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Abstract

We prove existence, locally in time, of a solution of the following Hele-
Shaw problem: Given a simply connected curve contained in a smooth bound-
ed domain £, find the motion of the curve such that its normal velocity equals
the jump of the normal derivatives of a function which is harmonic in the
complement of the curve in 2 and whose boundary value on the curve equals
its curvature. We show that this motion is a curve-shortening motion which
does not change the area of the region enclosed by the curve. In case Q is
the whole plane %2, we also show that if the initial curve is close to an
equilibrium curve, i.e., to a circle, then there exists a global solution and the
global solution tends to some circle exponentially fast as time tends to infinity.

1. Introduction

Let Q be a bounded and simply connected domain in %2 and let I, be
a smooth simply-connected curve in Q. Consider the free-boundary prob-
lem of finding a function u(x,t), x€Q, t=0, and a free boundary
I'=U,5o(I;x{1}) satisfying

Au(-,1) =0 in Q\I,, t =0,
u, =0 on 42 x [0, o),
Uu=K onl,, t=0, (1.1
(i, =V onrl,, t=0,

where n is the unit outward normal to 42 or to I}, u, denotes the normal
derivative, [u,]r, is the sum of the outward normal derivatives of u from each
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side of I, (which is also equal to the jump of the normal derivatives across
I}), k and V are respectively the curvature and the normal velocity of I,
with the sign convention that the curvature of a circle is positive and the nor-
mal velocity of a shrinking curve is positive.

Problem (1.1) is often referred to as a Hele-Shaw problem in studying
equations that approximate the pressure in a system containing two immiscible
fluids [6]. The case when I, is a graph y =f(x) (f(x) € HS>(#') and
Q = Q, is the upper half space bounded by 7,) was studied by DucHoON &
RoBERT [5].

When (1.1a) is replaced by the heat equation u, — Au =0, the system
(1.1) is known as the Stefan problem with the Gibbs-Thomson relation for the
equilibrium of the solid-liquid interface, Its global weak solutions were recently
established by LuckuAus [16] and ALMGREN & WANG [2]. The existence of
local classical solutions was recently proved by RapkEevITCH [19].

Solutions of (1.1) are closely related to the asymptotic limit, as & —» 0, of
the Cahn-Hilliard equation ewf + A (2Aw? — f(w®)) = 0 for appropriate in-
itial and boundary conditions, where f(w) = w? — w; formal analysis shows
that the chemical potential u° = f(w®) —e?Aw® tends to the solution of (1.1);
see PEeco [18]. Recently, Arikakos & Fusco [1] showed that if initially
u®(x, 0) is close to an equilibrium of (1.1) (i.e., Iy is a circle and u(x, 0) is
a constant equal to the curvature of the circle), then u® will stay close to this
equilibrium for a very long time (of order e=ley,

For connections of the Hele-Shaw problem with the asymptotic behavior
of a phase-field model, see Cacixarp [3].

First of all, we point out two important features of the solution of (1.1).
Denote by £, the region enclosed by I, and by %Z(r) and S(¢) the area of
Q, and the arc length of I;, respectively. Then we can calculate

1%(z)=— V=— dul _ | o _ Au=0;
dt on on
I I, 80 T,

that is, the Hele-Shaw motion preserves the area of the region enclosed by I3,
for all > 0. Also, we can compute

L S() =— SKV=— Su[a—u]=—S|Vuj2§0;
dt on
Q

t Ft
that is, the Hele-Shaw motion is a curve-shortening motion.

In this paper, we shall establish the local existence of a solution of (1.1)
for an arbitrary (smooth) initial curve, and global existence of a solution when
the initial curve is close to a circle. We shall also prove that when the initial
curve is close to a circle, the global solution tends to some circle exponentially
fast as t— oo,

The method used by DucHoN & RoBerT [5] is based on the observation
that the operator d,: u|,— u,|, can be written as 3, = HD, + R where y is a
curve given by y = f(x), f€ H?*(#"), D, is the derivative with respect to
the arc length, H is the Hilbert transformation on the real line, and R is a
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compact operator. The operator A = HD; is the square root of — A in the
sense that A is positive-definite and A% = —D,,. When we write the unit
tangent of I in the form %" s¢ %, > 0, problem (1.1) is equivalent to
finding ¢ satisfying Ly = ¢, — AD, ¢ = F(@) where F is a functional having
some kind of compactness. Therefore, the existence of a solution to (1.1) is
equivalent to the existence of a fixed point for L ~'F Their method, however,
is very difficult to carry out here since the arc length of I, is finite and
changing and if one tries to decompose the operator 3, as HD, + R, then the
time derivative of the arc length appears in R and is not easily controlled.

In studying the Stefan problem with the Gibbs-Thomson law, RADKE-
viTcH [19] used a Newton method of successive approximation to show the
short-time existence of a classical solution. The key step is to show the invert-
ibility of a Fréchet derivative of a linearized operator. His method requires
some technical assumptions on the initial data and may not be applied here
since without the term u, in (1.1a), the continuity of the solution in time is
very hard to obtain. Luckmaus [16] and AIMGREN & WANG [2] used another
approach. They discretize the time and implement numerical schemes to con-
struct a sequence of approximate solutions and then show that a subsequence
of the approximate solutions converges to a weak solution global in time. In
their schemes, finding the solution in the next time step involves finding a
global minimizer of a functional; thus, as pointed out in [16], an interface
may suddenly disappear, and therefore a strong solution (if it exists) may not
be a weak solution (defined in [16]). The main difficulty in carrying out their
schemes to our case is similar to that of RapkEevrrcH, ie., lack of control
in the ¢ direction.

Here we shall instead use a new approach totally different from those of
[2, 5, 16, 19]. We shall consider the regularized equation

V+ ek, = [K,]n, 1> 0, 1.2)

for small positive ¢ and then let & go to zero. Here x,, is the second
derivative of the curvature x with respect to the arc length and [x,] r, is the
jump of the normal derivatives of u satisfying the first three equations in (1.1).
(In the sequel, we shall mix the usage of [#.1r, and [k,]r.) By means of
a priori estimates, we show that (1.2) has a solution in a time interval
independent of g, and by extracting a convergent subsequence we obtain a local
solution. In case the initial curve is close to a circle, the a priori estimates
can lead to the existence of a global solution.

To study the asymptotic behavior of the global solution, notice that a curve
is an equilibrium if and only if it is a circle. Therefore all equilibria consist
of a three-dimensional manifold parametrized by the radius, and the x and y
coordinates of the center of the circle. This manifold contributes to the ex-
istence of three zero-growth modes for the linearized Hele-Shaw problem at
any equilibrium. By using this observation and its corresponding implications
in the nonlinear case, we show that the global solution tends to a circle
exponentially fast, even actually without introducing the linearized Hele-Shaw
problem.

We prove the local existence of solutions of (1.2) in §2. After establishing
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several energy-type identities for the solution of (1.2) in §3, we present some
a priori estimates in §4. In §5 we define solutions to (1.1) in some Sobolev
space and show the existence of a solution to (1.1) by letting & — 0. Finally,
in §§6, 7, we establish the global existence and the long-time behavior of the
solution that is initially close to a circle.

Remark 1.1. (1) The Hele-Shaw problem is closely related to the equation V =
for motion by mean curvature. For the one-dimensional motion by curvature
flow, the arc length of the curve monotonically decreases, whereas the area
enclosed by the curve decreases with a constant speed 2n. It is known that
any imbedded curve in #? or imbedded convex hypersurfaces in V(N > 2)
shrinks to a point in a finite time 7* and that if one scales the curve (or
hypersurface) such that its enclosed region has the same area or volume as
its initial region, then the curve or hypersurface tends to a circle or a sphere
as t—» T*; see [8, 10, 11, 12].

(2) The difficulty for the global existence of a solution to the Hele-Shaw
problem arises from the possible topological changes of the curve. For the mo-
tion-by-mean-curvature flow, the surface of a barbell with long and thin han-
dle in higher dimension splits into two pieces at a time before the surface
shrinks into a point. However, in the one-dimensional case, the solution of
any imbedded curve remains as an imbedded curve until it shrinks to a point;
that is, a ‘global’ solution exists; see [10]. Here we do not know if the cor-
responding conclusion holds for the Hele-Shaw problem, i.e., if a solution
global in time exists.

(3) To get global (weak) solutions for the motion-by-mean-curvature equa-
tion (for higher dimensions), people invented viscosity or generalized solutions
and have been extremely successful [4, 7, 20]. However, we do not know if one
can generalize these ideas to the Hele-Shaw problem or to the equation (1.2)
with £ = 0.

2. The Regularized Problem

Let 7> 0 and ¢ € (0, 1) be fixed constants. Consider the evolution prob-

lem
V+ ergs = [K,], for 1€ (0, T),

2.1
I'nf{t=0}=I, fort=0 @.1)

where V, k, [«,]r,, and I; are as in §1.

