a countable number of rectifiable curves. 

We denote the norm of u by ]1 u [[~v(~,Rp) = 1[ u [[L~(~,lep) + [Du [ (s where 

(Ou,  Ou , . . . ,  0 ) .  When u = u(t,x) ELloc(R+ xR,  Yff) Du is the measure \Oyz Oy2 

n BVloc(R+ xR,  ~U), we use the notation 

vAt, x) 
v(t ,x) = (vt(t,x), Vx(t,x)), V(t,x) - 

vx(t,x) ' 

valid for all (t,x) ~ S(u). The ratio V(t,x) represents the speed of propagation 
of  the discontinuity in u at the point (t,x). Note that system (1.1) has the 
property of  propagation with finite velocity (in regions ~ and r So 
vx(t,x) never vanishes, and for definiteness we always choose vx(t,x) > 0. In 
the following, we shall always have u(t) E BV for all times t. 

Let 0:]-c3,c3[---~R be a function, called below the entropy dissipation 
function, satisfying the following properties: 

(1.8a) 0belongs to g~2(l-c3,0[ul0, c~l), 0(04- )  and 0'(04-) exist, 

(1.8b) lim 0 = ~(c3) ,  0 "  ( c a - )  exists, 
V--*c~- 

(1.8c) lim 0 = - c ~ ,  
V--+ - -  C3 + 
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(1.8 d) 4~ is increasing on ] -c3 ,  C3], 

(1.Be) q/(V) __< O(V) __< 0 for V~]-c3 ,0] ,  

0_< 4~(V) -< if(V) for V6[0, c31. 

In (1.8b) and (l.8e), the minimal and maximal entropy dissipation functions q/: 
] - c 3 , 0 ] ~ R _  and ~:[0, c3]~R+ are defined by 

(1.9a) q/(V) _ (kl - k3) ( kl -- V2wM) 
- 2 WM Wm k3 112 for Vfi]-c3,0] ,  

k3 - V 2 ) (1.9b) ~(V) - (kl - k3)wm wM 2 kl ~Wm for V~[0, c3]. 

Cf. Figure 1.2 for a graphical representation of O, ~ and ~. 

Remark 1.2. 1) Inequalities (l.8e) give the range of values taken by the entropy 
dissipation rate ~(u)  (see below) when varying the left and right values at 
a discontinuity satisfying the Rankine-Hugoniot relations and the entropy con- 
dition. 

2) In [2], instead of (1.8e), ABEYARATNE ~r KNOWLES assume the (more 
restrictive) condition: 

(1.8e)' ~,(0) < 4~(V) _-< 0 for V~]-c3 ,0] ,  

0 _< q~(V) __< ~7(0) for V~[0, c31. 

3) Assumptions (1.8) made in this paper are indeed satisfied in the ex- 
amples considered by [3] and [4]. For instance, they are fulfilled by the max- 
imally dissipative function 0max defined by 

q~max(V) = Iff(V) for V6] -c3 ,0 ] ,  ~(V) for VE[0, c3]. 

I 
-c31 

S 
c 3 

Figure 1.2 
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We next define the entropy dissipation rate ~(u)  associated with any func- 
tion U(Lloc(R + • ~ )  n BV~oc(R + • AU) by the formula 

(1.10) ~(u)  = - ( U(u+ ) - U(u_)) - v~ (F(u+ ) - F ( u _ ) ) ,  
Yt 

which defines ~(u)  (t,x) at Hi-almost every point (t,x), where vt(t,x) * 0 
(i.e., V ( t , x ) .  0). ~(u)  is the product of - 1 / v t  with the jump of the 
measure OtU(u) + O~F(u) along the curve of approximate jump of u. Formula 
(1.10) makes sense only if v t ( t , x )*  O. However, it is a simple observation 
that if u is assumed to be a weak solution to system (1.1), then the above jump 
(i.e., the entropy dissipation) vanishes at the points where vt vanishes. This 
fact allows us to define ~(u)  (t,x) Hi-almost everywhere, as shown by the 
following lemma. 

Lemma 1.1. If u~Lloc(R + • 2U) c~ BVIoc(R + •  Z )  is a weak solution to 
(1.1), then 

(1.10)' 
w+ 

~(u) = - ~ {a(y) - �89 (a(w+) + a(w_))}dy,  
W 

at HI-almost every (t,x) such that vt(t,x ) ~= O. 

From now on, we use (1.10)' to define ~(u)( t ,x) .  

Proof  of  Lemma 1.1. At a point of approximate discontinuity (t,x) of the 
solution u, the following Rankine-Hugoniot relations hold: 

y a w +  - w _ )  - v A v +  - v _ )  = O, 

v t ( v +  - v _ )  - v x ( c r ( w + )  - a ( w _ ) )  = O. 

These relations when used in (1.10) yield 
w +  

- ~ ( u )  = ~ c r ( y ) d y + ~ ( v 2 + - v 2 _ ) -  vx (cr (w+)v+_~r(w_)v_)  
w_ V t 

w + Vx 
= I a(y)dY+�89 (v+ + v _ ) - - ( a ( w + ) - a ( w _ ) )  

w V t 

Vx ( a ( w + ) v +  - a ( w _ ) v _ ) .  
Vt 

We thus get 

w + .12 x 
- ~ ( u ) =  ~ a(y) dy+ { v + a ( w + ) + v _ a ( w + ) - v + a ( w _ ) - v _ a ( w _ )  

~_  ~v~ 

-2o ' (w+)v+  + 2 a ( w  )v_}, 
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so that 

w+ 1 v x 
- g ( u )  = I a ( y ) d y - ~ _ U ( v + - v - )  (o-(w+) + a ( w _ ) ) ,  

W _  Z P t 

which, in view of the Rankine-Hugoniot  relations above, gives the desired 
result (1.10)'. [] 

Let us denote by Bsub(U ) the set of  all points of  approximate discontinui- 
ty in a weak solution u that correspond to a subsonic phase boundary. This 
means that 

Bsub(U) = {(t,x) ~ S(u) [ either u_ (t,x) ~ Za, u+ (t,x) ~ ~ ,  IV[ < c3, 

or u_ (t,x) ~ ~ ,  u+ (t,x) ~ Z1, I vI <= c31. 

In view of (1.6), the Borel measure OtU(u) + Of (u)  is globally non-positive. 
The kinetic relation now specifies the value itself (and not only the sign) of  
this measured along any subsonic phase boundary. In other words, for 
Hi-almost  all (t,x)E ~sub(U),  one must have 

(l.11) g(u)  (t,x) = f - 6 ( V ( t , x ) )  if u_(t ,x)  ~ ffr 
( O ( - V ( t , x ) )  if u_(t ,x)  E Yd~3. 

Remark l.3. As a matter  of  fact, the traveling waves obtained through the 
viscosity-capillarity regularization to system (1.1) converge to weak solutions 
of  (1.1) that satisfy the kinetic relation (1.1) with a specific choice of  function 
q~. This function can be determined explicitly and depends only on the viscosi- 
ty and capillarity coefficients introduced in the regularization (cf. [3]). 

Finally, we have to formulate the initiation criterion, which together with 
the above kinetic relation will allow us to rule out all non-physical solutions 
to our problem. Let ]a, b[ be a space interval in which we are going to set 
the problem, with a < b and possibly a = - ~ and/or  b = + co. The initiation 
criterion will reflect the following facts: 

(1.12) No new phase occurs from any point x in ]a,b[  except if no 
solution exists without creation of  a new phase.  

(1.13) A new phase state may occur at the boundary point x = a, 
even if a solution with no new phase exists; 
a criterion is required to make the choice. 

(1.14) A new phase state may occur at x = b, even if a solution 
with no new phase exists; a criterion is required to make the choice. 

From the mathematical  point of  view, condition (1.12) is essential: It en- 
sures that spontaneous initiation of a new phase inside ]a,b[  cannot occur 
from two nearby initial states in the same phase (cf. Section 2). This does not 
exclude the possibility (which really happens) that an initial discontinuity with 
large jump gives rise to, for instance, a phase-1 state although the states on 
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both sides of the initial discontinuity are in phase 3. However, by condition 
(1.12), a single constant state is always a (trivial) admissible solution. (This prop- 
erty was not satisfied in the construction of [2].) This is also essential to get 
the Ll-continuous dependence property for Riemann solutions, proved below 
in Section 2. 

Conditions (1.13) and (1.14) follow the quasi-static theory [1]. They allow 
"spontaneous nucleation" of a new phase only at the end points of [a,b]. 
Note that, more generally, we could as well allow nucleation at some arbitrary 
given points of [a, b]. Our actual restriction is that the points of spontaneous 
nucleation are known a priori and follow a selection criterion of the form 
specified below. However, while this formulation is fully satisfactory from the 
mathematical point of view, it does not reproduce what is really observed in 
practical experiments with elastic bars. Namely, in experiments, when pulling 
out an elastic bar uniformly in phase 1, initiation of phase-3 regions in the 
bar occurs successively and (apparently) randomly at various places in the bar. 
Physicists assert that initiation occurs at microscopic inhomogeneities of the 
material. A complete treatment of the initiation mechanism is beyond the 
scope of this paper and would probably require a statistical description. (As 
a matter of fact, this might quite easily be included in the random choice 
scheme, studied in Sections 3 and 4 below.) 

