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Curve-Shortening Motions 

XINFU CHEN 

Communicated by D. KINDERLEHRER 

Abstract 

We prove existence, locally in time, of  a solution of  the following Hele- 
Shaw problem: Given a simply connected curve contained in a smooth bound- 
ed domain f2, find the mot ion of the curve such that its normal  velocity equals 
the jump o f  the normal  derivatives of  a function which is harmonic in the 
complement of  the curve in s and whose boundary value on the curve equals 
its curvature. We show that this mot ion is a curve-shortening motion which 
does not change the area of  the region enclosed by the curve. In case f2 is 
the whole plane 2 2 , we also show that if the initial curve is close to an 
equilibrium curve, i.e., to a circle, then there exists a global solution and the 
global solution tends to some circle exponentially fast as time tends to infinity. 

1. Introduction 

Let ~2 be a bounded and simply connected domain in ~ 2  and let F0 be 
a smooth simply-connected curve in s Consider the free-boundary prob- 
lem of  finding a function u(x,  t) ,  x ~ g2, t >_ O, and a free boundary 
F = [At=> 0 (F, x {t}) satisfying 

•  t) = 0 in E2\Ft, t > 0, 

un = 0 on 0f2 x [0, oo), 

u = K on I t ,  t >= O, (1.1) 

[ u n ] 6 = V  on F t, t>_0,  

/ 7 c ~ ( t = 0 } = F 0  on { t=0}  

where n is the unit outward normal  to 0f2 or to F t, un denotes the normal  
derivative, [Un]r, is the. sum of  the outward normal  derivatives of  u from each 
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side of Ft (which is also equal to the jump of the normal derivatives across 
Ft), tr and V are respectively the curvature and the normal velocity of  F~, 
with the sign convention that the curvature of a circle is positive and the nor- 
mal velocity of a shrinking curve is positive. 

Problem (1.1) is often referred to as a Hele-Shaw problem in studying 
equations that approximate the pressure in a system containing two immiscible 
fluids [61. The case when F0 is a graph y = f ( x )  ( f ( x ) E H 5 / 2 ( ~ . ~  1) and 
O = g?t is the upper half space bounded by Ft) was studied by DucI-ION & 
ROBERT [5]. 

When (1.1a) is replaced by the heat equation u t -  Au = 0, the system 
(1.1) is known as the Stefan problem with the Gibbs-Thomson relation for the 
equilibrium of  the solid-liquid interface. Its global weak solutions were recently 
established by LUCK~AUS [16] and Ar.MGRE% & WANG [2]. The existence of  
local classical solutions was recently proved by RADKEVI~H [19]. 

Solutions of (1.1) are closely related to the asymptotic limit, as e ~ 0, of 
the Cahn-Hilliard equation ew7 + A ( e2Aw~- f (w ~) )  = 0 for appropriate in- 
itial and boundary conditions, where f ( w )  = w 3 -  w; formal analysis shows 
that the chemical potential u c = f ( w  ~) - e 2 A w  c tends to the solution of (1.1); 
see PECO [18]. Recently, AuI<:AKOS&Ftrsco [1] showed that if initially 
u~(x, 0) is close to an equilibrium of (1.1) (i.e., F0 is a circle and u(x ,  0) is 
a constant equal to the curvature of the circle), then u ~ will stay close to this 
equilibrium for a very long time (of order e-C/~). 

For connections of the Hele-Shaw problem with the asymptotic behavior 
of a phase-field model, see CA~INALP [3]. 

First of all, we point out two important features of the solution of 0.1).  
Denote by t2t the region enclosed by Ft and by S ( t )  and S( t )  the area of 
f2t and the arc length of Ft, respectively. Then we can calculate 

S ( t )  = - V =  - = On Au = O; 

r~ r~ an n \ q  

that is, the Hele-Shaw motion preserves the area of the region enclosed by G,  
for all t > O. Also, we can compute 

d S( t )  ~cV= u [Vu __<0; 
dt 

rt r~ e 

that is, the Hele-Shaw motion is a curve-shortening motion. 
In this paper, we shall establish the local existence of  a solution of (1.i) 

for an arbitrary (smooth) initial curve, and global existence of a solution when 
the initial curve is close to a circle. We shall also prove that when the initial 
curve is close to a circle, the global solution tends to some circle exponentially 
fast as t ~ oo. 

The method used by DUCHON & ROBERT [5] is based on the observation 
that the operator 0n :uly ~ u,,lr can be written as 0n = HD~ + R where y is a 
curve given by y = f ( x ) ,  fEHS/2(~. .~I ) ,  D s is the derivative with respect to 
the arc length, H is the Hilbert transformation on the real line, and R is a 
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compact operator. The operator A - H D  s is the square root of -Z~ in the 
sense that A is positive-definite and A 2 = - D s ~ .  When we write the unit 
tangent of  Ft in the form e io(s't), s E ~.~, t > 0, problem (1.1) is equivalent to 
finding r satisfying L r  ~- r - ADss(o = F((0) where F is a functional having 
some kind of compactness. Therefore, the existence of a solution to (1.1) is 
equivalent to the existence of a fixed point for L - 1 E  Their method, however, 
is very difficult to carry out here since the arc length of F t is finite and 
changing and if one tries to decompose the operator O n as HDs + R,  then the 
time derivative of  the arc length appears in R and is not easily controlled. 

In studying the Stefan problem with the Gibbs-Thomson law, RADKS- 
VIICI-I [19] used a Newton method of successive approximation to show the 
short-time existence of a classical solution. The key step is to show the invert- 
ibility of a Fr6chet derivative of a linearized operator. His method requires 
some technical assumptions on the initial data and may not be applied here 
since without the term u t in ( l . l a ) ,  the continuity of the solution in time is 
very hard to obtain. LUCKI-IAUS [16] and ALMGREN 8r WANG [2] used another 
approach. They discretize the time and implement numerical schemes to con- 
struct a sequence of  approximate solutions and then show that a subsequence 
of the approximate solutions converges to a weak solution global in time. In 
their schemes, finding the solution in the next time step involves finding a 
global  minimizer of a functional; thus, as pointed out in [16], an interface 
may suddenly disappear, and therefore a strong solution (if it exists) may not 
be a weak solution (defined in [16]). The main difficulty in carrying out their 
schemes to our case is similar to that of RADKEVITCtt, i.e., lack of control 
in the t direction. 

Here we shall instead use a new approach totally different from those of 
[2, 5, 16, 19]. We shall consider the regularized equation 

V + eK~  = [Kn]r,, t > 0, (1.2) 

for small positive e and then let e go to zero. Here G ,  is the second 
derivative of  the curvature K with respect to the arc length and [Kn]r, is the 
jump of the normal derivatives of u satisfying the first three equations in (1.1). 
(In the sequel, we shall mix the usage of [Un]r, and [K,]r,. ) By means of 
a priori estimates, we show that (1.2) has a solution in a time interval 
independent of  e, and by extracting a convergent subsequence we obtain a local 
solution. In case the initial curve is close to a circle, the a priori estimates 
can lead to the existence of a global solution. 

To study the asymptotic behavior of  the global solution, notice that a curve 
is an equilibrium if and only if it is a circle. Therefore all equilibria consist 
of  a three-dimensional manifold parametrized by the radius, and the x and y 
coordinates of the center of the circle. This manifold contributes to the ex- 
istence of three zero-growth modes for the linearized Hele-Shaw problem at 
any equilibrium. By using this observation and its corresponding implications 
in the nonlinear case, we show that the global solution tends to a circle 
exponentially fast, even actually without introducing the linearized Hele-Shaw 
problem. 

We prove the local existence of solutions of (1.2) in w After establishing 
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several energy-type identities for the solution of (1.2) in w 3, we present some 
a priori estimates in w In w we define solutions to (1.1) in some Sobolev 
space and show the existence of a solution to (1.1) by letting e--, 0. Finally, 
in w167 7, we establish the global existence and the long-time behavior of the 
solution that is initially close to a circle. 

Remark LL (1) The Hele-Shaw problem is closely related to the equation V = K 
for motion by mean curvature. For the one-dimensional motion by curvature 
flow, the arc length of the curve monotonically decreases, whereas the area 
enclosed by the curve decreases with a constant speed 2re. It is known that 
any imbedded curve in ~ z  or imbedded convex hypersurfaces in ~.~N(N > 2) 
shrinks to a point in a finite time T* and that if one scales the curve (or 
hypersurface) such that its enclosed region has the same area or volume as 
its initial region, then the curve or hypersurface tends to a circle or a sphere 
as t - ,T*;  see [8, 10, 11, 12]. 

(2) The difficulty for the global existence of  a solution to the Hele-Shaw 
problem arises from the possible topological changes of the curve. For the mo- 
tion-by-mean-curvature flow, the surface of a barbell with long and thin han- 
dle in higher dimension splits into two pieces at a time before the surface 
shrinks into a point. However, in the one-dimensional case, the solution of 
any imbedded curve remains as an imbedded curve until it shrinks to a point; 
that is, a 'global' solution exists; see [10]. Here we do not know if the cor- 
responding conclusion holds for the Hele-Shaw problem, i.e., if a solution 
global in time exists. 

(3) To get global (weak) solutions for the motion-by-mean-curvature equa- 
tion (for higher dimensions), people invented viscosity or generalized solutions 
and have been extremely successful [4, 7, 20]. However, we do not know if one 
can generalize these ideas to the Hele-Shaw problem or to the equation (1.2) 
with e __> O. 

2. The Regularized Problem 

Let T > 0 and e E (0, 1) be fixed constants. Consider the evolution prob- 
lem 

V + elcss = [Kn] ~ for t E (0, T) ,  
(2.1) 

Fr [t = 0} = F0 for t = 0  

where V, K, [K,]r,, and Fo are as in w 1. 
It is convenient to write (2.1) in terms of local coordinates. Let/Z/0 (close 

to F0) be a one-dimensional closed C 4 manifold embedded in ~2. By scaling 
the space if necessary, we may assume that the length of///go is 2~z so that 
/Z/0 is diffeomorphic to S 1, the unit circle. Let x = X~ be the diffeomor- 
phism from S 1 to ////0 such that r/ is the arc length and that the positive 
direction of/Z/0 is counter-clockwise. Then the unit tangent r ~ the unit out- 
ward normal n ~ and the curvature tc ~ of JZ0 at X~ satisfy the relations 

�9 ~ =x~  T~ = -K~  n~ n~ = K~ ~~ r/~ SL 
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Set 

6o = �89  1, dist(//Zo, on), IIKolIL isI) 

and define Y: S 1 x ( -3o ,  rio) --'~/o ~~ - {x ( 9 2 ] dist(x, ~'o) < 3ol by 

Y(rh h) = X~ + hn~ (2.3) 

Clearly, Y is a diffeomorphism from S i x  ( -3o ,  3o) to M/go; see, for exam- 
ple, [9]. Hence, we can use (r/, h) to represent points in ~ o  ~o, the 
3o-neighborhood of J/fo. 