It is convenient to write (2.1) in terms of local coordinates. Let .#Z (close
to I,) be a one-dimensional closed C* manifold embedded in @. By scaling
the space if necessary, we may assume that the length of .#, is 27 so that
My is diffeomorphic to S!, the unit circle. Let x = X°(#) be the diffeomor-
phism from S! to .#, such that # is the arc length and that the positive
direction of .#, is counter-clockwise. Then the unit tangent t°, the unit out-
ward normal »° and the curvature x° of .Z, at X°(#) satisfy the relations

() =X5(m), 19(m) =—k’(n) n®(m), nY(n) =k’(n) °(n), nesh
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Set 1
dp = 4 min {1, dist (#y, 0R), 0} (2.2)
[ FETET
and define Y: S'x (=dy, &) »>.#% = {x € F#?| dist (x, Ay) < &y} by
Y(n, ) = X°(n) + hn°(n). (2-3)

Clearly, Y is a diffeomorphism from S!x (—d,, &) to .#Z5; see, for exam-
ple, [9]. Hence, we can use (7, h) to represent points in M, the
Jy-neighborhood of .Z.

In the sequel, we shall assume that I is in a (dp/2)-neighborhood of .#,
and that in the local coordinates it has the representation

Lo={Y(n, )| h=d"(x), neS} 2.4)

where d%(-): S'—> (=dy/2, y/2) is a C? function.
Let I" = U0,y (I;x{t}) be a family of curves having the representation

=X, 0)| X(n,1) = Y(n, d(n, 1)), n€S", t€[0,T),

where d(#, t): S'x[0, T) = (=&, d) is a smooth function. Then the unit
tangent 7 and the unit normal n of I, at X(#, t) are given by

X (n,t 1
Xm0 1 4 a0+ dyn°],

D=l T 7

1
n(n, t) = = [~d, 7" + (1 + dx®) n°]
where J

J=J(n,d, dy) =X, (n, 0] =~ (1 +dx®()? +d?.
One can use the formulas
V==Xn10-n(n1, r==X,001 nn )] X,(n0
to calculate the normal velocity V and the curvature x of I by

B 1+ dk®
J

1
o= 25 [= (L de) dyy + 2y - dicy) dy + 60(L+ D] 2:6)

V=

d;, (2.5

equation (2.1) can be written as

1
Since 9, = 7 0ys

d, + eJ " dypyy = Fldl = Fld] + eF1d]  for (n,1) € S'x (0, T),

2.7
d(n,0) =d°(n) for nes'
where #[d] is the functional defined by
Fld¢, 1) =—-—— [k, 2.8
WG, 1) =~ el 2.8)
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and .% is the function defined by

1 [ 3 1+dr” 6(%i1+dzc°>

271+ dk© S \J ag J3

= Gany 5}; J4 an

2.9)

3 (1 3 k°(1 +dk°)? + d;(2d,k° + Kk} d)
an \J J? '

We first study the functional & It is convenient to introduce a function
space .#5 defined by

Ms={h(n) € C'(SHY||h|cis1y < 6}
where d € (0, dp) is a parameter.
Lemma 2.1. Let # € C* be given and let h be any function in ,%50. Set

y=1{Y(n, h(n))| neSh.

Then there exists a positive constant C depending only on .#y and Q such that
if uis a harmonic function in Q\y and is continuous across y with normal
derivative vanishing on 0%, then

CHVu™ | 2p) =tz = Cllus — s |20 (2.10)

where u~ and u™ are respectively the restrictions of u on Q, which is the do-
main enclosed by y, and on QT = Q\ (Q~ U y), and u, and u, are respectively
the tangential and normal derivatives of u.

Proof. Since y is a Lipschitz curve and its Lipschitz constant is bounded by
a constant independent of y, the assertion of the lemma thus follows from
the classical single-layer potential theory; see, for example, [13, 14, 17]. [0

Direct differentiation yields
Ky = a1 dypy + azdfm + asdy, + ay,
Fy = b1 Ay dyy + bydyyy + b3ddy + bad i, + bsdyy, + bg

where @; and b; are functions of #, d and d, only. Thus we obtain the follow-
ing lemma.

Lemma 2.2. Assume that #, € C* and that d(-) € M, Then there exists a con-
stant C depending only on #y and Q such that F, defined in (2.8) satisfies

H F1ld] ”%Z(S‘) =CI + || dmm H %3(51) + ”drm ”26(S1)]
and F, defined in (2.9) satisfies

H F,ld] ||%2(sl) =Cll + ||dnm7 HI%(S‘) + H dﬂﬂ ||g6(S‘)]'
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Consequently, the functional F = F, + &%, satisfies
2 1 2 3 6
I F1dl 2251 = Go e (Ul dynn | 225ty + 1 dyy | Z5¢51) @2.11)

where Cy is a constant depending only on 4, and 3%.

To deal with the high-order growth on the right-hand side of (2.11), we
need the following lemma.

Lemma 2.3. For every f € H*(SY), the following inequalities hold:
| fon 1 85 sty = 250 f 2o esty | fmnn | Z2csty »
Hfmm ” 1343(S1) = 2\/% an ”L°°(S1) anmm “%2(51) .

Proof. Integration by parts yields
Sflflsm = _Sslfn(ffm)n =-3 sjl (f%)nf?mfmm
=3 §f721ff2mfrzmr/ +3 S{f%f?mfmmn
=% n Fali= §5 Findafom 3 LF3Fin o
==3If ||I%“(Sl) S.E f?mfnmm +3 551 f%ffmfﬂmm

= 5“fn“%°°(sl) ”fmi Hzﬁ(Sl) Hfﬂnnﬂ|'L2(S1)'

The first assertion of the lemma thus follows. Similarly, one can calculate

“fmm ”23(S1) = _Sglffm(‘fmmk Sonn)n
= 2s§1 ;frmfnnnfnnnﬂ = zllfnnHLﬁ(sl) annnHLﬂ(Sl) anmmHLl(Sl)’

which, together with the first assertion of the lemma, yields the second asser-
tion of the lemma. [

In the sequel, we shall denote by S} the set S'x (0, T) and by f(z) the
function f(-, t).

Lemma 2.4. Assume that f € L*[0, T; H*(SY)]1 n HY0, T; L*(SY)]. Then,
(1) for every 0 = 1<t =T, f satisfies
1f() —f(T)Hcl(sl) =
— O £l sy (TN Fl sy + 20 (@) = F O | osy) %5
(2) there exists a constant C depending only on T such that
If s B (sh) + ] £ll 23 Sy = CULO)|r2esny + 0P, 1 O llzesivt | felzzespy ) s
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(3) theimbedding fromL*[0,T; H*(SH1NL®[0,T; H>(SHY] nH[0, T; L*(8")]
to L0, T; W33 (SH] n L8[0, T; W>S(SN)] is continuous and compact, Here
W™P(SY) is the Sobolev space consisting of functions whose distributional
derivatives, up to order m, are in L?(S').

Proof. Direct calculation yields

r

I £(t) = f() | Fasty = § 1 (Fny 1) = F(n, ©) fi(n, 7)) dn dry

St

=V =1 [[f(1) = f(D) | 2esy) Hft”LZ(S’T)'
It follows that
1£@®) = f(Dlraesny =VE= T | fillzzesy -

A similar calculation yields

t

1140 = fy D Eesy = T [ (Fn 0) = £, 01, ©)) fu 1, 70) din dry

N

t

=)
sEVi—1 ”frm(z) "ftm(T)HLZ(Sl) “ft”LZ(S-}r)'

J (Fun (71 1) = Fan (1, ) (1, 7)) dn dr

It then follows that
I £(2) =F (D) | 3o sty SIFE) ~F (D) | Pty + 2] F(2) =f (D l2sn| [0 =F (D 2 sy

< (=) 2y (T sy + 2 ) ~Fon (D sy )
and that

[ £ () = Fo (D) 2 sty
=0 = £ (D F2isry + 20 £ (0 = Fr D zesny | Fan () = Fan (D 225y
= (= Al sy | GO = F @) lesy
X (T £l fsp +20GF@ =FAD) il sy

The first assertion of the lemma thus follows.

Using the L=[0, T; H?] norm to control the # direction and the previous
two estimates to control the z direction, one easily obtains the second assertion
of the lemma.

To prove the last assertion of the lemma, we need only show that the
embedding is compact since Lemma 2.3 and the first assertion of Lemma 2.4
shows that the embedding is bounded, which implies that it is also continuous.

To prove that the imbedding is compact, let {f;};Z, be a bounded sequence
in L?[0, T; H*(S")]1 nL>[0, T; H?>(SY)] n H'{[0, T; L*(S')]. Then the second
assertion of the lemma ensures that there exists a subsequence {f;,} k=1 of {f3}
such that f; converges in C 111610, T; C'(S')]. Therefore, applying Lem-
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ma 2.3 with f= Ji, = fi» we find that {f;} 1s a Cauchy sequence in
LO[0, T; w5(SH] mL3[O T; W33(8")]. This shows that the imbedding is
compact, thereby completing the proof of the lemma. O

Now we are in a position to prove the following theorem.