It remains to provide an analytic version of the conditions (1.12)-(1.14).  
For convenience, we use here an averaged strain in our formulation. (In [1] 
and [2], the stress and the entropy dissipation rate, respectively, are used in- 
stead.) Given any function u = (v, w) in Lloc (R+ xR, Yc ~) c~ BVlo c (R+ xR, Yc~), 
we set 

(1.15) hu = 
c (w_)  w_ + c (w+)w+ + v+ - v_ 

c(w_) + c(w+) 

which defines hu(t,x) for Hi-almost every (t,x) in R+ xR.  We note that 
h, ( t , x )  = w( t ,x )  when (t ,x) is a point of approximate continuity of u. So 
h, ( t , x )  represents an averaged strain at the point (t ,x) and determines the 
dynamics at this point. For instance, if u_ and u+ are in the same phase, 
then h, is the intermediate value between the 1-wave and the 2-wave in the 
solution of  the Riemann problem with initial data u_ and u+ (cf. Section 2). 

For each interior point x ~ ]a, b[ and for each time t => 0, the initiation 
criterion, by definition, is 

(1.16) If u_( t , x )  and u+(t ,x)  belong to ~ or to ~U3, then 
hu(t,x) ~ ~ or ~ respectively, if and only if there exists e > 0 such 
that u(s ,y)  ~ ~ or ~3  respectively, for (s,y) ~ It, t +  e [ x ] x  - e,x + e[. 

According to (1.12), condition (1.16) ensures that, locally in time, the solution 
remains in the same phase whenever this is possible. Cf. Section 2. 

We are now concerned with the boundary points x = a and x = b. We 
assume that u(t)  is defined for all times and has bounded variation in x. (This 
is the regularity of the solutions found in Section 4.) The material is assumed 
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to be fixed at the end points, i.e., when a * - ~ and/or  b ,  + ~ ,  we have 

( l .17a)  v+ (t, a) = 0 for Ll-almost  every t > 0, 

(1.17b) v_ (t, b) = 0 for LLalmost  every t > 0, 

where L 1 denotes the one-dimensional Lebesgue measure. Since v has bound- 
ed variation, it admits an L 1 trace at x = a and x = b. Let w~ and w cr be two 
constants, called critical values for the initiation, that must satisfy the ine- 
qualities 

(7 o (1 18) ao cr < __ 
_ _  < cr .~  W M  , Wm ~ Wm ~ , �9 ~ W M 
k l  k3 

where a0 is the so-called Maxwell stress given by 

(1.19) ao = N/Gm~7 M = C1C 3 WN/WmW~. 

Note that, as pointed out to me by ABEYARATN~, the critical values for initia- 
tion should in principle depend on the speed of propagation of the phase 
discontinuity. At the point x = a (when a * - o o ) ,  we impose for all times 
t >= 0 the following two conditions: 

(1.20)i I f  u+(t,a) belongs to X3, then h,( t ,a)  >= w~ ~ if and only 
if there exists e > 0 such that u+ (s, a) ~ Z3  for s E [t, t + e[. 

(1.20)ii I f  u+(t,a) belongs to ~ then h, ( t ,a )~  ~ if and only 
if there exists e > 0 such that u+ (s, t) ~ Z1  for all s ~ [t, t + e.[. 

In order to satisfy the boundary  condition (1.17a), the term h,(a, t) in (1.20)i 
is defined by formula (1.15) with 

(1.21) v_( t ,a)  = - v + ( t , a ) ,  w_( t ,a )  = w+(t ,a) .  

Similarly, at the point x = b (when b @ + oo), we impose for all times t > 0 
the requirements 

(1.22)i I f  u_( t ,b)  belongs to 8 ,  then h,( t ,b)  < w~ if and only 
if there exists e > 0 such that u_ (s, b) ~ ~U1 for s ~ [t, t + e[. 

(1.22)ii I f  u_( t ,b)  belongs to ~U3 then h,( t ,b)E ~3 if and only 
if there exists e > 0 such that u_ (s, b ) (  ~U3 for all s 6 [t, t + e[. 

As previously, we set 

(1.23) v+(t,b) = - v _ ( t , b ) ,  w+(t,b) = w _ ( t , b ) .  

We call an admissible weak solution to system (1.1) a function u - -  (v, w) 
which satisfies the conservation laws (1.1), the entropy inequality (1.6), the 
kinetic relation (1.11), the boundary condition (1.17) (if instead of R an interval 
]a,b[ is considered) and the initiation criterion (1.16), (1.20) and (1.22). 

In this paper, we prove the existence of such an admissible weak solution 
for two kinds of  Cauchy data: the Riemann problem (in the whole space and 
in a half  space) and a perturbation of a single propagating phase boundary. 
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These results provide a strong justification for our formulation here. It would 
be interesting to address the general question of existence and uniqueness for 
system (1.1) in the setting introduced in this section. 

Remark 1.4. 1) A phase boundary necessarily is a wave with a large strength 
(at least [WM- Wm I)- This implies that, in BV solutions, phase boundaries 
cannot accumulate in a bounded region of the (t ,x)-plane. Phase boundaries 
are thus isolated, and this justifies the formulations (1.16), (1.20) and (1.22). 

2) Sections 3 and 4 provide an existence result for small BV perturbations 
of phase boundaries. I believe this result to be true for any finite number of 
phase boundaries. However, for arbitrary large data, the appearance of an in- 
finite number of  phase boundaries is not excluded a priori. In such a case, 
the solution would not have bounded total variation. A challenging issue is 
to extend the present formulation to the framework of Lo~ solutions. 

3) The formulation of this section can be extended to the case that the 
stress is not a piecewise affine function but an arbitrary piecewise monotone 
function. 

4) SHEARER'S solution [38] corresponds to the choice w~ = wM, w~ r =Wm 
and q~ = 4~max (see Remark 1.2 for the definition of 4~max). 

2. The Riemann Problem and Continuous Dependence 

This section gives an explicit description of the admissible weak solution 
of the problem formulated in Section 1, in two cases: the Riemann problem 
in the whole space and the Riemann problem in a half space. Our main result 
in this section in the L1-continuous dependence property of the solution of 
these problems. Note that the formulation of Section 1 and the assumptions 
made there are essential for this property to hold. 

We consider the following two problems: 
1) The Riemann problem in the whole space ]a, b[ = ] - c o ,  + oo[, which cor- 

responds to initial data of the form 

(2.1) Uo(X) = ~UL for x < 0, 
(. UR for x > 0. 

Here u L = (VL, WL)E Y-g~and uR = (vR, wR)fi ~-Uare two given constant states. 
2) The Riemann problem in the half space ]a,b[=]O, +oo[,  which cor- 

responds to the initial data 

(2.2) Uo(X) = Uo for all x > 0 

where u0 = (Vo,Wo)~ 2S is a constant state. 
We shall describe successively the admissible solutions to problems 1) and 

2), by following closely the work by ABEYARATNE 8r KNOWLES. However our 
construction is slightly different from that in [2], due to our formulation. We 
shall not address the question of uniqueness of the solution here, since it is 
an easy matter from the results in [2] (which yield for their construction 
uniqueness in the class of solutions composed of simple waves). 
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To begin with, we deal with problem 1) and distinguish between several 
cases: 

Case l-a: uL ~ ~ and uR E 2U3, 

Case l-b: uL6 ~ and uR6 ~ ,  

Case 1-c: uL ~ ~U3 and uR ~ ~ ,  

Case l-d:  uL ~ ~ and uR ~ ~ 1 .  
Cases l-c and 1-d are very similar to cases l-b and l-a, respectively. (Use 
the transformation x ~ - x  and the fact that the equations (1.1) and more 
generally all the requirements in the formulation of Section 1 are invariant 
under this transformation.) So we omit cases 1-c and 1-d and focus on cases 
l-a and 1-b. 

Case 1-a. Suppose that uL ~ ~ and UR ~ ~ .  

We must construct a solution to (1.1), (2.1) which is admissible in the sense 
of Section 1. The solution necessarily contains a phase boundary (and only 
one as was checked in [2]) with phase-/ states at the left and phase-3 states 
at the right. Two different wave structures are possible, depending on whether 
the phase boundary is subson i c  or supersonic .  Let Vbe  the speed of the phase 
boundary and set 

1 
(2.3) hLR = h , ( O , x )  - - -  ( c l w L  + c3w  R + vR - vL) .  

Q + c 3  

We distinguish between two cases depending on the sign of hLR. 

Case 1-al. Suppose moreover that hLe > O. 

In this case, we seek the solution u in the form 

I 
UL for x < - - C l t  , 

u_ for - c l t < x < V t ,  

(2.4) u ( t , x )  = u+ for Vt  < x < c3t, 

U R for x > c 3 t ,  

where the constants u_ = ( v _ , w _ )  and u+ = ( v + , w + )  belong to JU1 and 
2U3 respectively (cf. Figure 2.1). The solution contains a contact discontinuity 
of  speed - c l ,  the phase boundary with subsonic speed I VI < c3 and a con- 

t 

V c3 

U+ 

-C1 U_ 

Figure 2.1 

u R 
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tact discontinuity with speed c3. We are going to prove that such a solution 
indeed exists by determining explicitly the values of  the constants u_, u+ and 
V. 

First of  all, u given by (2.4) must be a weak solution to (1.1), and so must  
satisfy the four Rankine-Hugoniot  relations 

c l ( w _  - w D  - ( v _  - vL) = O, V ( w +  - w _ )  + v+ - v _  = O, 
(2.5) 

V(v+ - v_ )  + cZw+ - cZw_ = O, c3(w+ - wR) + v+ - vir O. 

I f  V is chosen as a parameter, then (2.5) yields explicit expressions for v_, 
v+, w_, w+ as functions of  V: 

(2.6) 

c3 + V c 3 + V h 
V_  = V L -- C 1 W t "t- -- hLR w _  -- V LR, 

c~ + V Q ' c~ + 

c 1 - V c 1 - V 
V + = V R q'- C 3 W R C 3 h L R ,  W + - -  h L R .  

c3 - V c 3 - V 

Formulas (2.6) define a o n e - p a r a m e t e r  f a m i l y  o f  s o l u t i o n s  to problem (1.1), (2.1). 
Note that w_ and w+ are always non-negative. 