In the sequel, we shall assume that Fo is in a (3o/2)-neighborhood of/g/o 
and that in the local coordinates it has the representation 

r o = [Y(J/, h) I h = d~ 17 ~ S 11 (2.4) 

where d ~  ( -3o/2 ,  3o/2) is a C 2 function. 
Let F =  Uteto, r)(Ftx[t}) be a family of curves having the representation 

/ ' t  = {X(r], t) l X(r], t) = Y(r/, d(/'/, t ) ) ,  /7 E S1}, t ~ [0, T),  

where dO/, t ) :  S ix [0 ,  T ) ~  ( -30 ,  3o) is a smooth function. Then the unit 
tangent r and the unit normal n of Ft at X(t/, t) are given by 

r ( r / , t )  - X,(r / , t )  1 [(1 + d K  ~  ~  ~ = - -  

Ix~ (rl, t)l J 

1 
n(t/, t) = ~- [ - d n r  ~ + (1 + d~c ~ n o ] 

where 
J = J(r/. d. d,) = [X.(r/. t)[ = 4 ( 1  + dK~ 2 + d ~ .  

One can use the formulas 

V = --Xt(l], t)" n(ll ,  t) ,  K =--X. . (r l ,  t ) .  n(rl, t ) /[x .( t l ,  012 

to calculate the normal velocity V and the curvature K of F by 

1 + d K  ~ 
V = - - -  d,, (2.5) 

J 
1 

~ c = j 3  [ - ( 1  +d~c~ + (2d~~176176162176 (2.6) 

1 
Since 0s = j  0 n, equation (2.1) can be written as 

dt + ej-4d~m m = 5Y-[d] = ~ [ d ]  + e~[d] for (t/, t) ~ S 1 x (0, T),  
(2.7) 

d(t/, 0) = d~ for q ~ S 1 

where -~l[d] is the functional defined by 

J 
~ [ d l ( . ,  t) - [Kn]r, (2.8) 

1 + d K  ~ 
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and ~2 is the function defined by 

1 + dK ~ Or/ j4  Or/ Or/ J ~ }  

0 (~  0 I r176176176176  (2.9) 

+ O~ Or/ j 3  " 

We first study the functional ~.. It is convenient to introduce a function 
space / Z  a defined by 

///a = {h(r/) ~ Ca(Sl)l  lhlcl(sl ~ < a} 

where 5 e (0, 5o) is a parameter. 

I_emma 2.1. Let J//o ~ C2 be given and let h be any function in JAao. Set 

y = {Y(r/, h(~) )  I r/e S1}. 

Then there exists a positive constant C depending only on ~ o  and /2 such that 
if u is a harmonic function in /2\  y and is continuous across y with normal 
derivative vanishing on 0/2, then 

c-111Vu ~ IIL~<~) --< II u~llL2(~) _-< cII u# - u ~  + ]IL2(~) (2.10) 

where u -  and u + are respectively the restrictions of u on /2-,  which is the do- 
main enclosed by y, and on /2 + = / 2 \  (/2- u ?), and u~ and u n are respectively 
the tangential and normal derivatives of u. 

Proof. Since y is a Lipschitz curve and its Lipschitz constant is bounded by 
a constant independent of y, the assertion of the lemma thus follows from 
the classical single-layer potential theory; see, for example, [13, 14, 17]. [] 

Direct differentiation yields 

/r = a 1 d ,q ,  + a 2 d~, + a 3 d.n + a4 .  

= bldnn~d,, + b2dn, m + b3d~  + b4d~  + bsdn. + b6 

where ai and bj are functions of e, d and d. only. Thus we obtain the follow- 
ing lemma. 

Lemma 2.2. Assume that ~ o  ~ C4 and that d(. ) ~ ~ao" Then there exists a con- 
stant C depending only on fifo and /2 such that ~ defined in (2.8) satisfies 

[I ~1 [d] < C[1 + [ld, mn + I l b c s , )  = 

and ~2 defined in (2.9) satisfies 

11 ~2[d] < C[1 + II + d,~oi[L~(Sl) [I d,m I166(s~)]. 
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Consequently, the functional ~ -  ~ + e.~2 satisfies 

,, ,~[d]  2 [ 1  ] = IIL6(S, ) (2.11) IIL2(st / < Co e4 + e2(lld,, ,  3 6 

where Co is a constant depending only on /g/o and Og2. 

To deal with the high-order growth on the right-hand side of (2.11), we 
need the following lemma. 

Lemma 2.3. For every f (H4(S1), the following inequalities hold: 

1166(St) = 4 2 II f , , , ,  [I L2(S t ) l] f . .  < 25 II f .  H L ~ (St) 

[I L3(Sl) --< Hfnnnn 2 I]f,,, 3 2 ~ - 0  Hf, l[[z~(st) ilz=(st) " 

Proof. Integration by parts yields 

5 ~ f6rl I f r l ( f  qrl)rl _5 ~ 2 3 = - = ( f . ) . f , ,  f~,,  
S t S t S 1 

2 3 
=125 ~ Fa F2a~larlrla~l~lrlP2 + 5  Jf vf ..f.... 

S t S t 
2 3 --< ~2 5 IlL ll2=(s 1) ~ �89 ( f ~ ) . f ~ . q  + 52 5f. f ,mfmm,7 

S l S t 

- - - 5 2  I l L  +52 I 2 3 
S I S t 

112(s 1) 3 <= 511G IIG. NL6(Sl) [If , . . .  [IL2(S 1) ' 

The first assertion of the lemma thus follows. Similarly, one can calculate 

JI IF 3 L3(S 1) = - -  ~ f . . ( l f ,  m. [ f , . , ) .  
S t 

<__ 2 5 I f ,  n f , , , f ~ , , ,  I 2 II f , ,  [[L6(St) II f~,,  IIL'(S 1) II f , , , ,  ]lL2(Sl). 
S t 

which, together with the first assertion of the lemma, yields the second asser- 
t ion of the lemma. [] 

In the sequel, we shall denote by S~ the set S i x  (0, T) and by f ( t )  the 
function f ( . ,  t). 

Lemma 2.4. Assume that f ~L~176 T; H2(S1)] (3 HI[0, T. L2(S1)]. Then. 
(1) for every 0 < r < t < T. f satisfies 

[If(t) -- f(r)Hct(sl) <= 
1/4 1/4 1/2 1/2 ~ 3/2 ; (t - r) 1Is IIft[lL2(sD(T [If~ s + 2]1 ( f ( t )  - f ( r ) ) ~  L2(St)S 

(2) there exists a constant C depending only on T such that 

f llc '~ (s)) + llf,  lld'~(sy) <-- c(llf(o)lJL2(s,) + sup IIG~(t)llL:(st)+ Ilf,/IL:(sx)); 
ONtNT 
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(3) the imbeddingfromL 2 [0, T; H 4 (S 1)] c~L o~ [0, T; H 2 (S 1)] c~HI[0, T; L 2 (S 1 )] 
to L3[0, T; W3'3(S1)] c3 L6[0, T; W2'6(S1)] is continuous and compact. Here 
Wm'p(s 1) is the Sobolev space consisting of functions whose distributional 
derivatives, up to order m, are in LP(S1). 

Proof. Direct calculation yields 

I I f ( t ) - f ( v )  2 i f (f(Jl, t) t[L2(St) = - f ( r / ,  r ) ) f t ( r / ,  r l ) d r  / dzl 
S t 

It follows that 
<= ~ -  r IIf(t) -f(v)lk:(s~) IILIIL=(S~>. 

]If(t) -f(r)l]L2(Sl) ~ ~/t - r qlf, l[L2<Sl>. 
A similar calculation yields 

t 

IlL=(Sl) I .~ (f~(r/, t) - f~( r / ,  z))f , t ( r / ,  zl)drl dr1 = 

"c S 1 

t 

= - I I (f . .(~l, t) - f .~(~l ,  z ) ) f t (~ ,  zt) d~/dr1 
"r S ~ 

__< r IIf, ,(t) -f.n(Z)HL2(Sl)Hf, 
It then follows that 

i i f ( t ) _ f ( r )  2 2 IIL~(s~)-<_ll f ( t ) - f ( z )  +211 IIL~(s~) f ( t )  -f(r)[[L2(s~)l[f~(t ) -f~(r)[IL2(S~ ) 

3/2 tT1/41q ~: 111/2 1/2 <__ ( t - r )3 /4Hf  t Lz(s~)~ iJJ~L~ls~) + 2llf.n(t) -fe.(r)l[L~(s~)), 
and that 

2 [] frj (t) - f .  (r) Ilco~(st) 

</If~(t) -f~(~)ll: = L:(S~> + 211f~(t) -f~(z)llc2(s~)[[fen(t) -f~e(z)[[C2(St) 

1/2 
_____ (t - -  T)1/4 IILIIL=(S~) tl (f(t) -f(z))n~ II~=(s~) 

1/2 l /a  ,, 
x (Z  ~/4 lift L2(Sl) + 2 l ] ( f (0  -f( 'c))~,  1 L2(S1)). 

The first assertion of the lemma thus follows. 
Using the L~[O, T; H 2] norm to control the r/ direction and the previous 

two estimates to control the t direction, one easily obtains the second assertion 
of the lemma. 

To prove the last assertion of the lemma, we need only show that the 
embedding is compact since Lemma 2.3 and the first assertion of Lemma 2.4 
shows that the embedding is bounded, which implies that it is also continuous. 

To prove that the imbedding is compact, l e t  {j~)j~176 1 be a bounded sequence 
in L2[0, T; H4($1)] ~L~176 T; H2($1)] n i l1 [0 ,  T;L2(S1)]. Then the second 
assertion of the lemma ensures that there exists a subsequence [3~k}k%~ of {j~} 
such that 3~k converges in C~/~6[0, T; C1($1)]. Therefore, applying Lem- 
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ma2 .3  with f = f J ~ - ~ k , ,  we find that {fj~} is a Cauchy sequence in 
L6[0, T; W2'6(S1)1 c~ L3[0, T; W3'3($1)]. This shows that the imbedding is 
compact, thereby completing the proof of  the lemma. [] 

Now we are in a position to prove the following theorem. 

