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Abstract. The newly proposed anisotropic fiber structures with cylindrical polar principal 
axes appear to be an interesting novel class of special lightguides. In this paper, some 
interesting results relating to such fibers are derived which, to the knowledge of this author, 
have not yet been reported in the literature. It is found that, if n+~o(Ao)1/2 > n~o(A,) ~/2 TE ~ 1 
will be the fundament mode with a range of single-mode operation given by 2.61 nz~o(2A,)1/2 
< 2/a < 2.61nc,~o(2A+) 1/2. On the other hand, ifn=o(A,) 1/2 > n+co(A+) 1/2, then TMol becomes 
the fundamental mode whose single-mode operation range is 2.61nor 
< 2.61 n~o(2Ar) 1/z. 

PACS: 42.80, 42.20 

This paper is concerned with the special class of 
anisotropic fibers introduced by Black et al. [1]. Such 
fibers have cylindrical polar axes f, q~, ~ for the an- 
isotropic refractive indices, which are z-independent 
but otherwise arbitrary functions of position. For 
anisotropic fibers, we consider HE,.., EH,,,, TE,.., and 
TM,,, modes, most of which contain all three electrical 
field components E,, E4, and E,, each "seeing" the 
refractive index in its respective direction. A mode 
becomes leaky when its effective index ~/k is smaller 
than any of the three principal refractive indices of the 
cladding. Some special modes do not contain all the 
three electrical field components. For such modes, 
index profiles in the zero electrical field directions are 
irrelevant to the mode cut-off conditions. For example, 
the TEo, modes have a Eo component only, so that 
only the refractive index profile in the ~b direction 
determines the mode cut-off conditions. Following the 
approach adopted by [1], one readily obtains the 
following coupled equations for the transverse field 
components 
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It is difficult to find an exact solution of the above 
equations. Under weakly-guiding condition, the mode 
propagation constant can be derived with the aid of 
perturbation technique and Green's integral theorem. 

The anisotropic fibers are considered as perturbed 
isotropic fibers with n2(r-)=n2(r-). Then the index 
profile of the anisotropic fibers can be expressed as 
h2(r-)=nZ(r)(l+D(r-)), where 7 is unit dyadic, the 
perturbation parameter ~ = (2Az)1/2, and the dyadic/) 
is 
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We now substitute the above refractive index 
components into (1) and expand fi2 and the electrical 
field components in terms of 5, such that 

/~2 = / g  + ~/~ + e2/~ + ... .  (3) 

e = e o + ed, + g2e 2 --~ . . . .  (4) 
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Then, in the resulting equations, we equate the 
coefficients of the zero and first order of e to obtain 
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where 6u=�89 I 2 e - / n j  ). 
With the help of Green's integral theorem, in- 

tegration of the expression [eo~(6a)-el,(5a) 
+eo,(6b)-ea,(5b)]  over the core and cladding 
regions, respectively, yields 
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In the weakly-guiding case, one has e r = a + g p  =er=a 8p 
and the line integral on the left-hand side of (7) 
vanishes. A first approximation of the perturbed 
propagation constant can thus be written as 

Zero-order field solutions of (5) for the lowest- 
mode LPol are 
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where w = a(32- v2,2~,/2 2 2 2 a /2 .  '~ "aJ , u=a(k nco-3o) , a is the 
radius of the fiber and flo is the solution of equa- 
tion WKl(W)/Ko(w)=uJl(u)/Jo(u) with Jn and Kn 
denoting, as usual, the Bessel and modified Bessel 
functions. 

Substituting (9 and 10) into (8), one has 

U2W 2 
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where V2=u2+W 2 and A=wKa(w)/Ko(w). As a 
result, if flLPo, is larger than max(knm, kn4,a, kn~c3, the 
fundamental mode will be HEa~; while in the case of 
flu,ol smaller than max (kn,cl, knecl, knzcl), one has TE o 1 
or TM o 1 as the fundamental mode. A fuller discussion 
about this result is as follows. 

For the TEoa mode having a field component ee 
only, which is independent of the ~b coordinate, we see 
from (lb) that the differential equations satisfied by the 
non-zero field component reduces to a form exactly the 
same as the equations for isotropic fibers. Therefore, in 
the absence of HEal and TMol modes, the guide will 
be single-mode with a range determined by the TEo 
and TEo2 cut-offs, i.e., 2.405 < V< 5.52, a result already 
given in [1]. 

However, if the TMo~ mode does exist, the whole 
event will be different. Thus, substituting 8/&b = 0 into 
(la), one finds a non-zero self-coupling term on the 
right-hand side of (la), which can be simplified as 
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Fig. 1. Anisotropic refractive index profile for azimuthal bire- 
fringent cladding 

whose solution is 

I A J~(uQnJn~) 
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with O = r/a, 2 2 2 1/z v2.2 ~/2 u=a(k nr~ o - f l  ) , w=a(fl  2-,~,.rr �9 
The boundary condition gives 

U J0 (Unzco/nrco) nzconrc 0 w Ko (wn~a/n~a) (~4) 
J l (un~o/n,~o) n~cin~a 

and at cut-offs, one has 

Jo (un~co/n~o) = O. 

K ~ (Wnzct/nr~t) 

(15) 

Zeros of Jo(x) are 2.405, 5.52, 8.654 . . . .  Thus, in the 
absence of LPol and TEo~ modes in a fiber whose 
refractive index profile is shown in Fig. 1, the guide is 

single-mode in the range 

2.405nr~o/n,co < V< 5.52nrco/n=o (16) 

we also note that, if the HEI~ mode is cut-off, but 
A~+O, then in the case of ng,~o(Ao) ~/2 >nz~o(A~) 1/2, the 
fundamental "bound" mode will be TEol with the 
single-mode range 

2.61n~o( 2Ar) 1/2 < 2/a < 2.61n~co(2A ~) ~/2 . (17) 

Conversely, if n~o(A,)l/2> %~o(Ae) ~/z, then the funda- 
mental "bound" mode will be TMoa whose single- 
mode range is 

2.61%co(2A~) 1/z < 2/a < 2.61n~co(2A~) 1/2 . (18) 

Conclusion 

Quite different from anisotropic fibers with 2, 33, and 
as principal axes, the degenerate TEo, and TMo, 
modes in a radially anisotropic fiber do not have a 
leaky-mode effect, and their cut-off conditions are 
determined only by the profiles with respect to those 
principal axes along which the modes have non-zero 
electrical components. 
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