Next we take into account the kinetic relation that states (cf. (1.10) and 

l 
U ( u +  ) - U ( u _ )  + 7. ( F ( u +  ) - F ( u _ ) )  = O ( V )  , 

v 

or using the more general form (1.10)': 

~]+ [~r(y) - � 8 9  ( ~ ( w + )  + ~ r ( w _ ) ) } d y  = O(V) .  
W 

Using the expression (/.2) for the function o-, we convert this to 

1 ( k l - k 3 )  (wMw,~ w + w _ )  = r  (2.7) ~ - 

I f  we use in (2.7) the expressions for w+ and w_ given by (2.6), it follows 
that 

(2.8) 

O(V) = O ( V ) ,  where 0(V) = 
(kl - k3) 

I - 
(c3 + v)  (cl - D 
(c1+ V) (c3 V) ) 

Note that the function 0 d e p e n d s  o n l y  on  the  a v e r a g e d  s t r a i n  hLR. In view of  
our set of  assumptions (1.8) and 

0'  < 0, 0 ( - c 3 )  = q (c3 ) ,  lira 0(V) = - ~ ,  
V-*c~ 

one easily checks that equation (2.8) admits a unique root V (cf. Figure 2.2). 
Moreover, if this specific value of V is used in (2.6) to get w_, w+, v_ and 
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v+, then our construction is consistent in the sense that 

(2.9) w_ ~ ~'~1, w+ E ~ .  

169 

i I /  / ', 
! i 
I I 

Figure 2.2 

We now prove (2.9) by using the assumption (l.8e) on the function ~ (a 
stronger assumption was made in [2] to derive (2.9)). 

Let us for instance check that w_ E ~1 ,  in other words, that w_ _-_6 WM. In 
view of (1.8e) and (2.8), one has ~,(V) < O(V), so that by (1.9a) and (2.8) 

k 1 - V 2 (c 3 + V) (c  I - V )  h 2 R .  
W M W  m W 2 ~ W M W  m --  

k 3 g 2 (C 1 -t- V) (c 3 V) 

Since rVI < c3, we obtain 

W 2 >  h 2  R (c 1 -t- V) 2 

(c3 + V) 2' 

But wM > 0 and hLR > 0 by assumption, so 

C l + V  
W M ~ hLR - -  W _  , 

c3+ V 

in view of the expressions (2.6). The proof of (2.9) is complete. 
Finally, we note that the entropy inequality (/.6) is trivially satisfied along 

the contact waves, while it is a consequence of the kinetic relation (1.10), 
(1.11) along the phase boundary. Thus, in the present case, (1.6) yields no ad- 
ditional constraint. 

The above construction yields the admissible weak solution of the problem. 
Based on the explicit expressions (2.6) and the implicit equation (2.8), it is 
elementary to prove the following regularity result for the Riemann solution. 
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Lemma 2.1. Consider the Riemann problem (1.1), (2.1) in case 1-al, i.e., with 
UL ~ 8 ,  ue ~ ~ 3  and hLe > O. Then the admissible weak solution to this problem 
is given by formulas (2.4), (2.6) and (2.8). One can consider the states u_ and 
u+ and the speed V in (2.4) as functions o f  the initial states Uc and ue, or more 
precisely, 

v_ = v_ (ur, hLR), W_ = W_ (hre) ,  

v+ = v+ (ue, hLe),  w+ = w+ (hLe),  V = V(hLe).  

The functions u_ ,  u+ and V are Lipschitz continuous in the range of  values 
{Uc ~ ~U1, uR ~ Z3  [ hLR > 0}. They are o f  class ~ 1  (with Lipschitz continuous 
derivatives) away from V = O. The behavior o f  u_ ,  u + and V when hLe ~ 0 + is 
given by 

(2.10a) lira v_ = vL -- ClWL, lira w_ = 0, 
hLR--->O -F hLR-+O -}- 

(2.10b) lira v+ = r e + c 3  w e -  lira w+ = , 

(2.10c) lim V =  c3, lim dV A /  
C3 

hLR~O+ hLR~O+ dhLR (C3 Cl) ~ /  ~'(C3) 

3v_ 2CLC3 dw_ 2c3 
(2.10 d) lim - , lim - . 

h~RoO+ OhLR C 1 -t- C 3 hzRoO+ dhLR c 1 -}- C 3 

Remark2.1.  1) Assumptions (1.8a) and (1.8d) imply that 0 -1 exists and is a 
Lipschitz continuous function. Away from V = 0, 0 -1  is of  class ~2 ,  and so 
is the function V(hLe) in view of (2.8). 

2) I f  the function 0 ~ ~ 2 ( ] - c 3 ,  c3]), then all the functions in Lemma 2.1 
are globally of  class ~ z .  (This is not the case of  the maximally dissipative 
function quoted in Remark 1.2.) 

3) In the special case that ~ = 0max, we find x/0 ' (c3)/c3 = win. 

Case l-a2. Suppose now that hLR <--_ O. 

In this case, the solution is composed of a contact discontinuity with speed 
- C l  and a phase boundary with supersonic speed V > c3. There is no c 3 con- 
tact wave. We use the notation 

u L for x < - -C l t ,  

(2.11) u ( t , x )  = u_ f o r - c l t < x < V t ,  

UR for x >  Vt. 

The state u_ = ( v _ , w _ )  ~ ~ and the speed V must satisfy the jump rela- 
tions 

ci (w_ - wD - (v_ - VL) = 0, 

V(wR -- w _ )  + VR -- V_ = O, V(VR -- v _ )  + cZwR -- c21w_ = O. 
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We thus get v_ and w_ explicitly as functions of V: 

c3 + V c3 + V 
(2.12a) v_ ---- V L --  C l W L "b ~ ClhLR , W _  -- V hLR'  

C 1 q- C 1 -l-- 

t h e  speed V being given by the implicit algebraic equation 

(2.12b) 

vZ{--C3WR "4- (C 1 "4- C3) hLR } + (C~ -- C 2) wRV + (ct + c3) c~(c3we -- ClhLe) = O. 

Note that w_ given by (2.12a) is always non-positive. 
One can check [2] that (2.12b) has a unique solution, which indeed belongs 

to the (physically interesting) interval [c3, c1[, if and only if hLR satisfies the 
restriction 

(2.13) 

h~ < hLR _--< 0 with h~ - 1 {c3wR - cl - (c~w~ + (c~ + c~) We + c~)1/2}. 
C 1 q- C 3 

In other words, the Riemann problem can be solved when hLR--< 0 if and 
only if hLR > h~. We emphasize that the kinetic relation was not used here 
and V is found to be supersonic; this is in complete agreement with the fact 
that (1.11) is imposed only for subsonic phase boundaries. 

1.emma 2.2. Consider the Riemann problem (1.1), (2.1) in the case l-a2 that 
uL ~ Yc~l, UR ~ ~ and hLR <= 0 (with the restriction (2.13)). Then the admissible 
weak solution to this problem is given by (2.11), (2.12). One can consider the state 
u_ and the speed V as functions o f  the initial states uL and UR, or more precise- 
ly, 

v_ = v_ (uL,hLR, WR), W_ = W_ (hLR, WR), V =  V(hLR, WR). 

Then the functions u_ and V are ~ functions o f  their arguments, and when 
hLR ~ O - ,  they satisfy 

(2.14a) lim v_ = VL -- C~WL, lim w_ = 0, 
h L R ~ O  - -  hLR- -+O - -  

OV (Cl + c3) 2 (q  - c3) 
(2.14b) lira V =  c3, lira 

hLR~O-- hLR-~O-- OhLR ( c  2 + C 2) W R 

3v_ 2ca c3 dw_ 2c3 
(2.14 c) lira - , lira - - - .  

hLR -~0- OhLR C 1 "k- C 3 hLR-'O-- dhLR C 1 q- C 3 

Remark2.2 .  The limits found in (2.14a) and (2.14c) coincide with those in 
(2.10a) and (2.10d) respectively. This implies that, except at those points where 
V = 0, the function u_ = (v_, w_) is of class ~1 (with Lipschitz continuous 
derivatives) in the whole domain {u L ~ ~1 ,  Ue 6 ~U3 ] hLR > h=}. 
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tJ 

Figure 2.3. Case 1-a2 

U R 

Case 1-b. Suppose that uL ~ ~ and uR~ 8 .  Here, by definition, 

1 WL+WR vR--vL 
(2.15) hLR = 2cl (ClWL + C1WR + vR VL) -- 2 + 2C 1 

According to our formulation (1.16) of the initiation criterion, the solution 
takes its values in the phase-1 region only if hLR _--< wM, while a phase-3 state 
appears in the solution if hLe exceeds wM. We distinguish between these two 
situations. 

Case 1-bl. Suppose moreover that - 1  < hLR _--< Wu. 

We seek the solution in the form of  three contact states separated by a 
- c l  constant wave and a cl contact wave (cf. Figure 2.4): 

I 
UL f o r x <  --Cxt, 

(2.16) u ( t , x )  = u ,  for --Cxt < x < Clt, 

ue for x > q t .  

The intermediate state u ,  = (v, ,  w , ) 6  ~1  must satisfy the jump conditions 

- - C a ( W  , - -  WL) -Jr V ,  - -  V L ~- O,  C l ( W  R - -  W , )  -t- 1) R - -  V ,  = O,  

- C 1  U x " cl j 

Figure 2.4. Case l-b1 
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which lead us to explicit expressions 

(2.17) v ,  ~- V L -t- Cl(hLR -- W L ) ,  W ,  = hLR. 

Because of the assumption that - 1  < hLR _--< WM, it is immediate that w. 
belongs to ~U~. Note that no solution taking its values in Z exists when 
hLR< -1. 