Theorem 2.5. Let /~o ~ C4 and e E (0, 1) be given and let c~ o and Y(t/, h) be 
defined as in (2.2) and (2.3). Assume that F o is given by (2.4) with d~ ~ 
C 4 ( S  1) ('3 ~ �89  o. Then 

(1) there exists a positive constant T (depending on e) such that the regularized 
problem(2.7) (or(2 .1))hasasolut iondE Hi[0 ,  T; L2($1)] ~L2[0, T; H4(S1)] 
L=[0,  T; H2($1)] ~ C[0, T;//f~o]; 

(2) there exists a positive constant fil which depends only on /~o  and s such 
that the solution of (2.7) (or (2.1)) can be extended as long as 

sap II d(t)  - d o II CI(S 1) < al ;  (2.12) 
O~t<_1 

more precisely, if [0, T~) is the maximum interval such that (2.7) has a solution 
d~L2[0 ,  T; H4(S1)] ~ Hi[0 ,  T;L2(S1)]  n L~[0,  T; H2(S1)] and d satisfies 
(2.12) for any T <  T e, then either Te =oo or 

sup II d(t)  - d o II = ,~1. (2.13) 
o<_t<_T~ 

P r o o f .  S e t  

and 

~r,M = Id~ 

1 = d.~.~ +[d~ +ld%[ 6) E0 ~ 6 + 1 ( 1 ~  I 2 3 
S 1 

C[0, T; C 1 ( $ 1 ) ]  
d(t)  ~J~ao V t ~  [0, T],') 

o 6 < 
I] dn. -- d . .  llL6(S~) = M'  

o 3 < ltd... - d ~ e  e IlL3(S > = M .) 

V T > 0 ,  M > 0 .  

Let M be any fixed positive constant, say M = 1. Let T be a positive con- 
stant to be determined and denote by • the Banach space 

C[0, T; CI($1)] ~L3[0,  T; W3'3($1)1 (3L6[0, T; W2'6($1)1. 

Then, the subset defined by 

is closed and convex in ~ .  
For any d6  ~ ,  consider the linear evolution problem 

d t "t- e J - 4 ( t / ,  d ,  d.)  d , . . .  = ~-[a/] in S 1 = S 1 x (0, T) ,  

d(t/,  0) = d~ on S 1 x{0}. (2.14) 

Since d(t)E//~6o and c~ o ____ (2[IK~ -I, it follows that 

• < J_< 2, (2.15) 2 --  
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and by Lemma 2.2, 

II ~ [ d l  2 e 2 d,~ e2 3 

<= Co[TIe 4 + e2(26Eo T + 26M)] 

<_ Ce2(Eo T + M). (2.16) 

Hence, from classical semigroup theory [15], the problem (2.14) admits a 
unique solution dE L2[0, T; H4(SI)] ~ HI[0, T; L2($1)]. 

Multiplying (2.14a) by e(d - d~ and integrating over S] -= S 1 • (0, t), 
after routine calculation, we obtain 

2 2 - [[L.~(sl) + g2[[ ( d -  d~ <_Cc2[EoT+M] VtE (0, T). 

Using equation (2.14a) to estimate dr, we then have the estimate 

tld, ll2 0 o 2 L2(s~) + e2ll (,7 - e d,,,lIc-(s,) d )q~n~ll/3(s}o + sup 
O<=t<=T 

< ctez[EoT + M] (2.17) 

for some constant C I depending only on Co. 
Lemma 2.3 then implies that 

L,(s~) =< C2 sup lid(t) - d ~  4 [EoT+M] (2.18) 
O<=t<_T 

- I]a, ts;) _-<C3 sup l id( t )  -d~ (2.19) 
O<=t~7' 

whereas Lemma 2.4(1) implies that 

sup l i d ( t )  - d o IIc,(sx) <-_ C4T1/a(e2[EoT + M]) 1/2(T~/4 + e-1/2)3/2. (2.20) 
O<t<=T 

Hence, if we take T small enough (depending on e and M), then d E ~,U; 
that is, the mapping 3-:  d ~ d  maps JKinto itself. Notice that 57-(X)  is a 
bounded set in L2[0, T ; H  4] n L=[0,  T;H2(S1)]  n Hal0, T;Lz(S1)];  it 
follows from Lemma 2.4(3) that 5~-is also compact. Since the mapping 
d - ~ J ( q ,  a~ dr) is continuous from K to C(S~) and the mapping d--* J [ d ]  
is continuous from ~ c  ~-~ to L2(S~), one can easily verify that J i s  con- 
tinuous. Therefore, the Schauder fixed-point theorem implies that 3 - h a s  a 
fixed point, which clearly is a solution to (2.7). This establishes the first asser- 
tion of  the theorem. 

Let C 2 and C3 be the constants in (2.18) and (2.19), and set 

~1 = rain{�89 60, (4C3) -1, (4C2)-1/4}. 

We now prove that the second assertion of  the theorem holds for this ~ .  
Let TE (0, c~) be a constant such that (2.7) has a solution d in [0, T] and 

d satisfies 
sup d(t) - d ~ <= d l -  p for some /t > O. (2.21) 

O~t~l  

We show that the solution can be extended to T + p~ for some positive con- 
stant /t 1 depending on p. 
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Define 

N(t) IIG.,, dO  n 3 IIL~(s~> +lldn. d0. 6 = - - IlL6(S}), t~ [0, T]. 

Then, we can proceed as before to show that for all t E [0, T], N(t) satisfies 

N(t) <= sup [C2[[d('c) - d~ + C3[Id(r) - d~ t + N ( t ) ] .  
O<,v<t 

It then follows from (2.21) and the definition of  fi that 

N(t) < Eot Vt  ~ [0, T]. 

As in the proof  of  (2.17), we can show that for all t ~ [0, T], 

iidt ]]L22(S~) +e2ll(d_dO)nnnn[[L2(sl)+ e 2  sup l[ ( d ( t ) -  d~ 2 L2(S I) ~ 2C1Eo t. 
O<=t<_T 

(2.22) 

Now let //1 be a small positive constant to be determined. Define 

~ f :  {d(: d~T+tzl,EoT+ 1 [d = d Vt  ~ [0, T]} 

and proceed as before to define a7 for every d fi ~ .  As in the proof  of  (2.20) 
(noting that IJdn.( t ) -d~n(r)[I  _-<lldnn(t)-d~ + ] l d n . ( r ) - d ~  we can show 
that for all 0 _< r < t__< T + / / 1 ,  d satisfies 

lid(t) - d(r)[Icl(s  1) ~ 2 C 4 ( t  - ~')1/8 ( e 2 [ ( T . t _ / / I )  Eo + EoT+ 1])1/2 

X ( ( T - I - / / 1 )  1/4 -I- 8 - 1 / 2 )  3/2 . 

It  then follows that 

lid(t) - d~ _-<lid(t) - d(r)llc~(s~) + lid(T) - d~ 
<=C(T,e) / /~ /8+f i l - / /  Vt r [T, T + / / 1 ] ,  (2.23) 

where we have used (2.21) and the fact that d =  d = d for t E [0, T]. And 
therefore, we can prove that ~ - m a p s  ~ into itself if//1 is small enough. Ap- 
plying the same argument as before leads to the existence of  a solution of  (2.7) 
in the interval [0, T+ / / 1 ] .  From (2.23), we can take //1 so small that the 
solution still satisfies (2.12). Also, if T is bounded from above a n d / / i s  bound- 
ed away from zero, then //~ is bounded away from zero. Therefore, either 
Te =oo or T~ <co  and (2.13) holds. This completes the proof  of  the 
theorem. [] 

In the sequel, we shall always assume that T c is the maximum interval 
defined in Theorem 2.5. Notice that if  the initial data are smooth (the norm 
may depend on e), we can use a boot-strap argument to show that the solution 
is smooth.  Therefore, we shall also assume that the solution is as smooth as 
we wish. 

3. Energy Identities 

In this section, we derive several energy identities for the solution of (2.1); 
i.e., we prove the following theorem. 
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Theorem 3.1. Assume that F o E C 4 and 0s E C 2. Let F ~ = Uo<__t<T Ftex{t} be 
the solution of  (2.1) and let W ,  x ~, and u ~ be the corresponding normal velocity, 
curvature, and harmonic function. Denote by S t ( t )  the arc length of  F t. Then, 
for all t ~ (0, Te), the following identities hold: 

- -  eZds + J j lVu t ( t )12c l x  0, (3.1) d S t ( t  ) + e  j1r s = 
dt rf o 

dt r~ V~ ~\V~ 

= I Ke3Ve "Jr- ~ N e [ ( U n ~ + )  2 - -  (U~ - ) 2 ]  -- I No(Use+) ,2 
r~ r~ ~o 

(3.2) 

d t2  s2 d f l ]Vu~( t )12+  e I K  s + 2 i v  ~ 
dt ~ dt r~ r~ 

tt Kv s (3.3) 
r~ rf rf 

where D 2 refers to all the second derivatives with respect to the space variables, 
tco is the curvature of  0~ ,  and u e-  (. ,  t) and u t+ (., t) are respectively the 
restrictions of  uS( ., t) on (2~-, the domain enclosed by FT, and on 07  + =  
~ \  (07- u H) .  

Proof. Multiplying (2.1a) by tce and integrating over F 7 yield 

~:-- . t + .  ~'+-\ d x .  I v - .  - .  ,=Sl lvut( t ) l  
r f  r f  r f  r f  

To calculate the first term on the left-hand side, we parametrize F e in terms 
of the arc length parameter s, i.e., we write F t as 

F t = {X(s, t)[ s E ~ t ,  t E [0, Tt)/ 

where for all t E [0, Te) and s E ~ 1 ,  X(s ,  t) satisfies 

It then follows that 

X(s ,  t) = X ( s  + Se( t ) ,  t ) ,  (3.4) 

Xs(s, t) = r(s,  t ) ,  (3.5) 

Xss(S, t) = - x ~ ( s ,  t) n(s ,  t ) ,  (3.6) 

Ve(s, t) = - X t ( s ,  t) . n(s ,  t ) ,  (3.7) 

tee(s, t) = -Xss(S ,  t) . n(s ,  t ) ,  (3.8) 

ns(s, t) = Kt(s,  t) r(s,  t). (3.9) 

s~(t) [st(t) sqo d 
f V t t ce= I X s s ' X t d s = X s ' X t  ~ - f X s ' X s , -  S t ( t )  

vf  o o dt 
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since Xs. X~t = �89 (I Xs [ 2)t = 0 and 

X s  " x t [ S e ( t )  ~--- _ d S 8 ( t ) ,  ( 3 . 1 0 )  
dt 

which follows by differentiating (3.4) with respect to s and t and multiplying 
the resulting equations.  The  identi ty (3.1) thus follows. 

