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Abstract. In high resolution atomic or molecular beam spectroscopy, where the Ramsey 
interrogation method is used, one of uncertainty sources in determining the resonance 
frequency accurately is the phase-shift of the electromagnetic radiation in the cavity. This 
phenomenon, which depends on losses and asymmetries, is analyzed in a general way for a 
transverse atomic beam dimension much larger than the transition wavelength, a case 
which occurs in Mg or Ca beam frequency standards and the effects of different 
misalignments in collimated or divergent beams are examined. Numerical evaluations have 
been performed in the special case of an experimental Mg beam frequency standard. 
Divergence plays an important role in determining the cavity phase shift frequency error 
which is reduced about 100 times with respect to the case of a collimated beam. 

PACS: 32.80 

Although bias and uncertainties in different atomic 
beam frequency standards are related to physical 
phenomena all having the same origin, in some cases, a 
specific analysis is required. In particular, as far as 
standard based on Mg or Ca submillimeter metastable 
beams are concerned, care must be taken in evaluating 
some errors, that the transverse beam dimensions are 
much larger than the transition wavelengths. In prac- 
tice, the Mg and Ca transitions suitable for sub- 
millimeter frequency standards occur at wavelengths 
shorter than half a millimeter, whereas the cross- 
section dimension of the atomic beam can be of the 
order of 1 cm. Moreover, in such a geometry, incli- 
nation and divergence may play a significant role in 
producing special effects. 

The present realization of the Mg beam standard, 
whose operation frequency is Vo=601277157860 
_+ 20 Hz and stability estimate is 

O-y(~.)=SMl0 12.~-112 for l s_<v<100s ,  

is described in [-1] with some considerations on the 
main uncertainty sources. 

In this paper, attention is focussed on the cavity 
phase shift bias, since this effect was not specifically 

analyzed before. As is well known, precise determina- 
tion of resonance frequency with the two-zone Ram- 
sey interaction technique [2], used in atomic frequency 
standards, rests on the assumption that the interaction 
fields are perfectly in phase; therefore as a practical 
solution, the two zones are part of the same electro- 
magnetic resonator. In practice losses and asymme- 
tries may destroy this ideal assumption and a phase 
difference q~ between the two interaction regions may 
arise. 

An error is then produced because the peak value of 
the transition probability does not occur when the 
radiation field angular frequency co is coincident with 
the Bohr frequency COo, but the maximum corresponds 
to a frequency co =coo + O(~o) where O(~o) is an odd 
function of qo. This bias can be experimentally deter- 
mined by using the beam-reversal method, a rather 
time consuming technique which requires the physical 
exchange of the beam source and detector, or adopting 
the two-frequency separated oscillating fields tech- 
nique as suggested in [3]. Therefore a theoretical eval- 
uation of the cavity phase shift appears advisable in 
order to determine its magnitude and to make clear the 
dependence on geometrical parameters. The cavity 
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phase shift is analyzed here by considering the geome- 
try of the experimental set-up of the Mg beam in 
operation, which could also easily be used for a Ca 
beam. 

Since the phase shift depends on asymmetries in the 
resonator and in the atomic beam, different situations 
with perfectly collimated or divergent beams are 
investigated. 

1. Operation and Model 
of Metastable Beam Frequency Standards 

The operation principle of the Mg frequency standard 
based on a fine structure transition within the 3P0,1,2 
metastable triplet, described in [1], is sketched in 
Fig. 1. 

Part of ground-state atoms, coming out of an oven 
at 520 ~ are excited to the metastable triplet by means 
of electron collisions. The spontaneous decay rate 7-1 
of 3P 1 to the ground state, of the order of milliseconds, 
introduces a natural population difference between 
metastable levels and at the same time suggests an 
efficient detection technique. In the experimental set- 
up, a signal is obtained by repopulating the 3P 1 level 
with a radiation resonant with the 3P o -  3P 1 Amj=O 
transition and by detecting the corresponding flu- 
orescence increase with a photomultiplier. 

A narrow linewidth is achieved by means of the 
Ramsey interrogation method: two interaction 
regions, with a free evolution of length L in between, 
produce interference fringes whose experimental ob- 
servation is reported in [ 1]. The natural decay process, 
which is fundamental for preparing a population 
difference (length D) and for detecting the transition, in 
the free evolution region (length L) may contribute in a 

significant way to the final observation according to 
the geometry of the experiment and to the 3p i lifetime. 