Theorem 2.5. Let .#y€ C* and € € (0, 1) be given and let oy and Y(n, h) be
defined as in (2.2) and (2.3). Assume that Iy is given by (2.4) with d°¢
CUSY) N AL, Then

(1) there exists a positive constant T (depending on €) such that the regularized
problem (2.7) (or (2.1)) has a solution d € H'[0, T; L*(S')] nL*[0, T; H*(8H] n
L>[0, T; H*(S)] n CIO, T; #;];

(2) there exists a positive constant 8, which depends only on .#, and Q such
that the solution of (2.7) (or (2.1)) can be extended as long as

sup_[[d(1) —d’| (s < I13 (2.12)
O=t=T

more precisely, if [0, T,) is the maximum interval such that (2.7) has a solution
deL?[0, T; H*(SH)] n H'[0, T; L2(S")] n L™[0, T; H*(SY)] and d satisfies
(2.12) for any T < T,, then either T, = or

Sup Hd(t) —d ||C1(Sl) = 61 (2.13)

<t_ e

Proof. Set 1
Ey = g +351 (‘dgmm‘z +|d(r)mn‘3 +’d97n!6)

and
d(t)e%;; Ve [0, T],
Zruy=4{deC[0,T; cH(sH] | dyy — ,I||L6(SLT)§M, YT>0, M>0.

H - 2%”23(5“%) =M

Let M be any fixed positive constant, say M = 1. Let T be a positive con-
stant to be determined and denote by 2 the Banach space

Clo, T; C'(SH]I N L0, T W (8] nLO[0, T; W>5(Sh)].

Then, the subset defined by
<%= %T,M

is closed and convex in Z
For any d € %, consider the linear evolution problem

di+ e *(n, d, dy) dyyyy = F 1d] in St =S'x(0, T),

- o | (2.14)
d(n,0) =d"(n) on §°x{0}.

Since d(z) € #5 and &y = (2] k°| 1= (sy) 7", it follows that

1=J=2, 2.15)
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and by Lemma 2.2,
| F1d1 |1 fesp = ColTle® + &% || dyy | fscsyy + € 1y | 23csp)
< GolT/e* + e*(2°E, T + 2°M))
< CeX(Ey T+ M). (2.16)

Hence, from classical semigroup theory [15], the problem (2.14) admits a
unique solution d € L*[0, T; H*(SY)] n H'[0, T; L*(S")].

Multiplying (2.14a) by e(d — d°)n, and integrating over S} = §'x (0, 1),
after routine calculation, we obtain

elldy (1) — dipllf2esry + €20 (d ~ ) yyun |25 = CE*[ET + M1 Vi€ (0, T).
Using equation (2.14a) to estimate d,, we then have the estimate
||\ 225y + €71 (d ~ d®) gy | T2spy + € OileT“ g (1) = d il 22s1)

< C &% [E,T+ M) (2.147)

for some constant C; depending only on .
Lemma 2.3 then implies that

[ dyy = dogl[Fecspy = G sup_[|d (1) = d°[[Lusy [EoT + M1, (218)
I dyy = din | Bospy = G5 sup_[d(0) = @l cusn LEOT + M1, (2:19)

whereas Lemma 2.4(1) implies that

sup [[d(z) —d°| sy = CeTY3(EX[EQT + M) VA (TH* + ¢712)%2. (2.20)
O0=tsT

Hence, if we take T small enough (depending on & and M), then d € %;
that is, the mapping 7: d—d maps % into itself. Notice that .7 (%) is a
bounded set in L?[0, T; H*] n L*[0, T; H*(SY)]1 n H'[O, T; L*(SH)]; it
follows from Lemma 2.4(3) that 7 is also compact. Since the mapping
d—J(n, d, d,) is continuous from .% to C(S}) and the mapping d—~ F[d]
is continuous from % C Z to L?(S}), one can easily verify that .7 is con-
tinuous. Therefore, the Schauder fixed-point theorem implies that .7 has a
fixed point, which clearly is a solution to (2.7). This establishes the first asser-
tion of the theorem.

Let C, and C; be the constants in (2.18) and (2.19), and set

o) =minfl oy, (4G~ (4G;) M4,

We now prove that the second assertion of the theorem holds for this d;.
Let T¢€ (0, o) be a constant such that (2.7) has a solution 4 in [0, T] and
d satisfies
0supTHal(t) —d°eisy =0, —u  for some u > 0. (2.21)
=g

We show that the solution can be extended to T + u; for some positive con-
stant 4, depending on u.
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Define
N(t) =l dypy = Ay |35 (spy + 1 dygy = iy | 55y, €10, T1.
Then, we can proceed as before to show that for all z € [0, T'], N(¢) satisfies

N@) = Sup [Colld(t) —d°|ti(sty + C3]|d(7) — d°| crsny] (Eot + N(£)].
=r=

It then follows from (2.21) and the definition of ¢ that
N(t) = Eqt Vrel0, T1.
As in the proof of (2.17), we can show that for all ¢ € [0, T1],

225y + 71 (d = d°) gy | P21y + € 05<1§<DT|| (d(t) — d°) |l 2251y = 2C1 Eot.
o7 (2.22)

Now let u; be a small positive constant to be determined. Define
%:' {JE '%T+/1[,EOT+1|d~=d Ve [0, T]}

and proceed as before to define J_ for every d € . As in the proof of (2.20)
(noting that ||d,, (t) — dp, (T)|| =/ dyy (1) —dy, || +]/dyy (1) —d,||) we can show
that for all 0 = 1<t =T+ uy, d satisfies

1d(t) —d(D) | crsy < 2C, (¢t — )V (2[(T + wy) Eg + EoT + 11) /2

X ((T+ ) * + g~12)302,
It then follows that

1d(2) = d®l|cresiy =[d(e) = d(T) ety +[1d(T) = d°lcasyy
sC(Leyul®*+6,—u Vrel[L, T+ul, (2.23)

where we have used (2.21) and the fact that d =d =d for t€[0, T]. And
therefore, we can prove that . maps % into itself if x4, is small enough., Ap-
plying the same argument as before leads to the existence of a solution of (2.7)
in the interval [0, T+ u;]. From (2.23), we can take u; so small that the
solution still satisfies (2.12). Also, if T is bounded from above and y is bound-
ed away from zero, then g, is bounded away from zero. Therefore, either
T,=o or T,<oc and (2.13) holds. This completes the proof of the
theorem. [

In the sequel, we shall always assume that 7, is the maximum interval
defined in Theorem 2.5. Notice that if the initial data are smooth (the norm
may depend on &), we can use a boot-strap argument to show that the solution
is smooth. Therefore, we shall also assume that the solution is as smooth as
we wish.

3. Energy Identities

In this section, we derive several energy identities for the solution of (2.1);
i.e., we prove the following theorem.
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Theorem 3.1. Assume that I'y€ C* and 0Q € C%. Let I'® =\Uy_,.1 I'? x{t} be
the solution of (2.1) and let V¢, k®, and u® be the corresponding normal velocity,
curvature, and harmonic function. Denote by S°(t) the arc length of I':. Then,
for all te€ (0, Ty), the following identities hold:

d
— S¢(t) + & [ xfds + [[|Vut(t)|?dx = 0, (3.1)
dt re 0

— Pk 26 [kF+ (] DI
dt re re O\T®
= [eBVe+ (el — )% = (et (3.2)
re re o2
d d
— v ?+e — §x2+2 v
dt o dr re re
=2 f PV — [ VL) — () +e [ ViR (3.3)
ré re re
where D? refers to all the second derivatives with respect to the space variables,
Ky is the curvature of 0Q, and u®™ (-, t) and u®" (-, t) are respectively the
restrictions of u®(-,t) on Qf, the domain enclosed by I'*, and on Qft =
O\(Q;” u I?).
Proof. Multiplying (2.1a) by x° and integrating over I} yield

§veRs —e §of? = [ fleslpe = § uful™ —uftul®) ={§ | Vuf(0)|2 dx.
ré re reé ré Q

To calculate the first term on the left-hand side, we parametrize 7°¢ in terms
of the arc length parameter s, ie., we write I'® as

‘=X, 1) se FZ, tel0, T,)}
where for all € [0, T,) and s ¢ #', X(s, 1) satisfies

X(s, 1) = X(s + S%(0), 1), (3.4)
X (s, 1) = 1(s, 1), (3.5)
X (s, 1) = —k8(s, 1) n(s, 1), (3.6)
Ve(s,t) ==X, (s, 1) - n(s, 1), 3.7
Ki(s, t) = =X (5, 1) - n(s, 1), (3.8)
ng(s, t) = k%(s, 1) 7(s, £). (3.9
It then follows that
S (1) se(ry S d
fveki= | X, X, ds =X, X, - | XX, =— — S%(z)
re ] 0 0 dt
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since X,- X, =1(]X,|*);=0 and
. d
X, X570 = == Se(1), (3.10)

which follows by differentiating (3.4) with respect to s and ¢ and multiplying
the resulting equations. The identity (3.1) thus follows.