We proceed to show (3.2). Using the conventional  summat ion  nota t ion over 
double indices, we can compute  

SJ ID~.~(t)l ~= fl v( . ;v .~ , )  
e\rf  mr~ 

I z l ~ e - - U S -  _ ~e+ e+ = Uxixj Flj) -]- ~ " 8 + .  8+ xi xixj  Flj xi % "xixj nj 
F~ OY2 

where nj is the j t h  componen t  of  n. Since 0xi = riOs + niOn, it follows that  
for  either u = u 8- or u = u 8+, 

j Uxi Uxixj nj = I Us ri Uxix j nj -k- u n n i Uxixj nj 
r~ r~ 

= ~ ~++[(Uxjnj) ~ - uxj(nj)s] + u . [Au  - ((Uxjrj) s - Uxj(rj),)] 
r7 

= f [x++(u~L -n++ Uxj(X~rj)] + u,[O - x++~ + u~j(-nSnj-)] 
r f  

: - 2 j "  c l . e .  e2 K ss bin - -  _ bl n i~'s l l~c 2 
r~ r~ r~ 

where we have used the identities as = riO~ i and Au = riux.~.rj + niUx.x,rtj in . t j  . ~ j , 
the second equality, the identities ns = ~cdr and re = - K ~ n  m the third equah- 
ty, and integration by parts in the last equality. Similarly, using u~ = 0 on 
01L we can derive 

~+ 8+ = _  , [ K o ( u ~ + ) 2 .  f Uxi lgxixj n j  
O~ Of~ 

Hence,  

j j  lD~uS(t) l  2 
a \ F  e 

e e . g + ~ 2  
: -21 ~ss tUn ] ;~  + S ~ [ ( u ~ + )  ~ - ( < - ) h  - l ~ o ( . ~  , �9 

Substi tuting (2.1 a ) i n t o  the first term on the r ight-hand side yields 

~ IO~u'(t)r 2 + 2e j K2 2 
mr~ r ~, 

= - 2  j K~sVe+ j K e [ ( U n e + )  2 -  (Un~-)  2] -- ~ N0(Use+) 2, (3.1])  
r~ r ,  ~ 0a 

Using the identities (3 .5) - (3 .10) ,  we can calculate the first integral on the 
r ight-hand side by 

f 8 ~ ~ 8 ~ . v  = j~  v , = -  SK~ 
r f  r f  r~  

= -  j xe[X~,,  n + 2X~t. ns + X,. n~] = 
r f  
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_ 1 

_ 1 

Substituting the last equality into (3.11), we obtain the identity (3.2). 
Finally we prove (3.3). Direct differentiation yields 

d ~f [Vu~( t )12= 2 ~f VueVu7  + I ve[IVu~+l=-IW~-]2] 
dt ~ ~\r~ r~ 

2~  (u~-u~-  . e + . e + ,  = - - " n  ut ) q- I Ve[(Un~+)2 (b/ne--)2]' 
r~ r~ 

= - I Ke[ - (Ken)t" n + 2Xst. (Ker)  + X t" (Ker)s] 
rf 

= -- ~ Ke[--K~ -- Kent �9 n + 2z t. leer + KesXt �9 r + KeXt �9 "Cs] 
rf 

= _  ~ [ _ ~  . e ~ ,  (t~ )t "]- 0 "[- 0 Jr" 1 ( K e 2 X t .  T) s _ �89 K e 2 ( X t .  7~)s _ Kg3Xt .  n] 
r~ 

_ d i~(t)_�89 
d jK~2_  �89 ~ S e ( t ) - � 8 9  . r  ~Ke3V e 
dt r~ r~ 

d SKew_�89 iKe3v, 
dt r~ r~ 

(3.12) 

Differentiating the identity Ke(s, t) = u e• (X( s ,  t) ,  t)  with respect to t yields 

K7 = Vu ~• Xt + uf • = u7 • + Ks~ Xt �9 r - un~* Ve. 

It follows that 

- e+u~+ ) 
r~ 

= [ [ U ~ ] r f ( K 7  - K , e X t  �9 r )  - V e [ ( u ~ + )  2 - ( u ~ - )  2] 
r~ 

= j (Ve+eKess ) (K~- -KesX t . z )  - V e [ ( u ~ + )  2 -  (Un~-)2]. (3.13) 
r~ 

We calculate 

re(K7 - K~xt. r) 
r~ 

=f 
rf 

r~ 

= f V e [ ( V ~ s + Z z t "  (Kcz) +X t "  
r~ 

= - [ V~s 2 + l K ~2 v~2 
r~ r~ 

e r] V e [ - X s s t  �9 n - X s s .  n t - KsX t. 

Ve[ ( -  (Xt.  n)ss + ZX~t. ns + Xt.  nss) + x e n .  nt - K~Xt. r] 

(K~T)s) + 0 -- K~Xt. r] 

(3.14) 
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and 

6 e e --  Ks Xt" K~(K, r) 

r~ ? 
6 ~lsem ~ e e 6 6 : K s Kt -- [K s Kst "~ KssKs Xt" ~-] 

q) 
rf 

a elSe(t) 1 __d f 62 1 K e 2 ( g e ( t ) ,  t ) d =~CsKt --2 dt Ks + ~ s ~ Se(t) 
q) 

rf 

1 62 I- 62 Ks X,. 10 - -  K~ (Xt 
J 

r~ 

. . . .  Ks K V (3.15) 2 dt Ks _.1_ �89 e2 t 6 

r~ r~ 
where in the last equality, we have used equation (3.10) and the relation 

6 6 62 d Kt Ks l0 se(t) = --K~ dtt Se(t)' which follows by differentiating the identity 

K6(0, t) =K6(S~(t) ,  t) with respect to s and t and multiplying the resulting 
equations. Substituting (3.14) and (3.15) into (3.13) and (3.12), we obtain the 
identity (3.3). This completes the proof of the theorem. [] 

4. A P r i o r i  E s t i m a t e s  

We now use Theorem 3.1 to estimate the solution of (2.1) (or (2.7)). For 
any t E [0, T6), define 

A ( t )  ~--- S 6 ( t )  --[- I fie2 + l~ i \Tu6(t)12 + ~ ~ Kff, (4.1) 
r7 ~ r~ 

B(t) =/51VuC(t )12+ 55 [DZue(t)l 2 + 2  ~ V~ e 2 + e  5Kff 2 + 2 e  5Kffff. (4.2) 
a mr~ r~ r~ r~ 

Adding up the three identities in Theorem 3.1 yields 

d 
- -  A ( t )  q'- B ( t )  = f K e 3 V  e "[- 2 f Ke2Ve2  "1- I Ka[(Un e + ) 2  --  (u~-)2l 
dt r~ r~ r~ 

_ v 6 [ ( < + ) 2  _ _ S + S KeVe KS" 
r~ 0a r~ (4.3) 

In order to estimate the right-hand side, we need the following lemma. 

Lemma 4.1. (a) The function S~(t) is monotonically decreasing in [0, Te) and 
satisfies 

4~r >= SE(O) >= S~(t) >_ ~r Vt  E [0, T6). (4.4) 
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(b) There exists a constant (75 depending only on f~o and 0s such that for 
all t ~ [0, Te) the following inequalities hold: 

1/2 2 2 1/4 
I[ f Ik2<rg> _-< G II f [IL2<nf~)([] Vf Ilz2(~f:~) + I] f [ILz(of• 

1/2 t" 2 2 )1/4 
l i r a . ? )  II Ilf[k~(am--< cslifl[~lof+),[lVf + ftl~2<of+) 

II f Ik~(rf)-< C~(ll v f  H22~o) +ll fllL~(rf)2 )1/2 

Vf~ H1 (s177 
(4.5) 

Vf~ HI (o~+) ,  

(4.6) 

Vf~ H 1 (~) .  

(4.7) 

Proof. The monotonicity of Se(t) is an immediate consequence of (3.1) 
r 2~ j .  whereas (4.4) follows from (2.15) and the formula Se(t) = 1o t~l, d, da) dq. 

Since d(.,  t )~ J/60, the curve Ff  is Lipschitz continuous and its Lip- 
schitz character depends only on ~ 0 .  Hence, the second assertion of the 
lemma follows from the Sobolev imbedding theorem. This completes the proof 
of the lemma. [] 

Applying (4.5) with f = V u  ~• yields 

II v u ~ •  < C~ll vu~ 1/2 ( l lD~u ~ 2 -- too> . < ~ )  +llVu~ll~g<m) ~/2 ~ C5A1/4B1/4.  

We now estimate the right-hand side of (4.3). 
Since 

e ~+ = 0, (4.8) v ~= l t u ~ l - ~  l Ks, = -  l u. 
rf rf rf a~ 

it follows that 

II Ve ll~<r~) <= [[(Ve2)s I["<m =< 211 v ~ l[-(m [I V~H.<r~> <= 4 5  [[ V e lt.<v~) B1/2" 

Using equation (2.1 a), we have 

II v~ llL2<rf) = j[ e~c~ - [u~]rf IIL~rf) 

_< e II , ~  11.r + II Vu~+ 11.r + II Vu~- t lmr> 

< ~ 2  B 1/2 + 2CsA1/4B 1/4. 

Substituting the last inequality into (4.9) yields 

II v~ IlL-(r> -<- el/4B1/2 + 2"dC5 A1/SB 3/8. 
It follows that 

Ilmr~> II V'ILL~<r~I 
rf  

e 2 U e 3/2 V e 

<= C3A3/2(el/4B1/2 + 2~fC 5 A1/8B 3Is) 

(4.9) 

(4.m) 

(131/2 +IJ)AB + C~A 2 VI2 > O, 
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where we have used (4.7) in the second inequality and (4.10) in the third 
inequality. 

Similarly, the other terms on the right-hand side of (4.3) can be estimated 
as follows: 

I Ke2 Ve2 ~ II ~ 11 ~=<r~)tl ve 
rf 

< A (gl/4B1/2 + 2 ~ 5  A1/8B3/8) 2 

__< (e 1/2 + p)AB + CaA 2 VII > O, 

2 51~(u~• ~ I1~11~=<~)II vu~• I1~:<~) 
rf 

< (A1/2 + C5A1/4B1/4) C2A1/2B1/2 

<-I.tAB+ Ca(1 + A ) ,  

I I g ~-4- 2 V e Vue• 2 v ( u , )  I_<]1 I[~=<~) II 11~2<r~) 
rf 

< (C~31/4  +f l )A1 /2B  + C/sA 3/2 VI~ > O, 

2 2 x 1/2 Sl~o<uy+)2[ <= HKoll~=<oo) C~llVu~ll~=.,e+)<llVull~<~,e+) +llD2u ~ ~2<oe+~, 
OQ 

<= CAI/2B 1/2 <=pAB + C~ Vl z > O, 

E I I  e e ~2 2 

rf 

<= 81/2A1/2C5A1/4B1/4(A 1/2 + C5A1/4B 1/4) (81/4B1/2 + 2N/-C 5 A1/8B3/8) 

< Cel/2(AB + CA2). 