According to the design used in the methane beam 
[4], a grid placed in the middle of the twice-folded 
resonator, with a 2/2 period and with 2/4 wide 
apertures, acts as a mechanical selector stopping atoms 
which, because of divergence, would cross regions 
where interactions should occur in opposite phases. 
This geometrical sampling is to be considered in the 
following evaluations together with the consideration 
that all the physical phenomena involved in the beam 
operation, i.e. production of metastable atoms, popu- 
lation difference and detection, transition excitation, 
are velocity dependent. 

Useful expressions to evaluate the cavity phase 
shift are obtained through the Maxwell-Bloch equa- 
tions applied to the density matrix formalism [5], in 
particular by using matrices of interaction (M0, where 
7 = 0, and of decay (Mo) as defined in [6]. 

Since a frequency error very small compared to the 
Ramsey fringe linewidth is sought, i.e. the peak value of 
the transition probability occurs at a frequency 01 very 
close to f2 = 0, the approximation usually adopted [7] 
is to put f2 = 0 in the M~ matrices, attributing all the 
frequency dependence to the time of flight present in 
MD. This means that integrations for point dependent 
fields can be performed exactly and expressions are 
correct under the assumption that the decay length L is 
much longer than the interaction zones. 

According to the symbols used in [6], for each 
possible value v of the atom velocity vector and for 
each possible coordinate crossing point in the first 
region (the second is determined by the v value 
assumed), the final values of the Bloch vector R ~r) can 
be expressed through the initial values R (i) in the 
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following way: 

R (~ = M I 2 M D M I 1 R  (i) . (1) 

The subscripts 1 and 2 in M~ refer to the first and 
second interrogations respectively. The four compo- 
nents of R are directly related to the real (R1) and 
imaginary (R2) parts of atom polarization and to 
population difference (R3) and sum (R4). Their specific 
expressions, through the density matrix elements r 
are 

R 1 = Q ~ 2 e - i(ot + to) + Q,2ei(~ot + ~), 

R 2 = i[Q 12 e -  i(,ot + to) _ 0"2 ei(~ + w)], 

R3=~22--~11 , 

R4=~22+~11, 

where ~0 is the phase of the electromagnetic field. 
The initial values R (~) can be obtained via the decay 

process between the source of metastable atoms and 
the first interaction. The general assumption 
R~ ) = R~ ) = 0 is made in the following. The signal at the 
detector is proportional to the variation A [R(3 f) + Rg )3 

- -  [ ]?(f)  ..1- ]~(f)~I __ ( / ) ( f )  _L. i~( f )~  --~,''3 " ~t~-4 .ttOR ~,a~'3 "~-4 m~ = o [6], between ZA and 
zB, coR being the coordinate dependent Rabi angular 
frequency. Due to decay, the evolution of (R 3 +R4) 
with z between ZA and z~ is 

R3 + R4 = (R~) + R~ )) e - ~/~. (2) 

A few different situations are considered in the 
following sections to evaluate the phase shift error. At 
the beginning an atomic beam without divergence in 
the plane (z, ~) is assumed (see Fig. 2). If the beam 
velocity has only the v~ component, that is the 
crossings between beam and propagation axes 41 and 
42 are orthogonal, different cases, of perfect alignment 
and of small misalignments between grid and standing 
waves, are analyzed. Perfect collimation requires a 
beam very narrow along 4, as a consequence the signal- 
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Fig. 2. Coordinate system used for the electromagnetic field 
distributions in the folded resonator 

to-noise ratio is reduced, but in the former case the 
phase shift is zero to this order of approximation. 

Subsequently a collimated beam with a small 
inclination is considered between z axis and v vector in 
the plane (z, 4). This is a premise to the last case of 
phase shift with a divergent beam. The analysis is 
performed on the general assumption of point depen- 
dent fields, that is coR = coR(4, Y, Z). 

2. P h a s e  D i f f e r e n c e  in  the  O p t i c a l  R e s o n a t o r  

In  the experimental set-up of the Mg beam, the twice- 
folded open resonator used is shown in Fig. 2. The Q 
factor is mainly determined by mirror losses and by 
coupling through the semitransparent metal mesh, 
whereas contributions from diffraction losses are negli- 
gible. According to this assumption the rf mangetic 
field B~, parallel to the quanfization axis z, can be 
expressed in the two regions with axes 41 and 42 by 
means of two counterpropagating fields labeled with 
superscripts + and - according to the direction of the 
propagation vector with respect to the 41,2 axes. By 
introducing the electric field reflection coefficients F1,2, 
considering in a first approximation the field as a 
superposition of counterpropagating plane waves, the 
expressions for B~ on the propagation axes, under 
resonance conditions are: 

B~(41) = B+ (41) + B2(41) 