We proceed to show (3.2). Using the conventional summation notation over
double indices, we can compute

SV ID2ut(n> = §§ V(ue Vul)
2 Vald foAVad

+ 6+ +
j‘(u uxxnj_u)i JEchjn])"}"j 8+u§xn

where n; is the ]th component of n. Since 8y, = T;0; + n;0,, it follows that
for either u = u®~ or u =ut

juxuxxn —juruxxn +u,,nuxxnj
re¢ ré

= | g 1) — g (1)) + up [ B0 = (7))~ (1)),)]
rs

= § 15 )y = k¥ (° )] + 0, [0 — K5+ w, (—K7n))]
rt
=2 [ k&u, — [tk — | ktul
ri ri ri

where we have used the identities d; = 7,9, and Au = T;u, . T; + Wty 1y 0
the second equality, the identities n, = k°7 and v, = —x°®n in the third equali-
ty, and integration by parts in the last equality. Similarly, using #5 =0 on
9Q, we can derive

Suf*u;zt =— [Ka(ut™)2
a2
Hence,
U ID2us () = =2 & ullre + [ rCL(uE™)? = (uE7)?] — [ rp(ui™)>.
arg re rt 82

Substituting (2.1a) into the first term on the right-hand side yields
§§ 1D2us(2)|? + 2¢ j KE?
o\Ié
=-2 5 KEVE+ TroT@E)? = (wE) 1 = [ ()% (3.41)
re re 62
Using the identities (3.5)—(3.10), we can calculate the first integral on the
right-hand side by
feive= [ ooV =~ [ k(X )
Iy ri rt

=~ [ K®[Xy n 42X, 1 + X, ng] =
r
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=— [ K’[— (k%n),- n + 22X, (K°T) + X, (K57)4]
ri

=— | ke [—Kf —K®n-n+ 21, KT+ KX, T+ KX, 1)
ry

— [ =4 (x®), + 0+ 0 + + (62X, 1), — L k*2(X,- 1) — 652X, n]

ri
d d SE(1)
=1 = [k2-LK2(S5(0), 1) — S°(t) =3 kX, t| =% [ KBV
dt re dt 0 re
d
=%; SKEZ_% SKE3V€.
dt re re

Substituting the last equality into (3.11), we obtain the identity (3.2).
Finally we prove (3.3). Direct differentiation yields

1 vue @2 =2 §] VutTus+ [ VL Tuet|? = | Tt |
dt g O\T? re
=2 § ™ —utTuft) + [V - ) (3.12)
re re

Differentiating the identity x®(s, t) = u®* (X(s, t), t) with respect to ¢ yields
KE=Vut* X, + uf* =ul* + kiX, 1 —ui*VE

It follows that

.‘. (un_ute_ —u2+uf+)
ri

= [ [l (f — EX,- T) — Ve[ ™) = (57)%]
r?

= [ (V® +exi) (f — kX, ) = VoL (") = (u57) 1. (3.13)
I-vl:‘

t
We calculate
§ Vet — kX, 1)
re
= [ VoI=Xor n = Xoow 1 = X, 1]
Ft

= sVE[(_(Xt'”)ss+2Xst'ns+Xt'nss) +K£n'nt'“K§Xt'T]
ri

= [ VE[(VE + 21, (k°T) + X, (K°T)) + 0 — kX, 1]
rf

=— [ve2 4 [xs2ve? (3.14)
ri ri
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and

SK?;(K{: — KX, 7)

ry .
= KK} ISU) [klrcs, + ririX, - 1]

ry

d
= Kkikf|g W -4 0 SK + 1 kP2 (S4(r), t) - Ss(t)
r
— 367X T + 5 S K2 (X 7)y

I'i
1 d &2 1 £2,.e17¢
=—3 i K +—2" K"K V (315)

where in the last equality, we have used equation (3.10) and the relation
d . . _ . .

kik |S£(’ = -k 0 S¢(t), which follows by differentiating the identity
1

k0, t) =x(S(¢), t) with respect to s and ¢ and multiplying the resulting
equations. Substituting (3.14) and (3.15) into (3.13) and (3.12), we obtain the
identity (3.3). This completes the proof of the theorem. [

4. A Priori Estimates

We now use Theorem 3.1 to estimate the solution of (2.1) (or (2.7)). For
any r€ [0, T,), define

A(ry = S°(t) + §2 + §f | Vut(n)|* + & | k¢, (4.1)
1—'6 Q 1—8
B ={{|vut )|+ || [Dzus(t)|2+2§V82+8sK62+28§K . @.2)
Q O\r¢ ré ri

Adding up the three identities in Theorem 3.1 yields

d

0 A +B(t) = [ ®Ve+2 [ 2V + [ k[(uf*)? — (uf7)?]
i re re re

- § Vf:[(urfl:+)2 (uf™ ) 1- jka(u +) +8SK£V£ £2
& ry (4.3)

In order to estimate the right-hand side, we need the following lemma.

Lemma 4.1. (@) The function S®(¢) is monotonically decreasing in [0, T,) and
satisfies
dr = S5(0) = S8(t) = Veel0,T,). 4.4)
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(b) There exists a constant Cs depending only on Ay and 0Q such that for
all t€ [0, T,) the following inequalities hold:

2 2
1f llz2erey S CS“f”LZ(.QSi)(va 172089 +“fHL2(Q§i))1/4 VieH (QF),

4.5
| £z = G5l F lbtass) IV gy + 1 F g VEH (@),

(4.6)
| £lzarsy = G5V VF 2y + 1 F 1) 1 VieH (Q).

4.7

Proef. The monotonicity of S§%(¢) is an immediate consequence of (3.1)
whereas (4.4) follows from (2.15) and the formula S%(¢) = 53“] (n, d,d,) dn.

Since d(-, 1) 6%50, the curve I'} is Lipschitz continuous and its Lip-
schitz character depends only on .#,. Hence, the second assertion of the
lemma follows from the Sobolev imbedding theorem. This completes the proof
of the lemma. [

Applying (4.5) with f=Vu®* yields

V= 2y = CS’W”E“LZ Q)(“Dz S”LZ(Q\FE) +”V“€”L2 9))1 < GAV'B*,

We now estimate the right-hand side of (4.3).
Since
fre=Jml—efni==[u* =0, (4.8)
re ri ri a0
it follows that

1V L ey S|V P)sllirarsy <20V iy | VElzan = V21V 20y B'.

4.9)
Using equation (2.1a), we have
| Vellrarsy =lerss — lalrelzare
= el wislzary + Vet sy +IIVEET |20
<+e/2 B2 +2C54"4 B4,
Substituting the last inequality into (4.9) yields
1V o (rgy < e4BY? +24/C5 AMEBYE, (4.10)

It follows that
3
FSJKES Vel lixbl s 1V e s
t
2 2
= C3(| Vet | 1200y + H”EHLz(rf))?’/2 [ Vel e
< C34312 (14 B2 + 2/ C5 AVE B3R)
< (e +wAB + C, 4> Yu>0,
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where we have used (4.7) in the second inequality and (4.10) in the third
inequality.

Similarly, the other terms on the right-hand side of (4.3) can be estimated
as follows:

2
[ 12V <[t e | V2 | =
Ft

§A(81/4Bl/2 +2\/ESA1/SB3/8)2

= (e +mwAB+ C A% Vu>0,

2
FUKE(”rfi)Zl = |68 |z gy |Vt = | 22 sy
t
2
= (x| +||K§||L2(rf)) || Vuf= HLZ([’;E)

< (A1/2 -+ C5A1/4Bl/4) Cg,Al/ZBl/Z
< uAB + C,(1 + 4),

2
VIVE@E=)? | = | Ve o irey |0 | 22arsy
I"E
’ < (Cle + ) A'2B + A% Vu >0,

a§2|’€a(uf+)2i < 173 | a2y C3 | Vit | 2034y (| V| 2 gagy + D218 | F2gp+)) 12

A

CAV?BY? s uAB+C, VYu>0,

A

2
€ 5£|K8V3Kfz| s ellxd | ey 168 = sy 1 VE e ey
Ft

= &2 k¢ s 5 l2an (K8 zas 8| 2ae) 1V e o
< 81/2A1/2C5A1/4Bl/4(A1/2 + C5A1/4B1/4) (81/431/2 + 2\/65 Al/SBS/S)

< Ce'?(4B + C4?).

Substituting these estimates into (4.3), we have the following lemma.