Substituting these estimates into (4.3), we have the following lemma. 

Lemma 4.2. For every/z > 0, there exist positive constants C6 = C6(///0, f2) and 
C a = C(lt,//[o, f2) such that the function A(t)  and B(t) defined in (4.1) and 
(4.2) satisfy 

d A+B<= ( c 6 e l / 2 + / j ) ( A + A 1 / 2 ) B + C u ( I + A  2) VtE (O, Te) (4.11) 
dt 

We shall use the following lemma to replace the classical Gronwall inequality. 

Lemma 4.3. Assume that A(t)  and B(t) are non-negative smooth functions in 
[0, T) and that for some positive constant M they satisfy 

A(t) +A1/2(t)'~ 
d A(t)  + 1 - - 4 7 7 ~ q - 1 " - ]  B(t) < = M ( l + a z ( t ) )  (A(O) ) V t ~  (O,T) .  (4.12) 
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where 

Then the following inequalities hold: 

A( t )  =<A(0) + 1 Vtfi [0, T1), 

T 1 
I B ( r ) d z  <= 2A(0) + 2M(1 + (A(0) + 1) 2 ) T 1 
o 

_1 arctan 
T l = m i n  T, M I + A ( 0 )  + A ( 0 )  

(4.13) 

(4.14) 

(4.15) 

P r o o f .  Set 
T l - S U p ( t ~ [ O , T ) l A ( ' c ) < l + A ( O )  Vrfi  [0, tll. 

Then (4.12) implies that 

d 
-- A( t )  < M ( 1  +A2( t ) )  Vt~  (0, T1) 
dt = 

which yields 

A(t )  <_ tan(Mt + arc tanA(0))  = tan(Mt) + A ( 0 )  Vt~  [0, T1). 
1 - A (0) tan(Mr) 

Since the right-hand side is less than A(0) + 1 when t fi [0, T1] where T1 is 
as in (4.15), it follows from the definition of T1 that T1 _-> T1, and there- 
fore inequality (4.13) holds. Integrating (4.12) over (0, T1) and using the 
estimate (4.13), we obtain inequality (4.14). This completes the proof of  the 
lemma. [] 

Introduce 
A~ = I (K(0)) 2 + III  Vu(O)l z + e j  (Ks(O)) z (4.16) 

ro t? ro 

where u(. ,  0) is the harmonic function with the boundary value x( . ,  0) (the 
curvature of Fo) on Fo. 

I_emma 4,4. Assume that the conditions of Theorem 2.5 hold and let A~ be the 
constant defined by (4.16). Assume that supos~<l A~ <_ Ao for some positive con- 
stant A o. Then there exist positive constants Co, Mo, and To which depend only 
on /~o, Of 2, and on A o such that for all e ~ (0, Co), the following inequality 
holds : 

min {~o, Ts} 
sup A(t)  + B(r)  dr<=Mo 

O<t<min{To,Te} 0 

where A( t )  and B(t)  are defined in (4.1) and (4.2). 

P r o o f .  With e0 and /z taken so small that 

1 
C6/~1/2 -t- ~ / <  

4 (A0 + 1) 

the assertion of the lemma follows immediately from Lemma 4.2 and Lem- 
ma 4.3. [] 



The Hele-Shaw Problem 135 

Lemma 4.5. Assume that the conditions of Lemma 4.4 are satisfied and let T e be 
the constant defined in Theorem 2.5. Then there exists a positive constant T* 
depending only on ///So, f2, and Ao such that 

T e > T* Ve ~ (0, e3) 

where eo is the constant in Lemma 4.4. 

Proof.  Parametrize F e as in w and denote by de(t/, t) the solution of (2.7). 
By the second assertion of  Theorem 2.5, we need only show that for some 
T* > 0, 

sup Ilde(t) - d~ <= �89 61 ve  ~ (0, eo) 
O<-t<_min[Te,T*} 

where 61 is as in (2.13). 
Lemma 4.4 and inequality (4.10) imply that 

minl[~ o Ve ~  (O, eo). 
o 

It follows from (2.5) that 

min{~ T~ Te} ( J  2) min[~ ~ 
sup di N (., t) dt <_ sup l] Ve( , t)II ~ <~g~ dt 

0 S t -- SaX (0, Te) (1 +detc~ 0 

_< C7M o Ve ~ (0, Co) 

since de(t) e/Z/~o. Consequently, for every 1/~ S 1, t ~ [0, min{To, Te}) and 
e e (0, eo), one has 

[ d e ( t ) - d ~  < ]dT(r/, r)l dr < ldT(r/, z)12 d <:(C7Mo) 1 /2~ .  
o (4.17) 

Similarly, from (2.6) and Lemma 4.4 it follows that for all t 6 [0, min{To, Te}) 
and e 6 ( 0 ,  e o ) ,  / \ 

+ s , 3  Cl io  + 
S 1 ~ F t  8 / 

Inequality (4.17) and the interpolation inequality 

1/3 (ltf~llL~(Sl) +]lf[lL~(S~)) 2/3 V f  ~ H2($1) Ilfllc~(s~) <-- CllfllL~(s~) 
then imply that 

[[de(t) - d~ l) < C8 X[Moo "b 1 t 1/6 

Set [ 612 

T* ~- rain To, 16C7Mo 

Then it follows from (4.17) and (4.18) that 

Ilde(t) -d~ <=�89 Vt~ [0, min{T*, Tel). 

Vt  e [0, min{To, Te}), e ~ (0, r 

(4.18) 

- -  616 1 
' 4 6 C ~ ( M 0 + 1 ) 3  �9 
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It follows from the definition of Te in Theorem 2.5 that 

Te > min[T*, To} Ve E (0, e0). 

The assertion of the lemma thus follows. [] 

We conclude this section with the following theorem which is a conse- 
quence of Lemmas 4.4 and 4.5. 

T h e o r e m  4.6. Assume that the conditions of Theorem 2.5 hoM and that supo<e_<l 
AS <-_ Ao < o o  for some A o > O. Then there exist positive constants to, T, and M 
which depend only on/~o,  12, and A o such that for every e ~ (0, to) the problem 
(2.1) (or (2.7)) has a solution in [0, T] satisfying 

C ) s u p  s~(t) + l l V u ~ ( t ) l l  2 ~ 2 ~ 2 L=(~) +IlK 11s +ellKs[IL2(rf) < M ,  (4.19) 

T 

S [ l l O ~ u ~ ( t )  2 ~ 2 I[ L2(~r~> + II g~ II-'<m + ~ II Kss II ~2<r~>] dt <__ M,  (4.20) 
0 

T 

j IId~(t)ll 2 I4~(sb dt + sup lidS.(', t)l[2=(s,) -< M (4.21) 
0 O<<_t<_T 

where de(rh t) is the solution of (2.7). 

5. L o c a l  E x i s t e n c e  o f  a S o l u t i o n  to  the  H e l e - S h a w  P r o b l e m  

We first define a solution of the Hele-Shaw problem in a Sobolev space. 
Let G(x ,y )  be the Green function for A in the region 12 with the 
homogeneous Neumann boundary condition, i.e., for each y ~ 12, G(.,  y) 
satisfies 

- AxG = O(x - y) in 12, 

OG 1 
- on 012, 

Onx 1(012) 

~ G = 0  
0e 

where I(012) is the arc length of 012. It follows from the Green formula that 
for  any Lipschitz curve ? C 12 and any function f ~ L2(y) ,  there exists a solu- 
tion to 

- A u  = 0 in 12, 

[u]r = 0 on y, 

[unlv = f  on y, 

un = 0 on 012 
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if and only if ~ y f =  0; if ~ v f =  0, then the solution is unique up to an ad- 
ditive constant and is given by 

u = ~ G(x, y) f ( y )  dSy + c (5.1) 
y 

where c is an arbitrary constant. 
Notice that if the restriction of u on y is equal to the curvature of y, then 

u satisfies 
I u(x) dSx = 2~, 
y 

and therefore the constant c in (5.1) is uniquely given by 

112 q c = - 7r - l l  G(x, y) f ( y )  dSy d 

where S is the arc length of y. This leads to the following definition for the 
solution of the Hele-Shaw problem. 

Definition 5.1. A family of curves Uo<_,<_r(V,x[tl) =: F is called a solution 
to the Hele-Shaw problem (1.1) if there exists a homeomorphism x : S l x  
[0, r l  - , V  such that X(r/, t) = (x(t/, t), t ) ,  x(~/, t) = (xl(r/, t), x2(~/, t)),  

F t = {x(r/, t) [ r /E S 1} V t  E [0, r ] ,  

x,(r/, t), [x,(~/, t)[-1E C(Slx[0, T]), 

x(r / ,  t) E H2' l  (S1T) --= {x ~C2(S~r)]x.., x, ~ L2(S1) j .  

If n denotes the (outward) normal (x2,., - x l , . ) / [ x . ] ,  if V denotes the (in- 
ward) normal velocity -xt"  n, and if ~c denotes the curvature - x , , .  n/]x.] 2, 
then 

I V(r t)Ixr162 t)[ d~ = 0 in L2((0, T)) ,  (5.2) 
S I 

K(tl, t ) = ~ G ( x ( r l ,  t ) , x ( ~ , t ) ) V ( ~ , t ) l x r  i n L 2 ( S I •  
$1 (5.3) 

where 112 c(t) = S ~  T~--~S 1S 1~ G(x(~l , t ) ,x(r162 t) ] [xr162 t)l d~d , 

S(t) = ~ ]xr162 t) I de. 
S t 

In the sequel, we shall denote by icy the curvature of y and by u~ the 
function harmonic in t 2 \y  taking value icy on y and having a zero normal 
derivative on 00. 

Our main result is the following: 

Theorem 5.1. Let /~o be a C 4 one-dimensional manifold embedded in f2 and 
define d o and Y as in (2.2) and (2.3). Assume that F o is a simply connected curve 
given by (2.4) with d o E/Z/6o/2 and that for some positive constant Ao, 

II Ks0 II 2 ~=(ro) +/I Vuroll~=(~) --<Ao" 
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Then the Hele-Shaw problem starting from 1" 0 has at least one solution in [0, T] 
for some positive constant T depending only on /~o, f2, and A o. 