---- BplF2[ 2 / c o s f i ~  c o s o t  

1 
cos (cot + fl~l)J (3a) 

2 

B~(~2) = B~+ (G) + B2(42) 

= Bp ]eosfl4 2 cosot  

1 -15r [ cos(cot- 42) ] (3b) 
2 J 

where equal phases and maxima of standing waves 
were imposed at 41 = 42 =0. In an ideal situation the 
straight line between these two points is parallel to the 
atomic beam direction which is the quantization axis z 
as well. In expressions (3a) and (3b) fl = 2rc/2 and B / 2  is 
t h e  amplitude of B~ wave at 42 = 0. The rf field phase 
variations 6 with (1 and 42 are easily obtained from 
(3a) and (3b). 

[1-1rll ] 
6 ( ( 0 = - a r c t a n  1 ~ l l t a n f 1 4 1  +c~,lrc, (4a) 

. Vl-15r~l ] 
3(42) = arctan . ~  tanf142 + e~2~, (4b) 

El + 15r~ I 
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where the coefficient ~,1,2 is zero when f141,2 belongs to 
an interval -~--* +~ around 2nrc and is 1 when the 
interval - ~  +~ is around (2n + 1)~. 

When the skin effect is predominant the reflection 
coefficient of metal mirrors can be expressed as 

q _  1 --(1 + i ) r  1 •  
l + ( l + i ) r l  with r t - r , . - V 2 a l ,  

1--( lq-i)r  2 1] m~eo 
l + ( l + i ) r  2 with r 2 = 2 V  ~22 ' 

where eo is the vacuum permittivity, at  and 0- 2 are 
metal conductivities and the change in the numerical 
factor in r 2 comes from the incidence at 45 ~ on the two 
equal mirrors. In this case, the approximation 
IF[ - 1 - 2r leads to 

6(41) m -  - -  arctan [rl tanf141] + e, lrc, (5a) 

5(42) ~- arctan [(rl + 4r2) tanf142] + c~,2rc �9 (5b) 

The phase shift (p between the two regions is 
9 = 6(42)-6(40 with 5(41) and 6(42) given by (4) or (5). 

The phase difference between points lying on the 
axes 42 and ~ is represented by the expression 

e(~2, 41)= arctan(K2 tanf142) 

+ arctan(K1 tanf141) + ( ~ , 2 -  c~,0~, (6) 

where K1 and K2 are very small coefficients obtained 
in a straightforward way from the expressions (4). 

MD = 0 

0 

where 

3. A General Expression of  the Phase-Shif t  Error 

The phase-shift expression given in [8] is here made 
general to include the co R dependence on the coordi- 
nates and the decay process of one metastable level 
(3P 0 with rate 7-1. 

Following [-6, Eq. (A 5)], the decay matrix M D is: 

dat d12 0 0 , 

d21 d22 0 0 
0 d33 d34 (7) 

0 d43 d44 

dal =d22=e-vL/2v=cos(Q L \  Vz "k-@), 

7L'2v [/ L "] 
d21 = - d l E = e  - / ~sin{(2--  +cp , / \ vz 

d33 = d44 = (1 + e -  ~L/~)/2, 

d34 = d43 = - (1 - e -  ~L/~)/2 

and 9, given by expression (6), takes into account the 
phase difference between the two zones. 

The specific expressions for interaction matrices 
are reported in the following sections; however, due to 
the condition f2=0, their general form is [-6, 
Eqs. (A 7, A 8)]: 

= 1 0 0 0 

MI 0 i~22 ig23 0 
0 i032 ig33 0 (8) 

0 0 0 1 

with ~g22 ;(j) ----~aaa;u) and ~,932;u) _- _ @23,J assuming the values 
1 or 2 according to the interaction zone considered, 
and 9 is the inclination angle with z of an atomic 
trajectory in the (z, 4) plane. 

To improve the previous approximations, that is 
the identification in the matrix M D elements of the free 
evolution length L with the distance between the two 
gaussian beams and the condition f2--0 in the matrix 
M I elements, respectively, the Rosen-Zener conjecture 
can be used [-9, 10]. The latter is an approximate 
extension of the only known solution of the two-level 
problem with a non-constant interaction field, with 
envelope f(t) = sech ( t /%),  to the case of a field envelope 
function g(t), continuous with its first derivative and 
Fourier-transformable. The transition probability is 

+~ ] 2 
then proportional to j ~  g(t)eir~dt . 