For further reference, we state 

I_emma 2.3. Consider the Riemann problem (1.1), (2.1) in case 1-bl, i.e., when 
uL ~ ~ 1 ,  uR ~ ~ and - 1  < hLR <--_ WM. Then the admissible weak solution to 
these problems is given by (2.16), (2.17). The state u .  = ( v . , w . )  is a ~o~ 

function o f  the initial states uL and uR. Moreover, when hLR tends to WM, 

(2.18a) lim v ,  = VL + CI(WM -- WL), l i m  w ,  = WM, 
hLR--* W ~I hLR--~- W~I 

(2.18b) lim Or ,  (UL,hLR)  = Cl, lim dw,  _ 1. 
hLR~w~ OhLI~ hLR~w~ dhLR 

Remark 2. 3. 1) It is of  interest to note that the assumption that  
- 1  < hrR <= WM in Lemma 2.3 is always fulfilled if both  uL and uR belong to 

and [UR- UL[ is small enough. This is clear in view of (2.15). 
2) In [2], an initiation criterion was introduced in the case 1-bl. Indeed, 

instead of the solution (2.16) containing no phase boundary, the criterion in 
[2] selects in some cases a solution containing two phase boundaries (cf. (2.19) 
below). 

Case l-b2. Suppose now that hLR > WM. 

According to our initiation criterion (l.16), the solution must contain (at 
least) one phase-3 state. We seek the solution in the form (Figure 2.5) 

(2.19) u ( t , x )  = 

euL for x < - c l t ,  

u 1 for - c l t  < x < V ' ,  

u 2 for V' < x < V, 

u 3 f o r  V < x <  Clt ,  

~uR for x > Clt ,  

where ul, u3 ~ 2U1 and u 2 E ~ 3  and - c 3 < I1' < 0 < V < c 3. The jump condi- 
tions read 

(2.20 a) 

--Cl(W 1 -- WL) -Jc" V 1 -- V L = 0, 

V ' ( w  2 -- w1) --[- 13 2 -- v 1 ----- 0, 

V(wR -- w3) + v R - - v 3 = 0 ,  

c l ( w R - w 3 )  + v R - v 3  = 0 ,  

V t ( v 2  -- Vl) + c2w2 -- c2w1 ~- O, 

V ( v R  - v3) + c Z w R  - c 2 w 3  = O. 
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/ 

Figure 2.5. Case l-b2 

They must be completed by the kinetic relation along the lines x~ t = V' and 
x~ t = V: 

(2.20b) 21 (ks - k3) (WMWm -- WlW2) = - - ( ~ ( - V ' )  

! (kl - k3) (WMWm - WzW3) = ~ ( V ) .  2 

It can be shown that, in fact, V' = V (cf. our previous calculations, (2.7)). As 
for case l-a1, it can be checked that (2.20) determine uniquely the admissible 
solution. We omit the details and simply state our result of  continuous 
dependence. 

Lemma 2.4. Consider the Riemann problem (1.1), (2.1) in case l-b2, i.e., when 
UL ~ ~ ,  UR E ~Zl and hLR > WM. Then the admissible weak solution of this prob- 
lem is given by (2.19), (2.20). one can consider the states Ul, u2, u3 and the 
speed V as functions of UL and uR. Then the functions uj and V are in ~1  (with 
Lipschitz continuous derivatives) and 

(2.21a) lim V = 0  lim Vj=VL+Cl(WM--WL)  for j =  1,2 or 3, 
hLR._.~W M ' hLR__+W M 

k l  
(2.21b) lim wl = lim w3 = WM, lim w 2 • WM, 

hLR--+WM hLR--+WM hLR'-'~WM k33 

(2.21 c) lim Ovj Owj - c ~ ,  lim - l  for  j = l  or 3. 
hrn~wM OhLR hLR--+WM OhLR 

Note that the limits found in (2.18) and (2.21) for the functions v,  and 
w, and vj and wj (for j = 1 or 3) coincide. Hence, if in case 1-bl we set 

(2.22) vj = v , ,  wj = w,  for j = 1 or 3, 

then the functions vj and wj are globally of  class O 1 with Lipschitz con- 
tinuous derivatives in the whole range of values {Uc6 ~I ,UR6  ~2"3}. 

From Lemmas 2.1 to 2.4, we deduce the following property of  continuous 
dependence of the solution of the Riemann problem. 
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Theorem 2.1. Consider the admissible weak solution to the Riemann problem 
(1.1), (2.1) described in Lemmas 2.1 to 2.4. Then the states and the wave speeds 
in the solution are locally Lipschitz continuous functions of  the initial constant 
states u L and uR. As a consequence, if  ul ( . ,O ) and u2 ( . ,O ) are two Riemann in- 
itial data for system (1.1), the corresponding admissible solutions u 1 and u2 
satisfy the L l-continuity property: 

B A + C l t  

(2.23) J ] u 2 ( t , x ) - u l ( t , x ) l d x < _  O(1) I [ U z ( 0 , x ) - u l ( 0 , x ) [ d x  
A --  c l t  

for all A < B and t >= O. 

We now turn to the Riemann problem in the half  space ]0, oo [, i.e., prob- 
lem (1.1), (2.2). Two cases must be distinguished: 

case 2-a: Uo E ~U3, 
case 2-b : Uo E 2S1. 

Case 2-a. Suppose that u o ~ YU 3. 

According to condition (1.20)i, the solution must contain a phase bound- 
ary if and only if ho < W~m r where 

(2.24) h0 = w0 + Vo 
C3 

and w~ r is the critical value for initiation introduced in Section 1. We recall 
that Wo >-_ Wm and w cr >= win. 

Case 2-al .  Suppose moreover that  ho _-> WCm r. 

Then the solution u to (1.1), (2.2) must stay entirely in phase 3, so we seek 
u in the form 

u ( t , x )  = f u .  for x < c3t, (2.25) 
I. u o for x > c3t. 

(Cf. Figure 2.6.) To satisfy the boundary condition (1.17a), we must have 

(2.26 a) v. = 0. 

C3 

u.C~3 / 
UoG ~'~'~3 

Y 
U 0 

Figure 2.6. Case 2-al 
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F r o m  the R a n k i n e - H u g o n i o t  re la t ion  c 3 ( w 0 -  w . ) +  v o - v .  = 0 ,  we ob ta in  
W, : 

V0 
(2.26b) w ,  = w  o +  - -  = h  o. 

C3 

The  so lu t ion  is comple te ly  de te rmined  by (2.25), (2.26). 

c r  Case 2-a2. Suppose  now tha t  h 0 < win. 

In  this case,  the so lu t ion  mus t  con ta in  a phase  boundary ,  so we set 

u_ for x < Vt, 

(2.27) u ( t , x )  = u+ for  Vt < x < c3t, 

u0 for  x > c3t 

(cf. F igure  2.7). In  view of  the  b o u n d a r y  cond i t ion  (1.17a),  one has 

v _  = 0 .  

U-~ ~ C3 

u o ~ 3  

u o 

Figure 2.7. Case 2-a2 

We de te rmine  v, w_ and  u+ = ( v + , w + )  by wri t ing the R a n k i n e - H u g o n i o t  
re la t ions  sat isf ied a long the lines x~ t = V and  x~ t = ca, as well as the kinet ic  
re la t ion a long x / t  = V. By ca lcula t ions  s imilar  to those  m a d e  in case 1-a l ,  we 
ob ta in  the fo rmulas  

c 3 +  V 
(2.28a) v_ = 0 ,  w _ -  - -  ho, 

C l + V  

c 1 -  V c l - c 3  c l -  V 
(2.28b) v+ = V 0 + C 3 W  0 g c3ho - - -  c3ho, w+ - - -  ho, 

c3 - c3 - V c3 - V 

where V is given by the impl ic i t  equa t ion  

(2.28 c) k l - k 3  I ( c 3 + V ) ( c l - V ) h 2 1  
2 W M W m  - -  (C 1 "4- V) (c  3 V) 

These fo rmulas  de te rmine  the so lu t ion  in this case. 

= r 
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Case 2-b. Suppose that u0 ( 8 .  

According to condition (1.20)ii, we have to distinguish between two cases. 
Here h0 = w0 + (Vo/cl). 

Case 2-bl. Suppose moreover that h 0 __< w~. 

Then the solution stays entirely in phase 1: 

(2.29) u ( t , x )  = f u .  for x < clt ,  

t. Uo for x > clt 

(cf. Figure 2.8), where 

VO (2.30) v, = 0, w, = + Wo = ho~ 8 .  
Cl 

c 1 

Figure 2.8. Case 2-bl 

Case 2-b2. Suppose moreover that h0 > w~. 

Then the solution contains a phase boundary, i.e., 

I u_ for x < Vt, 

(2.31) u ( t , x )  = u+ for Vt < x < c~t, 

u 0 f o r  x > Clt, 

where u_ 6 ~U3, u+ 6 8 and V~ ]0, c1[. (Cf. Figure 2.9.) The states u_, u+ 
and the speed V are uniquely determined by (1.17a), the Rankine-Hugoniot 
relations and the kinetic relation. We omit the details. 

Finally, we conclude with the result of LLcontinuous dependence for the 
Riemann problem in a half space. 

Theorem 2.2. Consider the admissible weak solution of  the Riemann problem 
(1.1), (2.2) described by cases 2. The states and the wave speeds in the solution 
are Lipschitz continuous functions of  the initial state u o. As  a consequence, i f  u~ 
and u~' are two Riemann data for  the system (1.1) in the hal f  space, then the cor- 
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responding admissible solutions u' and u" satisfy 

B 

j] u ' ( t ,x )  - u"( t ,x )  ldx <= O(1) (B + clt - max(0,A - C l t ) ) ] u ;  - u;'l 
A 

for all O < A < B and t >= O. 