Proof. Notice that Fo 6//g'ao/2 and that Kro 6 L2(Fo) implies that d o ~ C3/2($1). 
Therefore there exists a sequence {d{) (. )}j%1 in C=(S  1) n ~o/2  such that 

d j --' do i n  C3/2(S1) ,  KFJo(ll) ~ ~Cro(rl ) in L2($1), uFJ ~ ~ Uro in Hi(f2) 

where F~ = [Y(r/, dJo(r/)) [ r/~ $1}. 
Set 

ej (J + II (~r~;)s 2 -1 -- IIL=(rg) , 

zJ(o) = Ilkr,01t 2 L2(r~0) + II Vur• II ~=(~) + ~j 11 (kr~)s [IL=(r 9 . 2  

Clearly, AJ(o)<<_ 2Ao + 1 if j is large enough. It then follows from Theo- 
rem 4.6 that there exist positive constants T and M which depend only on 
f/f0, g2, and A o such that if j is large enough, then the problem (2.7) with 
e = e j  and initial value d J( . )  has a solution dJ(rl, t) in the time interval 
[0, T], and the solution satisfies 

t 

sup 114,7(t) 2 = ]l ~2<s1> + S II d~; < 11 t2(s1) : M ,  
O<=t<-_ T 0 

Consequently, Lemma 2.4(2) implies that 

II dJ II Cl,3/8(51X [0, Z]) ''{- II dj II Cle2'lZ8(S 1X [0, Z]) ~ CM 

for all j large enough. Therefore, there exists a subsequence of {eyJj%1, which 
we still denote by {ej}, and a function d ~ H 2 ' I ( S  1) n L~[0, T;H2(S1)]  (~ 
c1/s[0, T; ~ o ]  such that as j ~  ~,  

dJ(~/, t) ~ d(r/, t) weakly in H:'I(S~), (5.4) 

dJ(rl, t) --, dO1, t) i n  c l - l~ '3 / s - /~ ( s l  x [0 ,  T ] ) ,  (5.5) 

d/nOl, t) ~ d, Ol, t) in C1/z-~'I /s-~(Sl  x[O, T]) (5.6) 

for any / , > 0 .  
Define 

xJ(rl, t) = Y(rl, dJ(rl, t )) ,  x(t l ,  t) = Y(rl, d(rl, t)) .  

It follows from (5.4)-(5.6) that, as j - ,  0% 

xJ(rl, t) ~ x(~/, t) weakly in H 2'1 (Sir), (5.7) 

xJ(rl, t) ~ x(rl, t) in cl-u'3/8-1~(S1x[O, T]), (5.8) 

x~(rl, t) ~ xn(rl, t) in C1/2-~'1/8-~(Sa x [0, T]) (5.9) 

for any /x > O. In addition, d(., t) e JZ/ao implies that 

•  Vr /~S 1, t~[0 ,  T] 2 ---- ---- 
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We now show that 

r = [(x(r/, t), t) lr/~ s 1, t ~ [0, q )  

is a solution to the Hele-Shaw problem. Clearly, it suffices to show (5.2) and 
(5.3). 

Since x{ converges to x~ in C1/8-u(Slx[0,  T]), it follows that the arc 
length sJ(t) of F~ converges to the arc length S(t) of Ft in C1/8-u([0, T]) 
and the normal #( r / ,  t) of F~ converges to the normal n(r/, t) of Ft in 
C~/8-~'(S t x[0,  T]). Also, the curvature M(r/, t) of F~ converges to the cur- 
vature tc(r/, t) of Ft weakly in L2(S1T), and the normal velocity vJ(r/, t) of F j 
converges to the normal velocity V(r/, t) of F weakly in LZ(s~). Since 
~r~VJ=~s ~ vJ(r/, t)]xJ(r/, t)[ dr /= 0, it follows that ls~ V(r/, t)lx,(r/, t)[ d r /=  0 
in L2(0, T);  i.e., (5.2) holds. 

It remains to show (5.3). Since d j satisfies (2.7), we have for all ~ ~ S t 
and t E [0, T] that 

KJ(~,  t) = ~ G(xJ(~, t),xJ(r/, t)) (vJ(r/, t) + eflCJs(r/, t))[xJ(r/, t) dr~ + cJ(t) 
s t 

where 

cJ(t ) _ 1 [2 SJ(t) L 7~- Is1 s~ G(xJ(~' t)'xJ(r/' t)) (VJ(r/' t) + eJKJss(r/' t)) 

xlx{(~, t)l Ix~(r/, t)l d~ dr/]. 

Recall that sJ(t) ~ S(t) strongly and ~c j ~ K, V j ~ V weakly; it follows that 
to show (5.3), we need only show that as e j ~ 0 ,  

G(#(~ ,  t), #(r/ ,  t)) ~ G(x(~, t) ,x(r/ ,  t)) in L2(0, T;L2(S 1) •  

(5.10) 

~ j ~ G ( x J ( ~ , t ) , x J ( r / , t ) )  lgss(r/,J t) [xJ(r/,t)[dr/ -~ 0 i n L 2 ( S t •  
(5.11) 

Write G as 
1 

G(x,y)  = - - -  l n [ x - y [  + h ( x , y )  
2~z 

where h(x, y) is a smooth function in f2xf2. It follows that 

1 
[G(xJ(r/, t), xJ(~, t))] __< 2re [In IxJ(r/, t) - xJ(~, t)][ +l  h(xj(r/ ,  t), xJ(~, t))l 

__< c ( l l n l r / - ~ l l  + 1 ) ,  

where in the second inequality, we have used the inequality �89 __< Ix J I__< 2 
and the fact that x j is uniformly bounded away from 0s (so that h is uni- 
formly bounded). Therefore, (5.10) follows from (5.8) and the dominated con- 
vergence theorem. 
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To prove (5.11), recall that Theorem 4.6 implies that 

T 

ej Kss <-_ M 
cf 

for all j large enough. It follows that 

[~j ~ G(xJ(~, t), xJ(~l, t)) K{s( . ,  t)IxJ~(tl, t)[ dr/ 
L2(SI • (O,T) ) 

~ x j <- CM ~ej  , = ~ej  sup ~ ~ G2(x, y) dSy J F{ / 
x~a,t~[O,r] \ Ut 

which implies (5.11). This completes the proof of Theorem 5.1. [] 

Theorem 5.2. Under the same conditions as in Theorem 5.1, the solution of the 
Hele-Shaw problem given by Theorem 5.1 has the following properties: 

(1) The arc-length function S(t) is Lipschitz continuous and monotonically 
decreasing, the function u(x, t) := urt is in L~[0, T; H1((2)], and these func- 
tions satisfy the relation 

d S(t) + IIVu(t)ll 2 -- L2(o) = 0 for almost all t ~ (0, T). (5.12) 
dt 

(2) The function H(t) = ]]K(t)[l~2(r 0 is absolutely continuous on [0, T], D~u 
is in L2(Or \F) ,  K3V is in L I (F )  and 

d 2 
- - K o ( u s  ) .  - [IL~(C,) ]lm2u(t)llL~(O\r~) r, dt IlK + = II ~ s v + K [ ( u ~ + ) :  ( u ; ) : ]  o~S + 2 

(5.13) 

(3) The function E(t) =]lVu(t)ll 2 L2(o) is absolutely continuous on [0, T], 
VOl, t) is in L2[0, T; HI(SI)],  ~cV is in L2(S~), and 

m �84 2 m d IlVu(t)II2L~(~> +211VsllL=(r~)=21]KVlIL2~(~) -- f V [ ( u ; )  2 ( u ; ) 2 ]  ' 
dt r, 

(5.14) 

Proof.  Since {u j} is uniformly bounded in L~[0, T; H I(Q)], it follows that 
u ilL~176 T; Hi(Q)] .  Multiplying both sides of (5.3) by V, integrating over 

I t ,  and using the geometric identity d S = -  l~cV which is proved in w 
dt 

we obtain (5.12). This proves the first assertion of the lemma. The second and 
third assertions of the lemma can be similarly proved by the method in 
w [] 

Remark 5.1. With slight modifications, the method exploited in the current and 
previous sections can be applied to non-simply connected domains, to non- 
homogeneous Neumann boundary conditions, as well as to the Dirichlet bound- 
ary conditions. Also, it can be applied to the two-dimensional Stefan problem 
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with the Gibbs-Thomson relation for the melting temperature. It is possible 
that the method can be applied to higher dimensions. 

Remark 5 . 2 .  The regularity and uniqueness of the solution is still an open 
problem. 

6. Global Existence of a Solution to the Hele-Shaw Problem 

In this section, we establish the global existence of a solution to the Hele- 
Shaw problem when the initial curve is close to a circle. For simplicity, we 
assume that s = ~ 2 .  All the previous results still hold if we replace the 
boundary condition an u = 0 on 0f2 by 

Vu = O( Ix1 -2 )  when Ix] ~c~.  (6.1) 

In the sequel, we denote by u~ the function harmonic in ~ 2 \  7, equal to 
the curvature of 7 on 7, and satisfying (6./). 

We shall prove the following theorem: 

Theorem 6.1. There exists a positive constant fi2 such that i f  F o given by 

Fo = {(go(0) cos0, go(o)  sin0)[ 0 ~ S 1} 
satisfies 

IIR0(" ) -- 111c1(s1)'~-~ fi2, IlVurollL~(~2~ <=~2, 

then the Hele-Shaw problem starting from F o has a solution for  all t E [0, oo). 

To prove this theorem, we need the following lemma, which is purely 
geometric. 

Lemma 6.2. (1) Assume that 7 is a curve enclosing a region with area re. Then, 
its arc length ( i f  f inite) is no less than 2rr. 

(2) Assume that 7 is a simply-connected curve with arc length S and that the 
curvature K of  y is in L2(7) and satisfies 

1 ~r K = 27r is the average of  K over 7. Then there exists a point where ~ = S S 

(Xo, Yo) E 3 2 and a C3/2($1) function R(O) such that 

7 = {(x0, Y0) + (R(O) cos 0, R(O) sin0) l 0 6 $1]; (6.2) 

in addition, the function R( .  ) satisfies 

Y 7 

S 
where R = ~ - i  _ 

2zr 
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Proof .  The first assertion of the lemma follows from the well-known geometric 
fact that a circle of radius I has the minimum arc length among all the curves 
enclosing regions of area n. 

To prove the second assertion of the lemma, let x = x ( s ) ,  y = y ( s )  be a 
parametrization of y where s is the arc-length parameter. It follows that 

2 xs + y~ = 1, so that there exists a function q~(s) satisfying 

x~ = - s in~o(s ) ,  y~ = cos~o(s) u  6 [0, S]. 

In addition, the curvature tc of 7 is equal to ~0~. Therefore q~(s) = tr 
L2([0, S]). The Sobolev imbedding theorem then implies that ~0 ~ C1/2([0, S]). 

Integrating the equation x~ = - s i n  ~0 and using the relation ~0 s = K yields 

s 
x ( s )  =x(0 )  - i sin ~o(s) = Ix(0) - R  cos ~0(0)] +/~ cos q~(s) + R  ~ [K - ~ ]  sin ~o. 