Lemma 4.2. For every y > 0, there exist positive constants Cg = Cg(My, 2) and
Cy = C(u, My, Q) such that the function A(t) and B(t) defined in (4.1) and
(4.2) satisfy

d
£A+B§(C681/2+u)(A+A1/2)B+C”(1+A2) Yie (0,T,). (4.11)

We shall use the following lemma to replace the classical Gronwall inequality.

Lemma 4.3. Assume that A(t) and B(t) are nom-negative smooth functions in
[0, T) and that for some positive constant M they satisfy

d A1) + 4" (1) )
A1) + (1 T MO £ 1) ) B(t) sM(1+A4%(1)) Vte(0,T). (412

dt
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Then the following inequalities hold:

Ay =A0)Y+1 Vrel0,T)), 4.13)
Tl
s B(1)dt = 2A(0) +2M (1 + (4(0) + 1)?) T, 4.14)
0
where 1 1
T, = min {T, — arctan 2} . 4.15)
M 14+A4(0) +A4(0)
Proof. Set

Ty=supf{re[0, T)|A(7) = 1+A4(0) Vrzelo,1]}.
Then (4.12) implies that

d _
7 A(t) =M(1 +A4%@1)) Vre (0, T)
which yields

A(t) = tan (Mt + arctan 4(0)) = tan(Mt) + A(0)

Vrelo, 7).
1 — A(0) tan(Mt)

Since the right-hand side is less than A(0) + 1 when € [0, T;] where T) is
as in (4.15), it follows from the definition of T; that T, = Ty, and there-
fore inequality (4.13) holds. Integrating (4.12) over (0, 7}) and using the
estimate (4.13), we obtain inequality (4.14). This completes the proof of the
lemma. [

Introduce
Af = § (@) + []|Tu(0)* + & | (,(0))? (4.16)
I, o] I
where u(-, 0) is the harmonic function with the boundary value x (-, 0) (the
curvature of Ip) on [Iy.

Lemma 4.4. Assume that the conditions of Theorem 2.5 hold and let A§ be the
constant defined by (4.16). Assume that supo<,<; A§ = Ao for some positive con-
stant Ay. Then there exist positive constants &, My, and Ty which depend only
on My, 02, and on Ay such that for all €€ (0, &), the following inequality
holds :

min {7y, T}
sup A+ | B dr=M,
0

0z t<min{Ty, T}

where A(t) and B(t) are defined in (4.1) and (4.2).

Proof. With ¢, and u taken so small that

Ceell*+uys ———
SO0 THEE Lo 1 1)

the assertion of the lemma follows immediately from Lemma 4.2 and Lem-
ma4.3. O
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Lemma 4.5. Assume that the conditions of Lemma 4.4 are satisfied and let T, be
the constant defined in Theorem 2.5. Then there exists a positive constant T*
depending only on M#y, Q, and Ay such that

T,>T* Vee (0, &)

where g, is the constant in Lemma 4.4.

Proof. Parametrize I'* as in §2 and denote by d*(#, ) the solution of (2.7).
By the second assertion of Theorem 2.5, we need only show that for some
T* >0,

sup “dg(f) —d0||cl(sl) é%él Vee (0, 80)
T}

0=t=min{T,,

where d; is as in (2.13).
Lemma 4.4 and inequality (4.10) imply that

min{7g, T,

}
(j)" 1VEC, )| Zwqrsy dt = CMy V€ (0, &).
It follows from (2.5) that
min {sTO, T.} 5 J min [57'0, T} 5
supdf“(-,tydt=s sup (———— VE(, O)||fw e dt
0 st s1x¢0,7,) \ (1 +d®k%)? 0 | Iz D
=GM, Vee (0, ¢)

since d®(z) € %50. Consequently, for every n¢€S!, t¢€[0, min{T,, T,}) and
g€ (0, &), one has

3 1 1/2
a5 —d°| = [ |df(n, )] dr = W(Hdﬁ(n, r)|2dr> = (G Mp) 2 .
° 0 4.17)

Similarly, from (2.6) and Lemma 4.4 it follows that for all ¢ € [0, min{T,, T,})
and € € (0, &),

Hdy(n, 0] dn = C<1 + [ x7(, t)> < C(My + 1).
st rf

Inequality (4.17) and the interpolation inequality
| Fllesy = CLE R sy U fanlzzesy + 1 Nz ™ V7 € HA(SY)
then imply that
[d®(t) —d°|crisny = Cs VMy + 1 ¢48 Vi€ [0, min(Ty, T,}), €€ (0, &).

(4.18)

52 6

T* = min} Ty, L s e g o1 E
16C;My 4°CE(My + 1)

Then it follows from (4.17) and (4.18) that

Set

la®(t) = d°llcisy =561 Vi€ [0, min{T% T,}).
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It follows from the definition of 7, in Theorem 2.5 that
T,>min{T* T,} Vee (0, ¢&).

The assertion of the lemma thus follows. [

We conclude this section with the following theorem which is a conse-
quence of Lemmas 4.4 and 4.5.

Theorem 4.6. Assume that the conditions of Theorem 2.5 hold and that supy<,<;
Af = Ay < oo for some Ay > 0. Then there exist positive constants €y, T, and M

which depend only on M#y, @2, and Ay such that for every € € (0, &) the problem
2.1) (or (2.7)) has a solution in [0, T] satisfying

d
— Sé(¢
o;‘:;(fdt ®

T
PPz O [ Zonrs + 1 Vil + ell ksl rp] de = M, (420

FIT O gy + 16 By + €152 uiw) <M,  @19)

T
g‘ 1dE (o) |3 sy de + Jsup ||, (- Npsy=M (421

where d®{n, t) is the solution of (2.7).

5. Local Existence of a Solution to the Hele-Shaw Problem

We first define a solution of the Hele-Shaw problem in a Sobolev space.
Let G(x,y) be the Green function for A in the region £ with the
homogeneous Neumann boundary condition, i.e., for each y € @, G(-,y)
satisfies

-AG=6(x—y) in Q,
9G =— L on 4£2,
on, 1(302)

fG=0
02

where [(0Q) is the arc length of 32. It follows from the Green formula that
for any Lipschitz curve y C @ and any function f € L?(y), there exists a solu-
tion to

—Au=0 in Q,
[ul, =0 on y,
[u,], =f on y,

u,=0 on 4%
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if and only if Sy f=0;if Sy f =0, then the solution is unique up to an ad-
ditive constant and is given by

u=§ Gy f(y) dS, +c (5.1)
Y

where ¢ is an arbitrary constant.
Notice that if the restriction of u on y is equal to the curvature of y, then
u satisfies
{ux) ds, = 2=,
y
and therefore the constant ¢ in (5.1) is uniquely given by

1
€=y [27f —§{ Gx, y) fy) a5, de]

vy

where S is the arc length of y. This leads to the following definition for the
solution of the Hele-Shaw problem.

Definition 5.1. A family of curves Uy, <r(I;x{t}) =: I is called a solution
to the Hele-Shaw problem (1.1) if there exists a homeomorphism X 5t x
[0, T]1— I such that X(, 1) = (x(n, 1), 1), x(n, 1) = (x1(n, 1), x2(7, 1)),

L={x(n,n|nes'y Veelo,T1,
X (1, 1), %y (1, 1) 71 € C(STX[O, TT),
x(n, 1) € H>'(Sp) = {x € L*(SP) | x> x, € LP(SD)}.

If n denotes the (outward) normal (x,,, —x;,)/|x,|, if V denotes the (in-
ward) normal velocity —x,-n, and if x denotes the curvature —x,,- n/|x,7|2,
then

851 V(E 1) |xe(& 1) dé =0 in L*((0, T)), (5.2)
K(n, 1) = SIG(x(n, 1), x(& ) V(& 1) |x: (&, )] dE+ c(t)  in L*(S'% (0, T))
s (5.3)
where )
c(t) = — [27r —{§GGxm, 1), x(&, D) V& 1) |x,(n, )| |xe(& )| dé dn] ,
S(1) s1.81

S(1) =s51 |x:(&, )] dE.

In the sequel, we shall denote by x, the curvature of y and by u, the
function harmonic in Q\yp taking value x, on y and having a zero normal
derivative on 4.

Our main result is the following:

Theorem 5.1. Let .#y be a C* one-dimensional manifold embedded in Q and
define 6y and Y as in (2.2) and (2.3). Assume that I'y is a simply connected curve
given by (2.4) with d°%¢ %50/2 and that for some positive constant Ag,

2
lrer, | 22y + | Vur 1 720y = Ao
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Then the Hele-Shaw problem starting from Iy has at least one solution in {0, T]
for some positive constant T depending only on #,, Q, and A,.