V 

u _ E ~  

Figure 2.9. Case 2-b2 

3. Existence via Glimm's Scheme: Stability 

This section and the following one deal with the application of the random 
choice method, introduced by GLIMM [15] for hyperbolic problems, t o  the 
system of mixed type (1.1). Our main result establishes existence of a class 
of admissible weak solutions to (1.1). This serves to justify the formulation 
of the Cauchy problem proposed in Section 1. 

Based on successive solutions of Riemann problems, Glimm's method 
yields a sequence of approximate solutions for the Canchy problem associated 
with (1.1). Our goal is to prove the convergence of these approximate solutions 
to an admissible weak solution to the problem, in case the initial data form 
a small BV perturbation of a single propagating phase boundary. The main 
result of this section, Theorem 3.1, yields the stability of the scheme in the 
BV norm. This guarantees its convergence in the L 1 norm to a function of 
bounded variation, which indeed is a weak solution of (1.1). Showing that this 
function is an admissible solution requires a more detailed analysis, which is 
performed in the next section. 

It is emphasized that a phase boundary is a wave with (necessarily) large 
strength. Our result of stability here is related to the ones obtained by CI-IERN 
[5] and SCI-IOCHET [37] who treated GLIMM'S scheme with large data for strictly 
hyperbolic systems. 

We consider the system (1.1) on the whole line (x~ R) with the Cauchy 
data 

f u ~  = (v~ w~ for x < O, 
(3Aa) u(O,x) = Uo(X) = l ( u ~  (vO(x), wO(x)) for x > O. 
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The functions u ~ ~ BVloc(R_, X )  and u ~ ~ BV1oo(R+, ~,~) are assumed to be 
close to two given constant states u~ = (v~, w~) and u~ = (v~,w~) respec- 
tively, i.e., 

(3.1 b) Ilu ~ - .~ I 1 ~ _ ~  + Jl u~ - u~ IIBV~R+) ~ 1. 

For definiteness, we consider the case that u~ ( ~ 1  and u~ E~3.  We are 
assuming that the Riemann problem with data u~ and u~ is solved by a 
unique wave, with a single-phase boundary but no contact discontinuity. This 
assumption allows us to focus our attention on phase boundaries which cause 
the main difficulty for system (1.1). Let u* be the solution of this Riemann 
problem; for some speed V* one has 

(3.2a) 
fu~ for x < V't ,  

u* (t~x) 
I 
ku~ for x >  V*t. 

In the case of  a characteristic phase boundary, i.e., when V* = c3, we restrict 
our attention to the case that no strong wave arises from a perturbation of 
the initial states u~ and u~. According to Lemma 2.1 of Section 2 (cf. for- 
mulas (2.10a) and (2.10b)), this holds under the following condition: 

(3.2b) If V* = c3, then w~ = 0 and wj~ = .,/q5'(c3) 

/ 

C3 

Note that (3.2b) implies that hLlr = 0 and vR = V L -  ~ .  So a Rie- 
mann problem with initial data in a neighborhood of UL and uR takes its 
values in the same neighborhood. 

We shall prove that problem (1.1), (3.1) admits an admissible weak solu- 
tion, which has the following structure (cf. Figure 3.1): 

fUL(t,x ) for x < Z(t) ,  
u(t,x) (3.3a) / 

t-uR(t,x) for x > X(t ) ,  

where 

(3.3b) uLEL~o~([O, oo[,BV(R, Yc~)), uRE L~o~([O, ~[,BV(R,  8 ) )  , 

(3.3c) ze  w~lsY([0, ~o[,R), dz eBV~oc([O, ~[ ,n) .  
dt 

Setting 

fu~ for x < Z ( t ) ,  
a*(t,x) 

I 
t-u,~ for x > Z ( t ) ,  

we shall also show that for all times T >  0, 

(3.4) 

I l u ( Z )  - a*(T) IIL~(R,Z~ + TI/R(u(T) - a*(Z))  + TIer (aZo _ V*~ ,~ 1. 
\ dt / 
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UL(t,x) 

UOL (X) 

V*t 
/ zCt; 

u R (t,x) 

u~Cx) x 

Figure 3.1 

The solution will be obtained as the limit of  approximate solutions to (1.I), 
(3.1), having a structure similar to that described by (3.3), (3.4). These approx- 
imate solutions are given by Glimm's  scheme, which we now describe. 

Let ~ > 0 and h > 0 be time and space mesh sizes satisfying the Courant- 
Friedrichs-Lewy (CFL) condition rCl < h. The ratio A = h/r  is taken to be a 
constant. Let {an}n_>__t be an equidistributed sequence with values in the inter- 
val ] - 1 ,  1[. We define uh(O,x) by L2-projection from the data u0: 

(3.5 a) 
1 (m+2)h 

uh(O'x) - 2h ;~'Ih uo(y) dy for x~ [mh, (m + 2)h[  with m even. 

Note here that [tth(0, X ) - - b t ~ [ ' ~ l  for x < 0  and II~h(O,x)--b/~l'~l for 
x > 0; also, u h satisfies uh(O,x)~ ~ u ~3.  I f  u h is known up to the time 
t = n r -  0, we define uh(nr + O,x) by a random choice projection using an: 

(3.5b) uh(nz + 0, X) = uh(nr  -- 0, (m + 1 + an) h - O) 

for x E [mh, (m + 2) h[ with m + n even. Then the approximate solution u h in 
the strip [n~ _<_ t < (n + 1)"c} is computed by solving the Riemann problems 
for system (1.1) at each center x = mh with m + n even. 

As a consequence of  our result of  stability below, this construction indeed 
makes sense and yields uh(t,x) for all times t >__ 0. In particular, because of 
the assumption (3.2b), the values uh( t ,x )  stay in the neighborhoods of u~ or 
u~. This implies that case l-b2 of Section 2 never occurs here. The possible 
wave structures of the Riemann problem used in the construction of u h are 
listed in Figure 3.2. 

Remark 3. L As a very first step toward a general proof  of  convergence of u h, 
we may consider the case when o and u ~ are constant, equal to u~ and u~ 
respectively. In this case, u h can be computed explicitly and consist for each 
time t of  a single-phase discontinuity connecting u~ at the left to u~ at the 
right. The position of the phase discontinuity, say Zh(t), is shifted to the left 
or to the right (depending on an and the speed V*) at each time nr. This is 
typical behavior for Glimm's  scheme, which, as is well known, does not pro- 
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duce any numerical diffusion of the discontinuities. Using only the 
equidistribution of Jail, we easily show that Zh(t) converges to V ' t - Z ( t )  
for each time t _>__ 0. (Cf. Figure 3.3.) 

-C  1 

U r 

C l  

m 

phase 1 x 

t T 
- C 3 C 3 

phase 3 
n, 

phase t phase 3 x 
(a) (b) 

- C  1 

phase 1 x x 

V ~ //c3 

phase 3 
(c) 

-C 1 
U_ 

phase 1 

V 

/ 

phase 3 
(d) 

Figure 3.2 

U L 

t tV* 

u L U R 

x h ( f )  

Figure 3.3 
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According to Glimm's technique, the first step toward a proof  of uniform 
BV stability for the scheme consists in studying wave interactions between 
Riemann wave patterns. Let R(u  l, u r) be the solution of the Riemann problem 
with initial data u l at the left and u~ at the right (cf. Section 2 for the explicit 
construction). The wave strengths are defined first in case V*:~ c3. We 
denote by gl (ut ,  ur) and g2(ul, Ur) the strengths of the left and right contact 
waves in R(uz, u~) respectively. By convention, g2(ul, u~) = 0 when R(uz, Ur) 
contains a supersonic phase boundary so that no right contact discontinuity 
is present. We denote by go(UuUr) the strength of  the phase boundary in 
R(uz, ur) when ul and Ur are in different phases. By convention, the strengths 
are always measured in terms of the jump of the variable w across the wave 
under consideration. When a phase boundary is present, we denote its speed 

by ~ ( u  l, u~). 
Consider now the case that V* = c3. We define g0, g l ,  g2 and ~ i n  the 

same way as above, except when the Riemann problem R(ut, Ur) admits a 
supersonic phase boundary. In this latter case, we virtually split the phase 
discontinuity into two distinct waves and set 

~(Ul,Ur) =Wr--W+]hlr=O--hlr~t  r Ihzr=O=Wr - ~ C3 

/ ~ w .  ~'(C3) 
~2(Ul, Ur) -~ W+ ]hlr=O "t'- hlr ~ Ihzr=0 - w_ - - , /  

Ol~llr "~ C 3 

2c3hlr/ (cl + C3), 

+ 2c3hlr / (c 1 + c3) - w_, 

where w_ and w+ are the values taken by the solution of R(ul, u,.) at the left 
and at the right of the phase boundary, respectively, and hlr is given by (2.3). 
We recall that (OW+/Ohlr)[hlr= 0 is given by Lemma 2.1. In other words, we ex- 
tend the definition of  g0 and g2, known for hlr > 0, to negative values of 
hlr SO that their extensions are of class ~1.  

From the results in Lemmas 2.1 and 2.2, one easily checks that 

(3.6) The functions g l ,  g2, g0 and ~ are Lipschitz continuous 
functions of their arguments (ut, ur). The ~/'s are of class 
~,1 (with Lipschitz continuous derivatives) away from ~ =  0. 

In (3.6) and in the sequel, only states which are close to either u~ or u~ are 
considered. 

The wave interaction estimates are derived in the following lemma (cf. 
Figures 3.4 and 3.5). 