0 0 

Denoting by x0 the constant x ( 0 ) - / ? c o s ~ o ( 0 ) ,  and by A1 the function 
-- S R ~ 0 [ x -  if] sin~0, we then obtain 

x ( s )  = x O W R cOS~  + A  1. 

Similarly, integrating Ys = cos ~o yields 

y ( s )  =Yo +/~ sin~o + A2 

where A z ( S  ) = - / ~ ( / r  - / r  COS(& 

Set 
t~(s) = X/ ( x ( s )  - Xo) 2 + (y ( s )  - y 0 )  2. 

It then follows from the expression of x ( s )  and y ( s )  that 

2 /~2 __ /~2 = A 3  ~ 2/~A] cos ~o + 2/?A2 sin~o + A~ + Az. 

One can estimate A3 by 

+ sl - fl - 1 
k Y , /  7 

It follows that �89 ~ / ~  ___/? _< �89 ~ / ~  and 

1 
I / ? - / ? l  <_- ~ [A3I < 8 / ~ f I K _ g ] .  (6.3) 

Y 
Define 

y ( s )  - Yo 
= , s~ [0, S]. O(s) Arctan x ( s )  - Xo 

Then we can compute 

1 
Os(s) = ~ [ ( x - x o ) y s -  ( Y -  Yo) xs] 

1 
- /~2 [(/~ cos~o + A1) cos~o - (/~ sin~o + A2) ( - s i n e ) ]  

1 
= / ~  (/~ -{- Z] 1 COS ~0 -t- A 2 sin ~o). 



The Hele-Shaw Problem 143 

Since ]AI cos(p + A2 sin(p] ~ / ~ v  I K - K[ ~ �89 it follows that s / ~  = 0~ -< 

12/~. Therefore, O(s) is monotonic and has an inverse s = s(O) satisfying 5 
• ~ = < So =< ~/~ .  Since y is a simply connected curve, we can easily verify 

that O(S) = 0(0) + 2~z. Define R(O) = l~(s(O)) ; then R(O) is a periodic func- 
tion of period 2re and the curve ? has the representation (6.2). 

Notice that if (p(s)fi C 1/2, then Os(s) ~ C 1/2, so that s(O) ~ C 3/2. Direct 
calculation yields 

Ro _ R~ RZ(A2 cos(p - A1 sin(p) o=ol~(0)) 

Os - ' 

which implies that R(O)~ C3/2(S~). Since IA2 cos(p-A~ sin(pl =</~' ~ l x -  if I, 

it follows that lnol _-< 2 IK - ,~1. Combining this with (6.3), we obtain 
the second assertion of  the lemma. [] 

We also need the following lemma to prove Theorem 6.1. 

Lemma 6.3. The Hele-Shaw flow preserves the area; that is, if Uo<=t<T(I't• 
is a solution to the Hele-Shaw problem, then the region enclosed by Ft, 
0 < t < T, has the same area as the region enclosed by F o. 

This lemma follows immediately from the fact that ~rtV= 0 and the 
geometric identity 

d Area(t)  = ~ V 
dt rt 

where Area(t)  is the area of  the region enclosed by Ft. 

Proof  of  Theorem 6.1. By the local existence Theorem 5.1 and a continuation 
argument, we need only show that for each time t in the existence interval, 
the following two conditions are satisfied: 

(1) There exists a point (Xo(t), yo(t))  ~ 2 2 and a function R(. ,  t) E CI (S  1) 
such that 

F t = [ ( X o ( t ) , y o ( t ) )  + (R(O, t )  cosO, R(O, t )  s i n O ) [ O ~ S  1} (6.4) 
with 

(2) 
]IR(', t) - l llc,(s~> ~ �89  (6.5) 

I]Vu(t)llL=r 1 V t E  [0, T).  (6.6) 

Notice that (1) implies that at each time t ___ 0, we can always take the 
reference manifold////0 as the unit circle, whereas (2) implies that Ft satisfies 
the conditions required for the initial curve F0 in Theorem 5.1. Therefore, the 
solution can always be extended by a fixed amount of  time; that is, a global 
solution can be obtained. 

Similar to the harmless assumption that d fi///~0' which we used to prove 
Theorem 5.1, is the following assumption, which we use to prove the above 
two conditions: For each time t in the existence interval of the Hele-Shaw 
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problem, there exists a point (x0(t), yo( t ) )~  ~.~2 and a function R(. ,  t) 
CI(S 1) such that Ft is given by (6.4) and R(. ,  t) satisfies 

1 ( 6 . 7 )  [IR(., t) - l llcl(s 1) _<_ ~ .  

Under the assumption (6.7), the assertion of Lemma 2.1 and the following 
Sobolev inequality 

I l K -  ~llL~(r,) --< CpllVu(t)llLz(~=) V p  ~ Ix, oo) 

hold. It then follows from Lemma 6.2 that to prove (6.5) and (6.6), it suffices 
to show that [[Vu(t)HL2(~2 ) is small enough. The following lemma completes 
the proof of Theorem 6.1. 

Lemma 6.4. There exists a positive constant ~3 such that if F o satisfies the 
assumption of Theorem 6.1 with ~ fi (0, ~3), then in the interval where the solu- 
tion satisfies (6.7), the solution also satisfies 

where S~ = 2 ~ ' , f A ( 0 ) / z t  is the length of the circle of area A(O), A(O) = 
1 2~ 2 ~o Ro(O) dO is the area of the region enclosed by Fo, and C is a universal 
constant. 

P r o o f .  We use the energy identities (5.12) and (5.14) to prove this lemma. For 
simplicity, we assume that the region enclosed by F 0 has area n. It follows 
from Lemma 6.3 that the region enclosed by F t also has area n. Therefore, 
by Lemma 6.2 we have 

S(O) = > S(t) = > S~ = 2z~ and /?(0) = > /~( t )  = > 1 

where k-= 1/~(t)  = S( t ) / (270.  
Although we have estimated the two terms on the right-hand side of  (5.14) 

in w 4, the estimate there cannot lead to the global estimate. Since here we 
have the exact equation V = [xn], a much better estimate can be obtained. 

To estimate the last term in (5.I4), let w be the (unique) function harmonic 
in ~ 2 \ F  t, equal to V 2 on Ft and satisfying the decay condition (6.1). Then 

- ~ V[ (u+)  2 - ( u 2 )  2] = ~ V2[u + + u # l  = ~ (K - ~ ) [ w  + + w2 l  
r~ r, r, 

-< IlK - x IIL2(r,)(llVw + IIL2(r,) +HVw-IIL2( r , ) )  

cII Vu [[vr c'llVullL=(~2)l[v~ 

(6.8) 

where we have used Green's formula in the second equality and Lemma 2.1 
in the last inequality. 

To estimate the term ~rK 2 V 2, write it as 

K2V2 = I (K -- /~)2 V 2 .4_ 2g ~ (K - if) V 2 -[- ~.2 I V2" (6.9) 
r t r~ r~ r, 
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The first two terms can be estimated by 

I (K - ,~)~v ~ < II vii 2 2 2 2 L~<> IlK - ~ I [ L 2 < ) <  cIIVslt II Vu(t)llL2<~2) (6.10) = = L2(Ft) , 
G 

~ f  (K - ~) v 2 < Cll v.(t)llL2~2> II v~ll ~ = L2Crt). (6.11) 

Substituting the estimates (6.8)-(6.11) into the right-hand side of  (5.14) 
yields 

d 
dt II Vu(t)  I[L21~)2 + (2 - CllVu( t ) l l  L~(~2)2 - c[]vu(t)l lL~<~2))lIgxll  2 L2 (Ft) 

< 2921[ VII 2 = L2(rt). (6.12) 

To estimate e211 vii L2(G), let v be the harmonic extension of V in ~ 2  
such that v satisfies (6.1). Then 

e 2  II vl[~<) = g 2  1 ,v[us - btn+] = g 2  I ( K  --  e )  [ v #  - -  v ; l  

2 
_-< cl[ Vu(t)[IL=(~2) I[ V~ IlL, o>  =< �89 II v~ I1~=<,> § cll v . ( t )  

Substituting this estimate in the right-hand side of  (6.12) and integrating from 
0 to t yields 

t 

II w u ) [ I  2L~<~ § S [_12 - c[I vu(~)ll~2r -clIv . (~) l l~<~>]llVsl l  ~ L,-(F 0 dr  
0 

t 

< IlVu(O)ll 2 
0 

_-ilVu(O)ll 2 L 2 ( s  ) + C ( S ( O )  - S ( t ) )  (6.13) 

< Ao II 2 = = V u r o [ l L 2 ( ~ 2  ) § C(S(O) -Soo) ( 6 . 1 4 )  

where we have used (5.12) in the first equality. Therefore, if C ( A o  + x[Ao)  <= 
t ~, we can use an argument similar to that used in proving Lemma 4.3 to 
prove 

t 

IlVu(t)ll~=<R=> <Ao, l llVsll = = L2(G ) dr  <= 4A 0 
0 

for all t in the interval specified in the assumption of Lemma 6.4. The asser- 
tion of the lemma thus follows. Since A0 -< Cfi for some positive constant C, 
this also completes the proof  of  Theorem 6.1. 

Remark  6.1. I f  we simply use the Sobolev imbedding II VllL2<)~ Mll Vs ILL=<> 
to control the term gll VIIL2(r 0 , then the best constant for M is R ( t )  = 1 / g ( t ) ,  
which is not applicable in proving Lemma 6.4. However, in the next section, 
we shall use the fact that the Hele-Shaw problem has a three-dimensional 
manifold of  equilibria to show that the constant M can be reduced to 1/2ff, 
and therefore, an exponential decay estimate can be obtained. 
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7. Asymptotic Long-Time Behavior of the Solution 

If one applies linear analysis to the Hele-Shaw problem near its equilibrium 
to find solutions of the form/~, = {(R(0, t) cos0, R(O, t) sin0) I 0 e S 11 with 
R(O, t ) =  1 + e R ( O ) e ~ t +  O(e:) ,  then one may find that a =  0 for three 
linearly independent modes and a is negative for all the other modes. Observe 
that every equilibrium of the Hele-Shaw problem is a circle and all the 
equilibria consist of a three-dimensional manifold parametrized by the radius, 
and the x and y coordinates of the center of the circles. Clearly, this three- 
dimensional manifold contributes to the zero-growth modes of the linearized 
Hele-Shaw problem near any equilibrium. According to the general theory of 
dynamical systems, the manifold of the equilibria should be exponentially 
stable. In fact, we shall prove the following theorem. 