Proof. Notice that I'y € .#; ; and that k, € L?(Iy) 1mphes that d° € C¥2(S1).
Therefore there exists a sequence {d%(- )}J L in C*(SH) N %‘; » such that

dy—do in C2(SY), wepy(m) = wep(n) in L2(SY),  up ~ upy in HY(Q)

where I') = {Y(n, &} (m)|neSh.
Set

= (j+]| (Kr{;)s|11%2(r{;))_l,
A(0) = | kri | oy + 1 Vg | 22y + &5 1 ksl 22y

Clearly, 47(0) <24, + 1 if j is large enough. It then follows from Theo-
rem 4.6 that there exist positive constants 7" and M which depend only on
My, 8, and Ay such that if j is large enough, then the problem (2.7) with
€ =¢; and initial value d{(-) has a solution d’(#,t) in the time interval
[0, T], and the solution satlsfles

t
sup || dhy (1) | Z2sty + [ | @) E2sty = M.
O=t=T 0

Consequently, Lemma 2.4(2) implies that
|| d] H C1,3/8(sl X [O,T]) + || d]” “ 01/2,1/8(S1x [0 T]) = CM

for all j large enough. Therefore, there exists a subsequence of {¢;};Z;, which

we still denote by {g;}, and a function dEH”(S Yy " L=[0, T; H*(SHY] n
CU8[0, T;.#;,) such 'that as j— oo,

d(n,ty ~ d(n, 1) weakly in H>'(S}), (5.4)

d(n, 1) — d(n, 1) in C1#38-u(s1x ][0, T1), (5.5)

dhy(n, 1) > dy(n,1)  in CPRTRIBZH(STX [0, T]) (5.6)
for any u > 0.

Define '
X, ) =Y(y, & (n, 1)), x(n, t)=Y(n, d,1)).

It follows from (5.4)—(5.6) that, as j — oo,

x(n, 1) = x(ny, 1) weakly in H>'(S}), .71
x(n, 1) = x(n, 1) in Cl7w3¥8-k(stx [0, T1), (5.8)
xh (1, 1) = x, (1, 1) in Cl2-#18-u(sx [0, T1) (5.9

for any u > 0. In addition, d(-, 1) € %:0 implies that
s =lxm =2 VneS', tel0, T].
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We now show that

={(x(n, 1), )| n € S, t€[0, T]}

is a solution to the Hele-Shaw problem. Clearly, it suffices to show (5.2) and
(5.3).

Since xJ, converges to x, in C'®7#(S'x[0, T1), it follows that the arc
length §7/(z) of I} converges to the arc length S(z) of I in c'8=#(Jo, H
and the normal n/(#,t) of I} converges to the normal n(z,r) of I, in
C'8=#(81x [0, T]). Also, the curvature x/(#, r) of I'} converges to the cur-
vature x(#, t) of I, weakly in L?(S}), and the normal velocity Vi(n, t) of IV
converges to the normal velocity V(n,t) of I’ weakly in L*(S}). Since
jﬂ Vi= 551 Vi(n, t)|xf (n, t)| dn =0, it follows that [ V(#, t)|x,(n, 1) dn =0
in'L2(0, T); ie., (5.2) holds.

It remains to show (5.3). Since 4/ satisfies (2.7), we have for all £ ¢ S!
and ¢ € [0, T] that

KI(E 1) = 5 G(x/(&, 1), x7(n, 1)) (VI(n, t) + g (n, 1)) | x4 (m, 1) dn + ¢/ ()
where

cl(t) =

. [27:—5 § GG/ 1), 5 (n, ) (V(n, 1) + ;x5 (n, 1)
S7(t) st St

x|xH(E, )] 6] (n, 1)] d& dn] :
Recall that S$/(r) — S(¢) strongly and x/— x, V/— V weakly; it follows that
to show (5.3), we need only show that as &;— 0,
G(x/(& 1), x/(n, 1)) = G(x(& 1), x(n, 1)) in L*(0, T; L*(S') XxL*(S1)),
(5.10)

6,-S§‘G(xj(£, 1), x/(n, 0)) Khs(n, £) |x}(n, 1) dn - O in L2(S'x (0, T)).
5.1
Write G as

1
G(x,y) =— o Injx—y| +h(x,y)

where h(x,y) is a smooth function in Qx Q. It follows that

. , 1 _ , . .
|G (x/(n, 1), x7(&, 1)) = [In |x/ (n, 1) = /(& D] +|h (5 (n, 1), X1 (&, 1)) |

=C(|Injy =&l +1),

where in the second inequality, we have used the 1nequa11ty = }xf =<2
and the fact that x’/ is uniformly bounded away from 02 (so that A is uni-
formly bounded). Therefore, (5.10) follows from (5.8) and the dominated con-
vergence theorem.
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To prove (5.11), recall that Theorem 4.6 implies that
T .
gl [ rli=M
0 r¢

for all j large enough. It follows that

g | G(x/(& 1), 2/ (n, 1)) il (, 1) (X}, (n, )| dy
St I2(81x(0,T))

1/2 T \1/2
<+e;, sup <27r § G*(x, v dSy> (sj6€ skzcg;) < M Ve,
17

x€8Q,1€[0,T) ri

which implies (5.11). This completes the proof of Theorem 5.1. [

Theorem 5.2. Under the same conditions as in Theorem 5.1, the solution of the
Hele-Shaw problem given by Theorem 5.1 has the following properties.

(1) The arc-length function S(t) is Lipschitz continuous and monotonically
decreasing, the function u(x, t) = ur, is in L*®[0, T; H(R)], and these func-
tions satisfy the relation

d
21} S(0) + | Vu (0|72 =0 for almost all t€ (0, T). (5.12)

(2) The function H(t) = ”K(I)H%Z(['Z) is absolutely continuous on [0, T, D2u
is in LX), &V is in LNI) and

d
— HK“%Z(I}) +|D*u ()| 2001y = § PV + kL) = ()21 — § a2
“ i 543

(3) The function E(t) = ||Vu(r)| %Z(Q) is absolutely continuous on [0, T,
V(n, 1) is in L*[0, T; HY(SY)], kV is in L*(S}), and

d
2 Va0 |22y + 20 Vel 22y = 2156V | 221 —15 Vi )% — (57)%. (5.14)

Proof. Since {#/} is uniformly bounded in L*[0, T; H L(@)], it follows that
u€L®[0, T; H(2)]. Multiplying both sides of (5.3) by V, integrating over

I,, and using the geometric identity 7 S=— sch which is proved in §3,
t

we obtain (5.12). This proves the first assertion of the lemma. The second and
third assertions of the lemma can be similarly proved by the method in
§3. O

Remark 5.1. With slight modifications, the method exploited in the current and
previous sections can be applied to non-simply connected domains, to non-
homogeneous Neumann boundary conditions, as well as to the Dirichlet bound-
ary conditions.” Also, it can be applied to the two-dimensional Stefan problem
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with the Gibbs-Thomson relation for the melting temperature. It is possible
that the method can be applied to higher dimensions.

Remark 5.2. The regularity and uniqueness of the solution is still an open
problem.

6. Global Existence of a Solutibn to the Hele-Shaw Problem

In this section, we establish the global existence of a solution to the Hele-
Shaw problem when the initial curve is close to a circle. For simplicity, we
assume that Q = %% All the previous results still hold if we replace the
boundary condition 4,u =0 on 92 by

Vu=0(x|"®) when |x| - oo. (6.1

In the sequel, we denote by u, the function harmonic in F*\y, equal to
the curvature of y on p, and satisfying (6.1).
We shall prove the following theorem:

Theorem 6.1. There exists a positive constant 8, such that if Iy given by

Iy ={(Ry(0) cos b, Ry(A)sinf)|He S
satisfies
[Ro(:) = 1cisy = 62, || Vur, 22 S 02,

then the Hele-Shaw problem starting from Iy has a solution for all t € [0, ).

To prove this theorem, we need the following lemma, which is purely
geometric.

Lemma 6.2. (1) Assume that y is a curve enclosing a region with area m. Then,
its arc length (if finite) is no less than 2m.

(2) Assume that y is a simply-connected curve with arc length S and that the
curvature Kk of y is in L*(y) and satisfies

JIr—Kl=3%

where K = é SFK = 2?% is the average of k over y. Then there exists a point
(X0, ¥g) € F? and a C3/2(S1) function R(8) such that
¥ ={(x0, o) + (R(8) cos B, R(0)sind)|6eS}; (6.2)
in addition, the function R(-) satisfies
IR(:) =R cosyy =5R §|K—K| IRg(:) [coesy = § R ys

_1:£‘
27

XI

where R = K&
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Proof. The first assertion of the lemma follows from the well-known geometric
fact that a circle of radius 1 has the minimum arc length among all the curves
enclosing regions of area .

To prove the second assertion of the lemma, let x = x(s), y=y(s) be a
parametrization of y where s is the arc-length parameter. It follows that
x2 +y2 =1, so that there exists a function ¢(s) satisfying

x, =—sing(s), y,=cosg(s) VselO0,S].