Lemma 3.1. Consider states ul, Up and Ur which are close to either u~ or u~. 
1) I f  u l ~ 8 , u p , Z 1  and ur ~ ~3  , then for j = O, 1, 2, 

(3.7a) ~j(Ul, Ur) = ~j(Ul, Up) "l'- ~j(Up,blr) "Jr- O(1) l ~~ 

(3.7b) ~(uz ,  ur) = ~'(Up, Ur) + O(1) lg2(Ut, Up)[. 
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~. (up'ur 7 

-el !0 ?3 
U r 

C 1 

ell ~ Up 

_c3 7Y(Up,U~) 

\ ;o? , \  
Up ~ Ur 

Figure 3.4 

-C 1 

~/(ul ,Ur)  c 3 

U r 

~/" (u I , ur ) -c3 c3 

c3 ~ ~'2 

Ul ~ Up Up Ur 

Figure 3.5 

2) If ul fi ~1, Up E ~3 and ur ~ ~ ,  then for j = O, 1,2, 

(3.8a) ~(ul ,  Ur) = ~(ul ,  up) + ~(Up, Ur) + O(1) D(ul, Up,U~), 

( 3 . S b )  ~/~(~/, b/r) = ~/~(UZ, Up) + O(1)[ I ~l(Up, Ur)[ "4-] ~2(Up,Ur)]l, 
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where 

(3.9) 

I I ~l(up, u~)[ if ~(uz, Up) <=c3, 
D(ut,Up,U~) = ] ~(up,ur)] +( ~(uz,Up) - c3)] ~(Up, Ur)] if 7/(ul,Up) >=c3. 

3) If either ul, Up, Ure ~ or ul, Up, Ur~ X3, then for j = 1,2, 

(3,10) ~jj(Ul, btr) = ~jj(Ul, Up) + ~jj(Up, blr) . 

Remark 3.2. 1) Estimates in Lemma 3.1 mainly contain linear interaction terms 
instead of quadratic ones as is the case in [15]. Linear error terms were 
previously found useful by [5] and [37] to treat strictly hyperbolic systems with 
large data. In (3.9), the interaction term is proportional to the angle between 
the c3 contact discontinuity and the phase boundary. Such a term was used 
by Lru [34] to analyze non-genuinely nonlinear systems of conservation laws. 

2) When V* :r c3, the derivation of the estimates in Lemma 3.1 requires 
only the Lipschitz continuity of the functions @ and ~,, which is exactly the 
regularity available in general. 

3) The smallness condition (on Jut - u~ [, etc.) in Lemma 3.1 is necessary 
only to prevent initiation of a new phase when solving a Riemann problem 
with data in a single phase. 

Proof of Lemma 3.1. We first give the proof of (3.7), and then that of (3.8). 
The proof of (3.10) is trivial. 

In view of the results of Section 2, the functions ~0, ~1, ~2 and ~ are 
(at least) Lipschitz continuous functions of their arguments. Hence the for- 
mulas (3.7) follow easily if we check that 

(3 . l la)  ~jj(Ul, blr) ~-- ~j(Ul,  Up) "1- ~j(Up, Ur) , 

(3.11b) ~(Ul, Ur) = ~/(Up, Ur) 

hold whenever ~2(ul, Up)= 0, i.e., when there is no right wave in the left 
wave packet R(u~,Up). But this last statement is obvious because the left 
waves in R(ul, Up) and R(up,Ur) are associated with a linearly degenerate 
characteristic field. Such waves can be superimposed without any interaction 
and the wave strengths are simply summed up, cf. (3.11 a). The speed of the 
phase boundary remains unchanged, cf. (3.11b). (These facts can be checked 
directly from the analytical expressions in Section 2.) The proof of (3.7) is 
complete. 

We now prove (3.8). We notice first that (3.11a) as well as 

(3.11c) ~ ( U l ,  u r) : ~ ' (Ul ,  Up) 

do hold provided that D given by (3.9) vanishes. Specifically, if 
Y(ut ,  Up) <_ c3 and if D(ul, Up, Ur) = 0, then the right wave packet does not 
contain a -c3 contact wave. In this situation, the two wave patterns can 
be superimposed, without any interaction. If  ~f(ut, Up) >= c3 and if 
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D(ut, Up, ur) = 0, then the right wave packet does not contain a - c3  contact 
wave and, moreover, either it also has no c3 contact wave or the speed 
g/(ut,  Up) equals c3. In both situations, the left and right wave patterns can 
be superimposed. Again, there is no interaction. This proves (3.11a) and 
(3.11c). 

When ~/~(ul, Up) <= c3, estimates (3.8) follow from (3.11 a), (3.11 c) and the 
Lipschitz continuity of ~ and ~ .  When ~ ( u l ,  Up) > c3, ~ i s  bounded away 
from ~ =  0. It then follows from the results in Section 2 that the functions 
~. and ~ a r e  of  class W 2' ~. This fact allows us to apply the classical lemma 

of division (e.g., [211) and again to deduce (3.87) from (3.11 a), (3,11c). The 
proof  of  (3.8) is complete. [] 

We use Glimm's technique to deduce from Lemma 3.1 the result of BV 
stability of the scheme. We refer to [15, 16] for the terminology we use here. 
At this stage, we have to define functionals to control the total variation of  
the solutions. The choice we propose is motivated by the form of  the terms 
of interaction found in Lemma 3.1. Note that the phase boundary which is 
a "strong wave" are treated separately from the "small waves". 

The (t ,x)-plane is divided into a set of diamonds Am, n with centers 
(nr, mh) (n + m even) and with vertices 

N = ((n + 1) r, (m + an+l) h ) ,  E = (nz, (m + 1 + an) h ) ,  

W = (nr,  (m - 1 + an) h ) ,  S = ((n - 1) r, (m + an_l) h ) .  

Given a diamond Amn, we denote by UN, Ue, UW and Us the values taken by 
u h at the vertices N, E, W and S respectively. 

We give now the definition of the approximate phase boundary in u h, which 
we denote by Xh: R+--,R. First of  all, it is a simple (but useful) observation 
that the phase boundary in u h is actually located at a single space position 
for each time t = nr. In other words, there is no spreading of the phase bound- 
ary. Let X h be the piecewise linear curve which is discontinuous at each t = nr 
and coincides with the phase boundary in u h inside each slab [nr, (n + 1) r[. 
Let ~ be the set of all diamonds that are crossed out by the phase bound- 
ary )~h. 

We then introduce several functionals defined on space-like curves, say J, 
passing through vertices of  diamonds. Define 

(3.12a) L(J)  = ]~  (I ~ll  + l  ~21), 

the summation being on all small waves crossing the curve J, and 

(3.12b) B(J)  = I ~ol 

where g0 is the strength of  the phase boundary when crossing the curve J. 
The functional L(J)  bounds the total variation of u h along the curve J on 
both sides of the phase boundary. B(J)  measures the jump of u h across the 
phase boundary. Next we define the potential interaction Q(A ) in a diamond 
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A by Ii I o if A 
~2(Uw, Us)[ if A = Amn~ ~ and mh < zh(nr),  

(3.13) Q(A) = ~I(Us, UE) I + O(Y(Uw, Us) --c3)1 ~2(Us, UE)[ 

if A =Am, hE ~ and mh >-- zh(nz),  

where 0: R ~ R  is the function defined by 

O(y) = f 0  f o r y < 0 ,  

L y for y=>0.  

Finally the potential wave interaction Q(J) associated with a curve J is 

(3.14) Q(J) = ~ 1~21 + ~ {I ~11 + O ( V -  c3)t ~2]}, 
waves at the waves at the 

left o f  X h r ight  o f  •h 

where V is the speed of the phase boundary when crossing J and the summa- 
tion is taken over all waves crossing J. Note that Q(J) is a linear functional 
in terms of wave strengths. 

Lemma 3.2. Let K be a sufficiently large constant. Let J1 and ,12 be two space- 
like curves, J2 being a successor of J1. Then 

(3.15a) L(J2) + KQ(J 2) <=L(J1) + KQ(J1), 

(3.15b) B(J2) + KQ(J2) < B(J2) + KQ(J2). 

Proof  of  I_emma 3.2. We need only prove (3.15) when J2 is an immediate 
successor of J1; the general case follows by induction. We first check the for- 
mula 

(3.16) Q(J2) - Q(J1) < �89 Q(A) ,  

where A is the diamond bounded by J1 and J2. If A ~ ~ a n d  the right wave 
packet contains the phase discontinuity, then in view of (3.14), (3.13), 

Q(J2) - Q(J1) = -I  ~2(Uw, Uw) l = - Q ( A )  <= -�89 Q(A).  

If  A ~ 2" and the left wave packet contains the phase discontinuity, then in 
view of (3.14), 

Q(J2) - Q(J1) = -I  ~l(us, uE) l -- 0( ~/'(Uw, Us) -- c3)1 ~2(Us, ue)[ 

+ - - o( (uw, us)  - c )l I zl. 
waves on the r ight  

side of  A 

Since 0 is Lipschitz continuous, it follows from definition (3.13) and (3.8b) 
that 

Q(J2) - Q(J1) = - Q ( A )  + O(1) Q(A) E I ~21 
waves on the right 

side of  A 

= Q ( A ) { - 1  + O(1)L(J1)} <-_ -~  Q(A) 
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where in the last inequality we have assumed that O(1)L(J1) <_ �89 The con- 
dition L(J1) ,~ 1 is indeed ensured by induction if the initial total variation 
is small enough. Let us content ourselves with checking that L(Jo) ~ I where 
J0 is the curve connecting centers of diamonds on the lines t = 0 and 
t = t 1 = r: Using the definition of the wave strengths and (3.2b), one gets 

L(Jo) = 0(i)I~~ (u ~ + ~:o +~176 (u ~ + II u~ - u~Ir~o(R_)+ flu ~ - u~IlL~<R+)I. 