Theorem 7.1. Assume that F o is a simply connected curve satisfying the condi- 
tions in Theorem 6.1, and let [.JO<=t<=oo(1-'t• be the global solution given by 
Theorem 6.1. Denote by Ao the area of the region enclosed by Fo and by 
x ~  = ~ / A  o the curvature of a circle with area Ao. Then there exists a posi- 
tive constant C such that 

2 Ce-24x3t [I Vu( t )  HLZ(3Z) ~ V t  >____ O, (7 .1)  

IlL2(ro +/I V[l~(rol dr <= re  -24x3t Vt > 0, (7.2) 
t 

[ II vllL~(ro dr <_ Ce -12x~t Vt > 0. (7.3) 
t 

Furthermore, there exists a circle ~ with area Ao such that 

dist(Ft, ~ )  _-< Ce -12~t V t E  [0, co) 

where dist (A, B) = SUPx~A infy~ I x - - Y l  is the distance between the two sets A 
and B. 

Remark 7.1. The exponential rate of decay in Theorem 7.t is sharp in the sense 
that the linearized Hele-Shaw problem has a mode which decays with the rate 
e- 12x~ t. 

The key to the proof of Theorem 7.1 is the following lemma: 

Lemma 7.2. Assume that 7 is a simply-connected curve with length S. Denote by 
x the curvature of y and by ff = 2rc/S the average of tc over y. Assume that 
tr ~ L2(y) and that 

lIK- l 
Y 
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Let u be the harmonic extension of  k in ~ 2  such that u satisfies (6.1). Define 
V = Un ~ u +. Then there exists a universal constant C such that 

II 2 VsIInT"(~) > 4/~2[1 - -  C [ I K  - -  ]~l[Ll(y)]  II VII 2 = L2(7) , (7.4) 

II 2 1 2 LZ(y) �9 (7.5) 

The proof  will be given at the end of  this section. 

Proof of Theorem 7.1. Since [[ ~Tu(t)IIL~r ~ II VU(~)IIL2(~=) + C(Sr - S~) 
and j0 ~ I] Vu (r)1/~2(s) dr  < o% we can assume that  /I V u (t)Ik:(~:) is as small 
as we wish if we assume that  t is sufficiently large. 

Using (7.4) and (7.5), we obtain f rom (6.12) that  

fr Vu(t)ff2L~(~2) ~ - - [ 2  -- CIIVu(t)ll.Cr~)l II E llL~(rt) + 2ff2 II VII~2(~) (7.6) 
dt 

__< - [6 - CIIVur - CIIK -- ~ Ik~(r~)l ~ :  i] vi i  ~=(r~) (7.7) 

_< - [24 - CI/Vu (t)IJr2(~2) - CII K - Y)]z~(r~)] K's I)Vu (t)II ~2(~2) 

<= -24ffs[1 - CI[Vu(t)[[L%~2 )] H Vu(t)ll 2L:(~2) (7.8) 

where we have used the inequality I l K -  Y~llL~_(r,)<= CIIVu(t)IIL:(R: ~ in the last 
inequality. 

Since ff = 2~r/S(t) ." tr and l imt~o~llVu(t) l lL:(~:)= 0, it follows that  for 
any ~ E (0 ,24x~) ,  there exists a time t~, such that  when t => t , ,  one has in- 
equality 24if(t)  s [1 - C II Vu(t)IIL2(~:)] > os. Therefore, (7.8) implies that  

d 

It follow that  

Consequently, 

< c ( s ( t )  & )  c l  2 = ce-~' = - = /[ V u ( t ) / [ . ( ~ 2 ) <  . I ~ ( t ) - ~ o o { =  s( t )  s~ 

Substituting this back into (7.8) yields 

d 
IIL2(:e2) + 24K~ I] Vu(t)  2 2 dt IlVu(t) 2 = Ce_4OK~t 

if we take t~ = 20tc~. Inequali ty (7.1) thus follows from Gronwalls's in- 
equality, whereas inequality (7.2) follows by integrating (7.7) and (7.6) from 
t t o  oo. 
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Using (7.2) one can estimate 

bl VllL~<r~) dr <= cS II V~IIL~Fr 
t t 

II Vsll~r e ~2~ 

[ c~ oo (~  2 1) TI 1/2 
<-_re - 6 ~  ea2~. llgxl[~<r~) + l e ~2~ IIg~ll L~r~)dr d 

t t \ t  

< Ce-12~3~ t. 

Inequality (7.3) thus follows. 
To prove the last assertion of the theorem, let ~ t  be the smallest rec- 

tangle bounded by four l i n e s _ x = x l ( t ) ,  x =x2( t ) ,  y = y l ( t ) ,  and y =y2( t )  
such that Ft is contained in ~ t .  Then 

d d I 
dt Xi(t) , ~ Yi(t) l <- II VllL=Irt), i = 1, 2. 

It follows from (7.17) that 

+ ~ Yi(t) < Ce- 
i=1 t 

Therefore, there exist Xi(o~ ) and Y/(oo) such that 

IXi(t) -X~(o~) I +lYi(t)  - Y~(o~) I <__Ce -12~:~t V t > O .  

The assertion of the theorem then follows from Lemma 6.2 and the fact that 

I1~ - etlL2(r,) _--_ cII vu(011L2<~2) =< re -12~t.  

To finish the proof of Theorem 7.1, it remains to prove Lemma 7.2. 

Proof  of Lemma 7.2. By the scaling u ( / )  ~ 1 ( l x )  - -  u , we can assume that K 
g =/~ = 1, so that s = 2re. Let X(s) = (x(s) ,  y(s))  be a parametrization of 
y where s is an arc-length parameter, and let (p(s), O(s) and R(O) be the func- 
tions introduced in the proof of Lemma 6.2. 

Since I y V =  f~[u~ - u +] = 0, we can write 

1 
V(X(s))  - ~ ~ (ai cos(is) + bi sin(is)) .  

It follows that i=1 
co 

IlVs 2 U L 2 ( ~ ' ) = E  i2(a{+b2,)=> 4H VII zL2(v) - 3 ( a l  2 + b 2 )  . (7.9) 
i=1 

Hence, to show the first assertion of the lemma, we need only to estimate 
al and bl. 
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First we want to show that if we express K(s) = u(X(s))  in terms of its 
Fourier expansion, then the coefficients of  cos s and sin s are "smal l" .  For 
this purpose,  define 

1 ~ lnlx-X(s)l v ( x ( s ) )  ds. 1 ~ln]x -Yl g ( y )  dSy = 4 ~  s, 

Then 1A 1 is harmonic in ~ 2 \ 7  and continuous in ~ 2  with a jump V in the 
normal  derivative across 7. Since ~ y V =  0, one can easily verify that 
ui(x) = O(1/[x]) as Ix[-- ,  c~. Therefore, there exists a constant m such that 

u(x) = u l ( x )  + m  V x ~  2. 

Notice that u = x = (o~ on y; it follows that 

~l / z (X(s ) )  COS((,0(s) - -  or) ds = ~ q)s(S) c o s ( ( , 9 ( s )  - o/) ds = 0 VO~ E S 1. 
S 1 S 1 

In addition, we have the identities ~s, cos (0(s) ds = ~rnx = ~t?- A (x) dx dy = O, 
~2. sin0)(s) ds = ~,ny = 0, where t '2- is the region enclosed by y and nx and 
ny are the normal  components of  the normal  of  y. Hence, for any ~ ( S  1, 

1~ I ( X ( S ) )  COS(S --  OL) 
S 1 

= ~ (u(X(sl)  - m) [cos(s  - cO - cos(fp(s)  - (p(O) - c~)] 
S ~ 

< ~o(s) - ~o(o) - sl lL~(Sl)  llulllL,(~) 

clP~ - ~ rlL'<~> I1"1 HL'(yl  ~ C ' l l , ~  - ~11~,(~)II V l l~ , (~  �9 

Now we want to express a 1 and bl in terms of a function close to ul. 
Define J~(s) = (cos s, sin s) and introduce a function 81 defined by 

1 ,~ l n l x_J ~ ( s ) ]  V(X(s)) ds. al (x) = ~ s, 

One then recognizes that al is harmonic in ~ 2 \  ~ and is continuous in ~.~2 
with jump V in the normal  derivative across ~ ,  where ~ is the unit circle 
centered at the origin. Also, al(x)--,0 as Ix I - ,  oo. Therefore, one can easily 
verify that al is given by 

al (rJ((s)) = 

I 1 ~ 1 (aicos(is) +bisin(is)) if r >  1, 
2 ~ .= ir z 

1 ~ r/  (ai cos(is)  + bi sin(is))  if r < 1. 
24~  =~ i 



150  X.  CHEN 

We can estimate the difference between ul(X(s)  ) and a l ( X ( s ) )  by 

1 IX(s) - X(sx) l  
l Ul(X(s))  - a l ( X ( s ) ) l  < - -  sup In IIVIIL~(r) 

= 4r~ S, S l e S  1 1~7(S) S ( s 1 )  ] 

<= C[[[e(o(. ) )  - 1 IlCl(S~ ~ + II r  ) - 111 c0(s~)] 11Vll,(~) 

_-< CIl~ - ~IILI/~I II vIIL~(~) 
It then follows that 

2 ~a(X(s))  coss  l a l l -  ~ s, 

2 l ul (X(s)) cos s <= Cllu,(X(s)) - a(2(s))Ll~(s~ + ~ s~ 

-< cIIK - ~11-( , i  II Vll~=(y>. 

Similarly we can estimate bl. Hence, upon substituting these estimates into 
(7.9), inequality (7.4) follows. 

To prove (7.5), we can use the expression of a~ to compute 

11<(2)112 ~ a/2 + b 2 L2(S 1) ~--- �88 ~ i 2 ----< ~ II VlI22(y) + 3 (a? + b 2) 
i = l  

< [~6 + Eli K - e II ~(~)]  1[ vii 2 = L2(~ ') �9 

Therefore 

II K - ~ 11~2(~ I = inf II u - c ILL2<,> < II Ul IIL2<~> 
c E R  ~ = 

_-< Itux(X) - < (2)tlL2(S~) + [[ax (2)llt=(sa) 

<_- �88 + C l lx  - ~II . ( ,> ]  II vIIL2(,). 

Hence, we have the estimate 

I lv , I I  2 = 
Y 

_-< [�88 + CILK - ellL,(,>] It v l l ~ ( , ) .  

T h i s  completes the proof  of  the lemma and also the proof  of  Theo- 
rem 7.1. [] 

Remark 7.2. The curvature ~c(s) does not have the term al coss  + bl s ins  in 
its Fourier expansion because the curve given by r=R(O)  with R(O)= 
1 + e(al cos 0 + b l  sin 0) is close to a (center-shifted) circle up to an order of  
/3 2 . 
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