In addition, the curvature x of y is equal to ¢,. Therefore ¢,(s) = k(s) €
L?([0, S]). The Sobolev imbedding theorem then implies that ¢ € C/2([0, S1).
Integrating the equation x; = —sing and using the relation ¢, = k yields

x(s) =x(0) — S sin @ (s) = [x(0) —R cos ¢ (0)] + R cos ¢ (s) +E()§S [« —&] sing.
Denoting by x, the constant x(0) — R cos¢(0), and by 4, the function
R}[x — K] sing, we then obtain

x(s) =xg+ Rcosp + A;.
Similarly, integrating y, = cos¢ yields

y(s) =yo + Rsing + 4,

where 4,(s) = —R[§(x — &) cos ¢.
Set

R(s) =V (x(s) —x0)> + (3(5) —)?
It then follows from the expression of x(s) and y(s) that
R?—~R>=A;=2RA, cos ¢ + 2RA, sing + A% + 43.
One can estimate Az by

|A|<2R2<1+5|K—K|> lk—k|=2R*(1+ 1)L <1 RY

It follows that ; V2ZR=R=<1 V6

R—R|ls ——=|4;] =8 Rf||k-k&|. 6.3
t \_R+R|ﬂ_5 I | (6.3)
Define
9(s)=ArctanM, s €0, 8].
x(s) —xg

Then we can compute
1
es(s) = ﬁ [(x '—x())ys - (y _yO) -xs]
1 _ -
= 2 [(Rcosg + A{)cosp — (Rsing + 4,) (—sing)]

)
= 7 (R+ A4 cosp + 4, sing).
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Since |4 cosp + A, sing| <R[, |k —&| = 1R, it follows that & R= 6, =
12 R Therefore, f(s) is monotonic and has an inverse s =s(6) satisfying
5R=s,=Y R Since y is a simply connected curve, we can easily verify
that 6(S) = 6(0) + 2n. Define R(9) = R(s(8)); then R(6) is a periodic func-
tion of period 2m and the curve y has the representation (6.2).

Notice that if ¢(s) € C'/2, then 6,(s) € C'%, so that s(8) € C*2. Direct
calculation yields
R, _ R*(A;ycos9 — A, sing)
6, R+ Aicosp+ A,sing q,:w(s(‘g)),

0

which implies that R(6) € C¥2(5'). Since |4, cosp— 4, sing| =R f, |« — k|,
it follows that |Ry| =¥ R*{,|x — k|. Combining this with (6.3), we obtain
the second assertion of the lemma. [J

We also need the following lemma to prove Theorem 6.1.

Lemma 6.3. The Hele-Shaw flow preserves the area; that is, if Ug<,o (I, x{t})
is a solution to the Hele-Shaw problem, then the region enclosed by T,
0 <t < T, has the same area as the region enclosed by I},.

This lemma follows immediately from the fact that fytV:O and the
geometric identity

d
— Area(t) =\ V
dt (?) 15

t

where Area(r) is the area of the region enclosed by I;.

Proof of Theorem 6.1. By the local existence Theorem 5.1 and a continuation
argument, we need only show that for each time ¢ in the existence interval,
the following two conditions are satisfied:

(1) There exists a point (xy(t), yo(f)) € %#? and a function R(-, ¢) € C'(S!)
such that

I ={(x0(1), yo(1)) + (R(O, t) cos b, R(6, t) sin#)| 0 € S'} (6.4)
with
IRC, ) = leisy =5 6-3)
2)
[Vu(®) |2y =1 VYeel0, T). (6.6)

Notice that (1) implies that at each time ¢ = 0, we can always take the
reference manifold .#, as the unit circle, whereas (2) implies that I, satisfies
the conditions required for the initial curve I'; in Theorem 5.1. Therefore, the
solution can always be extended by a fixed amount of time; that is, a global
solution can be obtained.

Similar to the harmless assumption that d € %50, which we used to prove
Theorem 5.1, is the following assumption, which we use to prove the above
two conditions: For each time 7 in the existence interval of the Hele-Shaw
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problem, there exists a point (xo(¢), yo(7)) € %2 and a function R(-,1t) €
C(S!) such that I, is given by (6.4) and R(-, t) satisfies

IRCG, D) = 1cusy =4 - ©.7)

Under the assumption (6.7), the assertion of Lemma 2.1 and the following
Sobolev inequality

||K - k_HLP(F[) = Cp”Vu(t)”LZ(%Z) Vp € [1, 00)

hold. It then follows from Lemma 6.2 that to prove (6.5) and (6.6), it suffices
to show that || Vu(¢)||;2(42) is small enough. The following lemma completes
the proof of Theorem 6.1.

Lemma 6.4. There exists a positive constant 03 such that if Iy satisfies the
assumption of Theorem 6.1 with J € (0, 35}, then in the interval where the solu-
tion satisfies (6.7), the solution also satisfies

| V@)l a2 =1 Va2 + C(S0) = Se)

where S, =2n~NA(0)/n is the length of the circle of area A(0), A(Q) =
% g" R3(0) db is the area of the region enclosed by I'y, and C is a universal
constant.

Proof. We use the energy identities (5.12) and (5.14) to prove this lemma. For
simplicity, we assume that the region enclosed by I, has area n. It follows
from Lemma 6.3 that the region enclosed by 7, also has area n. Therefore,
by Lemma 6.2 we have

S(0)z=S() =S =21 and RO)zR() =1

where R = 1/ (t) = S(1)/ (27).

Although we have estimated the two terms on the right-hand side of (5.14)
in §4, the estimate there cannot lead to the global estimate. Since here we
have the exact equation V = [x,], a much better estimate can be obtained.

To estimate the last term in (5.14), let w be the (unique) function harmonic
in Z°\TI,, equal to V2 on I, and satisfying the decay condition (6.1). Then

— Vi = @) =V + w1 = (e =R [w +w;]
I I I
=& = &lz2a,) UVWH ey H1VW )
, 2
= C|Vul (e ||Wr||L2(r,) = Cf| Va2 VsHLZ(r,)
(6.8)
where we have used Green’s formula in the second equality and Lemma 2.1
in the last inequality.
To estimate the term {,x?V?, write it as
facvi={(k-R0)* V2428 [ (k —R) VZ+ &> [ V2 6.9)
I, Iy I, by

t t t t
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The first two terms can be estimated by

[ e =RV < Vizeq, % = By = CIVil ey | V(@) | Bran s (6:10)

Fl‘
£ (c =R V2= C| Va2 | Vil ey - (6.11)

Substituting the estimates (6.8)—(6.11) into the right-hand side of (5.14)
yields

d
” IVu ()| 22y + (2 = CI Vu @)l 22 — Cl Vi) 2 1 Vsl 2oy
=20 V| by (6.12)

To estimate EZHV”%}([’I), let v be the harmonic extension of V in %2
such that v satisfies (6.1). Then

RNV 2y = zzlj vlu, —utl = ;zzlj (k — &) [v; —v,)]
t

: 2
= CVu) iz | Villizay < 31Vl 22y + CIVE@ 22y -

Substituting this estimate in the right-hand side of (6.12) and integrating from
0 to ¢ yields

t
1 Vu ()| 722y + g [} = CIVu() |20y — Cl V()| F2ea) 1| Vi | 22ry dT

t
<[ Vu(0)|| 7252 + C g | Vu ()| 722

= |V (0) | 72y + C(S(0) — S(1)) (6.13)
= Ao = || Vur, | oy + C(S(0) = S..) (6.14)

where we have used (5.12) in the first equality. Therefore, if C(4,+ \/ZO) =

% we can use an argument similar to that used in proving Lemma 4.3 to

prove
t

|Vu (@) | F2rey = Do, § IV | 22y de = 44,

for all ¢ in the interval specified in the assumption of Lemma 6.4. The asser-
tion of the lemma thus follows. Since 4, = Cd for some positive constant C,
this also completes the proof of Theorem 6.1.

Remark 6.1. If we simply use the Sobolev imbedding || V|2, = M| V;|2ry)
to control the term &| V||z2(r,) , then the best constant for M is R(¢) = 1/& (1),
which is not applicable in proving Lemma 6.4. However, in the next section,
we shall use the fact that the Hele-Shaw problem has a three-dimensional
manifold of equilibria to show that the constant M can be reduced to 1/2%,
and therefore, an exponential decay estimate can be obtained.
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7. Asymptotic Long-Time Behavior of the Solution

If one applies linear analysis to the Hele-Shaw problem near its equilibrium
to find solutions of the form I, = {(R(6, t) cos 6, R(0, t) sinf)| 6 € §'} with
R(8,1) =1+ eR(6) ¢° + O(&?), then one may find that ¢ =0 for three
linearly independent modes and o is negative for all the other modes. Observe
that every equilibrium of the Hele-Shaw problem is a circle and all the
equilibria consist of a three-dimensional manifold parametrized by the radius,
and the x and y coordinates of the center of the circles. Clearly, this three-
dimensional manifold contributes to the zero-growth modes of the linearized
Hele-Shaw problem near any equilibrium. According to the general theory of
dynamical systems, the manifold of the equilibria should be exponentially
stable. In fact, we shall prove the following theorem.