The right-hand side of this formula is small in view of  (3.1 b). 
If  now A r ~ ,  then from (3.10) one has trivially 

Q(J2) - Q(J1) ~ O, Q(A) = O. 

Thus the proof  of (3.16) is complete. 
We next consider L(Jz) - L(J1). If A E ~ ,  then by (3.7a), (3.8a), (3.12a), 

(3.13), 

L(J2) - C(J1) = I ~l(Uw, uE) l + r ~'2(Uw, uE) p 

-Ig~(.w, us) l  - I g 2 ( u w ,  us) l  - I g l ( U s ,  UE)[ - I ~2(.s, uE) I 
= 0(I) Q(A).  

If A r ~@', then 

L(J2) = L ( J 1 ) ,  Q(A) = 0 .  

This proves the formula 

(3.17) L(J2) = L ( J 1 )  + O(1) Q(A).  

From (3.16) and (3.17), we easily deduce (3.15a) provided that the constant 
K in (3.15a) is large enough. 

Finally, it can be proved similarly that 

(3.18) B(J  2) = B(J~) + O(1) Q(A) ,  

which implies (3.15b) in view of (3.16). [] 

Lemma 3.2 provides a uniform bound for the total variation of  uh(t) at 
times t = t n. Since 

TV(uh(t))  =N O(1)L(J) ,  for all times t6 [tn,t~+l[, 

where J is the curve lying between the lines t = t~ and t = t~+~, we obtain a 
uniform control of  the total variation of u h for all times. Let us define the 
function ~h: R+ •  by 

['u~ if x < Xh(t), 
ah(t,x) (3.19) 

{,u~ if x > zh( t ) ,  

where )~h is the approximate phase boundary associated with u h. From Lem- 
ma 3.2, one deduces the following result of stability. 
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Theorem 3.1. The functions u h given by Glimm's scheme applied to the mixed 
system (1.1) and the data (3.1), (3.2) satisfy the stability estimates: 

(3.20a) TV +_~ (u h - a h) (t) <= O(1) N1, 

(3.20b) IluhKt) - ah(t)IIL   ,z> _-< O ( 1 )  (N1 + N2), 

( 3 . 2 0 c )  Iluh(t) - IILl( ,z) O ( 1 ) N l ( I t  - cl + h) 

for  all times t > 0 and t' >- O, with N1 and Ne defined by 

fTV~ (UL ~ + TVg (U0R) if V* * c3, 
(3.21 a) NI " t  

( TV~ (u ~ § TVg (u ~ § N 1 if V* = c3. 

(3.21b) N2 = [lu ~ - + Ilu ~ - 

By Helly's theorem, the estimates (3.20) imply that (a subsequence of) 
{u h} converges in L~oc strongly to a function u as h ~ 0 .  This function has 
bounded variation in space and satisfies the same bounds as u h in (3.20). It 
is a classical matter (GLIMM [15], LIU [33, 34]) to check that u indeed is a 
weak solution to the system of conservation laws (1.1). It also satisfies the en- 
tropy inequality as well as the initial condition. It remains to show that u is 
admissible, i.e., satisfies the kinetic relation (cf. Section 4). 

Remark3.3 .  If condition (3.2b) is violated, then perturbation of a 
characteristic phase boundary produces a c3-contact wave with strong 
strength. Then one would have to deal with interaction between two strong 
waves traveling with arbitrarily close speeds. Initiation of new phases is possi- 
ble. It is not clear whether the total variation of  u h would remain uniformly 
bounded in that case. 

4. Existence via Glimm's Scheme: Admissibility 

In this section, we prove that the weak solution u = lim u h found in Sec- 
t ion3  by Glimm's scheme does satisfy the kinetic relation ( lAD.  This 
establishes that u is an admissible weak solution to our problem and leads to 
the desired result of existence and stability. 

First of  all, we notice that the kinetic relation (1.11) is formulated in a 
pointwise sense, more precisely, (1.11) must hold almost everywhere with 
respect to the Hausdorff  measure 111. However from the results in Section 3, 
we only have that u h converges to u at almost every point with respect to the 
Lebesgue measure on R+ xR.  This latter property is thus not sufficient to 
pass to the limit in the kinetic relation. 

In this section we prove a result of pointwise convergence for the approx- 
imate phase boundary Z h, cf. Theorem 4.1. This result is derived by using the 
techniques introduced by GLIMM & LAX [16]. The focus of [161 was on a strict- 
ly hyperbolic system of two conservation laws with small data. Extensions of 
the results in [16] can also be found in the papers of DIPERNA [10] and LIv 
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[34]. In our situation, we have (a special case of) a system of mixed type with 
large data. 

Next, in Theorem 4.2, we prove that the above result is sufficient for the 
passage to the limit in the kinetic relation, assuming that the speed of the 
phase boundary V* does not vanish. 

Let us consider the phase boundary zh: R+--,R for the approximate solu- 
tion u h. The function Z h is discontinuous and piecewise linear. It jumps up to 
a distance of +2h at each time step. It is easy to verify the following lemma. 

l_emma 4.1. The function zh: R+ ~ R  satisfies the uniform estimate 

1 t' (4.1) IZh(t)--Zh(t ')[<= ~ l t  - l + 2 h  f o r O < t < _ t ' .  

By Ascoli's theorem, the sequence {Z h} must converge on each compact 
set in the uniform topology to a function Z ~ W I ~  ([0, ~[ ,  R). The next lem- 
ma gives a bound for the total variation of the functions 2h: R+ ~ R  defined 
by 

(4.2) jch(t)- dxh(t) (constant) on each interval [nr, (n + 1)r[. 
dt 

From an analysis of the waves crossing the phase boundary, we prove the 
following result. (The proof is given after the statement of Theorem 4.1.) 

Lemma 4.2. For all times T >  O, one has the uniform estimate 

(4.3) TVr(2 h) _< O(1){TV~ ~ -- clw ~ + TVo(T/X)+2h(uOe) +N},  

where N = 0  if V* er c3 and N=I I  u~ - + Ilu ~ - Uf~I IL~(O,T/~+2h)  
if V* = c3. 

Hence, from Lemmas 4.1 and 4.2, the equidistribution of the sequence 
{an} and the arguments in [16], we deduce the following pointwise con- 
vergence property. 

Theorem 4.1. The functions Z h and jC h converge to the functions X and 
dz/dt respectively in the sense that 

(4.4) ]IZ h - -Z IIL~(J0,7"{,R) ~ 0  when h ~ O ,  for all T>  O, 

(4.5) j~h(t).._~ dz( t )  for all times tER+ \ E ,  
dt 

where E C R+ is an at most countable set. 

We give first the proof of Lemma 4.2 and then that of Theorem 4.1. 

Proof of Lemma 4.2. Let T be fixed and let N be such that 
NT =< T < (N + 1)r. Recall that ~ is the set of all diamonds which contain 
a part of the phase boundary. Let J be the space-like curve which bounds the 
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domain of dependence of the diamonds in ~ with centers below the line 
t = Nr. For each time t = nr, n = 0, 1 , . . . ,  N, J encloses a finite number of  
diamonds, which we denote by A m for m - 1 , 2 , . . . , N +  1 - n .  They are 
ordered increasingly. We define m(n) to be such that A~(n)~ 2 .  (Cf. 
Figure 4.1.) 

By Lemma 3.1, the speed o f  ~h at the time nr is estimated from its value 
at time ( n -  1) r: 

(4.6) 2 ( n r  -b 0) = zh( (n  -- 1) r + 0) + O(1)] ~(An, m(n))] , 

where I ~(An, m(~))l represent the strength of the waves entering the diamond. 
By summation with respect to n = 1 . . . . .  N, we obtain 

N 
Tv0{N+I)'c(2h ) = ~ 12h(//T -'[- 0)  -- 2 ( ( / /  -- 1) Z" + 0)l 

n=l  

N-1 

= O(1) ]~ I ~(A,,,m(n))l, 
n=0 

which is bounded by the total variation of u h measured along both sides of 
the phase boundary. By using conservation laws for wave strengths, as in [16], 
one could check that the total variation of u h along this curve is bounded by 
the initial total variation. Thus we have 

N+I 

(4.7) TVo(N+I)r(2h ) = O(1) ~ I ~(AO, m)], 

with m =1 
m(0) 

(4.8a) ~ ]  ] ~(Ao, m)] = O(1) o o clwO) TV_ ( T/,~ ) - 2h  ( V L  - -  

m=l 

X+l ~'O(1) TVo(T/~)+2h(u ~ if V* :r c3, 
(4.8b) ~_~ I ~(Ao, m) l = } +2h(uO) V* = 

re=m(0) LO(1) TVo (T/z) + O(1)N if c 3. 

T=N'~ 
~h 

A 2 
2 /  N-1 

AN_ 2 A3_2 

N .N*I A0--Z~ o 

Figure 4.1 
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Combining (4.7) and (4.8) gives (4.3). The proof of the lemma is 
complete. [] 

P r o o f  o f  Theorem 4.1. In view of Lemma 4.1 and Ascoli's theorem, we have 
the convergence result (4.4). In view of Lemma 4.2, the total variation of 
2 h on a compact set [0, T] is uniformly bounded. By again extracting a 
subsequence, we use Helly's theorem to obtain 

(4.9a) j~h(t)--+k(t) for all times t >= 0, 

(4.9b) TVto(2 h) -+l(t) for all times t _> 0, 

where k~BVloc([O, r and /~Ll~c([0, ~ [ , R + ) .  We define E C R+ as the 
set of all points of discontinuity of the function l. This set is at most coun- 
table since the function l is non-decreasing (and so has bounded variation). 

We are going to prove that (4.4) holds with this choice of set E. Let t be 
in R+ \E ,  and let e > 0 be so small that 

(4.10) TV/__+S (jC h) < e. 