Theorem 7.1. Assume that Iy is a simply connected curve satisfying the condi-
tions in Theorem 6.1, and let Uy, o (I;%{t}) be the global solution given by
Theorem 6.1. Denote by A, the area of the region enclosed by Iy and by
Ko = NT[Ay the curvature of a circle with area Ay. Then there exists a posi-
tive constant C such that

|Vu(t) | 22cam = Ce™ 2% V20, (7.1)
§u VsH%Z(r,) + | Vﬂiz(m] dr = Ce™™="  Vi>0, (7.2)
t

S 1V drs Cem= ¥i>0. (7.3)

11

Furthermore, there exists a circle & with area Ay such that
dist(I;, Z) = Ce™2%" V¢ [0, o)

where dist (A, B) = sup, ¢, infycg |x —y| is the distance between the two sets A
and B.

Remark 7.1. The exponential rate of decay in Theorem 7.1 is sharp in the sense

that the linearized Hele-Shaw problem has a mode which decays with the rate
e—le%ct.

The key to the proof of Theorem 7.1 is the following lemma:

Lemma 7.2. Assume that y is a simply-connected curve with length S. Denote by
K the curvature of y and by K =2n[S the average of k over y. Assume that
K € L*(y) and that

flre— x|
K

IIA
W~
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Let u be the harmonic extension of k in F#* such that u satisfies (6.1). Define
V=u,; —u,. Then there exists a universal constant C such that

IVl 2 4871 = Cllk = & {nn] 1V 2y » (74
1 _
7w T2y = P Clle = &l VIl z2g - (7.5)
The proof will be given at the end of this section.
Proof of Theorem 7.1. Since || Vu(t)|r2(a2) = || Vu(1)| 2022 + C(S(7) — Sa)
and 5| Vu(r) JJ%z(gz) dr <oo, we can assume that || Vu(r)]|;2(4) is as small

as we wish if we assume that 7 is sufficiently large.
Using (7.4) and (7.5), we obtain from (6.12) that

T B = =12 = CTu sy |Vl + 28 Vdy ()
< —[6 — C|Vu(t) | 222 — Clk =Ry ) R V I 22y (1.7)
< —[24 = C|[ Va2 — Cllx = Rlpgr)) B Vu (@)l 2200
< =243 — C|[Vu(t) | 2] | V(D) | Z2 ) (7.8)

where we have used the inequality |[x — & ||12(r;) S Cl[Vu(t){ 2y in the last
inequality.

Since & =27/S(t) /' Ko and lim, e[| Vi (£)||12(22) = 0, it follows that for
any o € (0,24k3,), there exists a time #,, such that when ¢ = z,, one has in-
equality 24%(2)°[l — C||Vu(?#)||2(22)] = . Therefore, (7.8) implies that

d |
;} ”vu(l‘)n%}(%q é—‘ahqu%Z(_@Z) Vt_>_=ta.v

It follow that
1Vu() | 2oy = €| Vulty) | gy Ytz i,

Consequently,

R — k| = | = - 2E

S(r) S« = 0080 - S5a) = CJ V()| 722 = Ce™

Substituting this back into (7.8) vields
d 3
1 Vu@ [y + 2405 [ Va0 | By S Cem | V(D) Tagany = Cem %!

if we take o = 20x3,. Inequality (7.1) thus follows from Gronwalls’s in-
equality, whereas inequality (7.2) follows by integrating (7.7) and (7.6) from
t to oo,
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Using (7.2) one can estimate

S I Ve, dt = Cj I Vs”LZ(FT) dt
t t

¢ 1263, 7 2 e 2 123, T 2
=C 5 e s [ Vs“LZ(rT) e
¢ ¢

o o o 1/2
- 2 2
= ceromt [ e Ty + § = (FIN b o) e

t t
< C€_12K3°°t.

Inequality (7.3) thus follows.

To prove the last assertion of the theorem, let %, be the smallest rec-
tangle bounded by four lines x = x;(2), x = x,(z), y =y:(2), and y = y,(¢)
such that I, is contained in .%,. Then

d d
—X,'t,_Yit §Voo N i=1,2.
IR R TCI EI
It follows from (7.17) that
v o2
d
S E ( a X ()| +|— Y1) >< Ce™12¢%!,
=\ |t dr
t

Therefore, there exist X;(o) and Y;(e) such that
X;(t) — X;(0)| +|Yi(t) — Yi(0)| = Ce™ 1251 Wi > 0.
1 14 I 1

The-assertion of the theorem then follows from Lemma 6.2 and the fact that

lie = &2y = CllVu0)|| a2y = Cem 25",

To finish the proof of Theorem 7.1, it remains to prove Lemma 7.2.

1 1
Proof of Lemma 7.2. By the scaling u(x) - — u(j x), we can assume that
K K

K =R =1, so that s =2 Let X(s) = (x(s), y(s)) be a parametrization of
y where s is an arc-length parameter, and let ¢ (s), 0(s) and R(8) be the func-
tions introduced in the proof of Lemma 6.2.

Since [,V ={,lu; —u;]1=0, we can write

1 o0
V(X(s)) = — (a; cos(is) + b; sin(is)).
\/; ; 1 4
It follows that =
IViliZy = Y, i2(af + b)) = 4V 22y — 3(af + BY). (7.9)
i=1
Hence, to show the first assertion of the lemma, we need only to estimate
a; and bl-
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First we want to show that if we express x(s) = u(X(s)) in terms of its
Fourier expansion, then the coefficients of cos s and sin s are ‘‘small’’. For
this purpose, define

S

In|x — X(s)| V(X(s)) ds.
47 §1

1
uy(x) = e yjln]x —y| V() ds, =

Then u; is harmonic in %#?\y and continuous in .%? with a jump V in the
normal derivative across . Since fy V=0, one can easily verify that
ui(x) = O(1/|x]) as |x| » oo. Therefore, there exists a constant m such that

u(x) =u (x) +m Vxe H%
Notice that u = k = ¢, on y; it follows that

fu(X(s)) cos(p(s) — a) ds= | p,(s) cos(p(s) —a) ds=0 VaeS

St st

In addition, we have the identities 5 s cos@(s) ds = jynx = j" o-A(x) dxdy =0,
S&" sing(s) ds = jyny = 0, where 2~ is the region enclosed by y and n, and
n, are the normal components of the normal of y. Hence, for any « € s,

§u (X(s5)) cos(s — a)

S1

= l 551 (u(X(s)) —m)[cos(s — o) —cos(p(s) —¢(0) — a)]

slle(s) —@(0) = s|ze oy w2

A

Cle = Klpm lu v = Cle =&lup 1 Viee -

Now we want to express g¢; and b, in terms of a function close to u;.
Define X(s) = (coss, sins) and introduce a function #; defined by

i (x) = 1 § Injx — X(s)| V(X(s)) ds.
4 5

One then recognizes that #; is harmonic in %2\ & and is continuous in %>
with jump V in the normal derivative across %, where % is the unit circle
centered at the origin. Also, #;(x) =0 as |x| — c. Therefore, one can easily
verify that @, is given by

1
2n

“ 1

E — (a; cos (is) + b; sin(is)) if r=1,
ir

i=1

a; (7X(s)) = o

Y = (arcos(is) +b;sin(is))  if r<1.
1
i=1

2\
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We can estimate the difference between u,(X(s)) and # (X(s)) by

. 1 X - X
u(X(5)) — 1 (%)) = = sup M}uvuym

T 5,8 €S!

| X(s) — X(s1)]

< CIIR(O()) — Ucrsy +116:() = 1 cosy I V)
= Clle = &llop Vi -

It then follows that

§a(X(s)) coss
st

la;| = —

N

§ 4 (X(s)) cos s
st

HA

Clluy (X(5)) = #(X(5)) | sty +

2
Vn
s Cllx =&y [ Vilzzeyy -
Similarly we can estimate b;. Hence, upon substituting these estimates into
(7.9), inequality (7.4) follows.
To prove (7.5), we can use the expression of #; to compute
w 9 2
. s 2 a’ + b; 2
I D lzey =45 ) = 2 St 1 Vllee) + 5 (af + b?)

i=1

2 2
=[5 + Clx ~ Rl Vi) -
Therefore
I =Ky = nf [u —clizg) = lulee
< u (X) — & (X) | r2esy + 118 (D) | 225

si0+ Cllx =&l Ve -
Hence, we have the estimate
ROFESS yj (K =B [y, ~—uy 1 =]k = K2y 1V 20
— 2
= [; + Cllx =Rl V1220 -

This completes the proof of the lemma and also the proof of Theo-
rem 7.1, O

Remark 7.2. The curvature x(s) does not have the term a; coss + b; sins in

its Fourier expansion because the curve given by r = R(0) with R(6) =
1 + &(a; cos 8 +b, sin 6) is close to a (center-shifted) circle up to an order of
2

e”.
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