This is possible because tq~E. Then, in view of (4.9a) and (4.10), we have 

(4.11) k( t ) - -e<jCh(s)  < k ( t )  + ~  for s E ] t - e , t + e [ .  

On the other hand, we know that the curve g h has the slope )(h(t) o n  the 
interval [nr, (n + 1)r[ 3t and jumps by •  at times (n + 1)r. The slope 
2 h of Z h is "controlled" by inequalities (4.11), while the jumps of Z h are 
determined by the given sequence {a,}. 

Let n'  and n" be two integers such that ( n ' - 1 ) z _ _ < t ' <  n'r and 
n"r__< t" < (n" + 1) r, where t -  e < t' < t" < t + e are given. We set 

s  [m  m integer, n' <=m<n" and am< ( k ( t ) - e )  h l  , 

f2*= I m  m integer, n' <_m<_n" and a,,> ( k ( t ) - e )  h 1 . 

In view of (4.11), between times n ' r  and n"r  the curve Z h has at least # f2 ,  
jumps to the right and at most n " - n ' -  # O .  to the left; thus we have 

(4.12a) xh(n"r) - xh (n ' r )  >= (2#t-2, 

Similarly, for f2* we get 

(4.12b) zh(n"r)  -- zh(n ' r )  __< (2# f2 .  

But the equidistribution of la~} means that 

# ~ ,  1 
(4.13) n" n" " 2  + (k(t) - g )  r 

- 2h' 

- n '  + n")h. 

- n '  + n")h. 

#Y2* 1 
- - ~ -  + ( k ( t )  - ~)  ~: 
n" - n' 2 2h' 

when h ~ 0. 
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Combining (4.12) and (4.13) and letting h ~ 0  yield the inequalities 

x ( t " )  - z ( t ' )  _-> ( k ( t )  - e )  (t" - r ) ,  

z ( t " )  - z ( r )  _-< ( k ( 0  - e )  (t" - r ) ,  

which are valid for all t - e < t '  < t" < t + e, and thus in particular, imply 

c/z ( t ' )  
(4.14) k(t) - e <__ - -  <= k(t) + e 

dt 
for t - e < t '  < t W e .  

Letting e go to zero in (4.14) yields 

dz(t) 
- k ( t ) .  

dt 

The proof is complete. [] 

Remark 4.1. Estimate (4.3) of Lemma 4.2 makes clear that only the c 1 waves 
located at the left of the initial phase discontinuity and the + c  3 waves 
located at the right of the initial phase discontinuity contribute to the change 
in speed of the phase boundary. 

We finally prove that the result in Theorem 4.1 is sufficient for the passage 
to the limit in the kinetic relation. 

Theorem 4.2. Suppose that V* ~ O. Then the limit function u given by Glimm's 
scheme satisfies 

(4.15) OtU(u) + OxF(u) vt(~ ( v~) = -- _ t~x=x(t) 

Hralmost everywhere on the set ~sub(U). 

Equality (4.15) is understood as equality between Borel measures on 
R+ xR.  Here ~sub(U) (according to the definition of Section 1) is the set of  
all points of approximate jump of u associated with subsonic phase discon- 
tinuities. In view of the formula of Section 1, it is clear that, when V* ~ 0, 
(4.15) is equivalent to the formulation (1.11) of the kinetic relation. The case 
V* = 0 could in principle be treated by the same technique but this would re- 
quire further analysis. 

Remark 4.2. 1) The pointwise convergence property of  Glimm's scheme was 
already used in L~ Ftoci-I & Lm [30] to derive an existence result for nonlinear 
hyperbolic systems in nonconservative form. 

2) If V* -- 0, 2 may vanish, and then relation (4.15) is not sufficient to 
characterize uniquely the solution (e.g., of the Riemann problem). 
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Proof of Theorem 4.2. For all times t > 0, we introduce an approximate nor- 
mal vh(t) = (vth(t),v)(t)) by 

v~(t) vh(t) > O. vth(t) 2 -q- Vxh(t) 2 = 1, j~h(t) = -- vh(t ) , 

Similarly, from 2 ( 0 ,  we define v(t) = (vt(t), Vx(t)). According to the nota- 
tion of Section 1, we in fact have v(t) = v(t ,Z(t)) .  First of all, we assert that 

(4.16) VthO(jch) C~x=D~Vt4~(d[t)C~x=z 

in the weak-star topology of bounded Borel measures R+ x R. 
Since 2 h satisfies (4.3) and since the right-hand side of (4.3) is small by 

the assumption (3.1b), the function 2 h has small total variation. When 
V * .  0, we can ensure that 2 h is bounded away from zero uniformly with 
respect to h. In view of properties (1.8), the function 0 is (at least) continuous 
in the range of  values taken by 2 h. This fact combined with the convergence 
result (4.5) gives 

(4.17) @(t) d) (Zh(t)) ~ vt(t) 4) dtt (t) for all t ~ R+ \ E ,  

where E is an at most countable set. From (4.17) and the uniform convergence 
of  Z h to Z, cf. (4.4), we deduce that 

f Vth(t) o(2h(t)) O(zh(t)) dt ~ f Vt(t) o C~tt (t))  O(z(t)) dt 

for each continuous function 0: R--,R with compact support. This proves 
(4.16). 

By construction, the approximate solutions u h satisfy the kinetic relation 

(4.18) OtU(uh) + OxF(uh) = --vh O -- ~x,] 6x=zh 

Hi-almost everywhere on the set 2sub(Uh). We assert that using (4.16) we can 
pass to the limit in (4.18) and obtain 

(4.19) OtU(u) -t- OxF(u) = -utO ( -  vus C~x= z 

Ha-almost everywhere on the set 2sub(U). 
The left-hand sides of (4.18) and (4.19) are treated easily since they have 

a (divergence-like) conservation form. In particular, we have 

(4.20) OtU(u h) + OxF(u h) ~ OtU(u) + OF(u) 

in the weak-star topology of  bounded Borel measures on R+ • 
In case V* < c3, (4.18) is satisfied on the whole space R+ x R  and so the 

desired result (4.19) is an immediate consequence of  (4.18), (4.16) and (4.20). 
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When V * >  c3, nothing has to be proved since no kinetic relation is im- 
posed then. 

The final case V* = c3 is treated as follows. We note that one can find 
two Lipschitz continuous functions q;(V) and ~+(V)  defined for V in a 
neighborhood of  c3 such that the kinetic relation (e.g., for u h) is equivalent 
to the two inequalities 

up,  
(4.21a) OtU(u h) q.- [JxF(u h) < -v )  ~p+ - ~xx/ Ox=xh' 

(4.21 b) OtU(u h) + Oxf(U h) >>_ --vh~_ -- Vhxj ~x=xh, 

where 6 .  are chosen so that 

~+(V)  = q;_ (V) = 4~(V) for V <  c3, 

q;+ and 6 -  are Lipschitz continuous with: 6 _ ( V ) <  6 + ( V ) .  

This is possible since (4.21 a), (4.21 b) when V__< c 3 give back the kinetic rela- 
tion; while for V >  c3 (4.21a), (4.21b) are trivially satisfied provided that 
the entropy dissipation in the supersonic case remains in the interval 
[ 6 - ( V ) ,  q;+ (V)]. In this latter case, the entropy dissipation across the phase 
boundary, say 6(V), is the following (cf. the notation of Section 2): 

1 1 ( c3+V ) 
q~(g) = 2 (el - k3) (WMWm - -  W R W - )  = 2 (kI - k3) WMWm WRhLR ' 

Cl-Jr-  V 

where V =  V(hLR)> c3 is a root of the equation (2.12b). By (1.8b) and 
(1.9b), we have 

lira q;(V) = �89 (kl - k3) w~IWm = ~(c3) = lim 0 ( V ) .  
IZ---~ C 3 V----~ C3 
V >  c 3 V <  c 3 

This proves the continuity of the entropy dissipation at V = c3. Moreover q~ 
is clearly Lipschitz continuous in view of Lemma 2.2. 

Hence, for 0 •  suitably chosen and V - c 3  sufficiently small, the en- 

tropy dissipation ~(V)  remains in the interval [~_(V),d~+(V)] .  
It is clear that (4.16) still holds if ~ is replaced by 6 -  or 6+,  i.e., in 

the weak-star topology we have 

(4.22) vh~• ()?h) ~x=z h weak; V,6• (~t")  fix=z" 

Then (4.20) and (4.22) used in (4.21) yield 

OtU(u) + OxF(u) <= -vt[b+ (-Vv;  ) ~x=z h, 

OtU(u) + OxF(u) >= _vt6 - ( _  v~) ~x=zh, 

which give (4.15). The proof is complete. [] 
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We summarize in the following theorem the results obtained in Section 3 
and in the present section. 

Theorem 4.3. Consider the mixed system (1.1) with an initial condition which is 
a small perturbation in the BV norm of a single propagating phase boundary with 
speed V* Suppose that V * .  0 and condition (3.2b) is satisfied i f  V* = c3. 
Then Glimm's scheme for this problem converges to an admissible weak solution 
which has the structure described in (3.3), (3.4). 

Remark 4.3. 1) Note that the proof of Theorem 4.2 uses the property that the 
entropy dissipation across a contact discontinuity is identically zero. 

2) I believe that Theorem 4.3 could be extended to a finite number of 
propagating phase boundaries. Also the restriction V * .  0 is only a technical 
assumption and could be removed by using other techniques from [16]. 

3) However, there is a main obstacle to a general result of existence of  BV 
solutions for (1.1). Indeed, for arbitrary large data, the phenomenon of initia- 
tion of new phases arises, and it is an open problem to derive a uniform 
bound on the total variation in that case. 
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