By applying this evaluation method to the double 
interaction with gaussian beams, a linewidth value is 
found which, when compared to that obtained through 
the use of matrices MD and M~, suggests the substi- 
tution of L with the more appropriate value 

Le = / L 2  + 4(2Qo)2 

0o being the gaussian beam radius at e -  1 of power. 
Introducing in (1) expressions (7) and (8) with the 

specified initial conditions R(~ ) = R(~ ) = 0 we get 

R(3f)=;(2) ;(1) ,4 /~(i)..t_;(2) [-,4 ;(1) l~(i)A_'4 /~(i)q ~aa2~a23~22..3 . ~g33L~a3~a33x,-3 . u.34~. 4 j ,  (9) 
with 

R(f)__'4 ;(1)o(i)+d**R(~) ' (10) 4 -- ~43~,~33~3 
R~ ) = - 1/2(1 - e-'D/"') 

and 

R(~ ) = + 1/2(1 + e-'D/~). 

The average probability (P(Q)) to detect the 
transition is proportional to 

(P(Y2))  oc (. [. [. f(v)tb(oa)A [R~ ) + R~ )] 
g,~v 

x (e - ~ / ~  - e - 7~ /~)dadOdv ,  (11) 

where f ( v )  is the metastable atom velocity distribution 
at the end of the electric discharge and ~(0) is the angle 



Cavity Phase-Shift Error Evaluation 499 

dependent flux density. The integrations are carried 
out over the velocity distribution and the ensemble of 
coordinates a(~1.2, Y) ranging over the surface S with 
correlations between first and second Ramsey zones 
coordinates according to the allowed trajectories. The 
solution looked for is the value 0 1 for which 
d(P(f2))/df2=O. In expression (11) only the matrix 
element d22 coming from (9) is g2 dependent through 
cos(OLJv~+~o), therefore the cavity phase-shift bias 
must satisfy the equation 

v X 8  

where it has been assumed that f2~L,/v~ ~ 1, 

F(v) =f(v)e- ' (L + ~)/2~ 

x sinh(yD/2vz) (e- ~z~/~ _ e - ~ / ~ )  

and I(v, a, ~) = i(~)2i(s~ 3. 
The final expression follows 

f f~l  1 I ~ f q)(8) ~ I(v, a, 8) sin ~odvdad8 
_ _  ,.~ v 8 s  

03) 
C~o ~ ~ ~ ~(8)~2) I(v,a,,9)cosq)dvdad8 

8J ;  

It can be remarked that, in many cases, (o assumes 
only values very close to 0 or re, and therefore suitable 
approximations are sin q) = + ~0 and cos ~o = _+ 1 respec- 
tively. T o  avoid misunderstandings because of the two 
possible approximations the notation sin q~ and cos ~o is 
maintained when necessary. Moreover, according to 
(6), for some trajectories this assumption does not hold. 

Due to the small ;) values allowed by the colli- 
mators, significant variations of �9 with 8 were not 
experimentally found, therefore from now on ~(~b) is 
assumed a constant and it is omitted in what follows. 

For  a metastable Mg beam an expression of the 
velocity distribution f(v) has been obtained in [11] 
analyzing the case of metastabilization through atom- 
electron collisions 

f(v) = A(v/cc)~e- m/~- ~21~ sinh (KI/v) , 

where 
A = normalization constant; 

= the most probable velocity in the oven; 
~7= positive number higher than 3. It takes into 

account the elastic collision effect; 
I = discharge current; 

H and K are constants dependent on the excitation 
and deexcitation cross-sections of Mg and on the 
discharge geometry. 

4. Orthogonal Interaction 
with a Collimated Atomic Beam 

In this case 

i(J) -- ;(J) = cos [#(fl~j)], 2 2 - - ~ 3 3  

) - - ;(J) = sin [~(fl~j)], 32  - -  ~23 

where, according to (A.10) of [6], ( takes into account 
the field shape seen by the atom and, in particular, for a 
gaussian electromagnetic beam 

(= e-  r2/2og)~/v cos fl~ j 

being Z = I/~-~OOJR0, CORO = #Bp/h and # the transition 
dipole moment which, in the Russel-Sounders cou- 

pling, is 2 ~  times the Bohr magneton. 
For  the orthogonal interaction of Fig. 2, ~1 = ~2 = 

and, if the atomic beam engages an integer number M 
of slits of the grid centered at ~ = i2/2, i being a negative 

a 
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It Z 
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Z 

L 

Fig. 3a-e. Different asymmetries in an orthogonal interaction of a 
collimated beam. a Slits are not homogeneously filled with atoms. 
b The grid is not aligned with the standing waves, c A standing 
wave is not aligned with the grid and the other standing wave. 
The steplike diagrams divide the 41.2 axes in zones where phases 
of perfect standing waves are 0 or n respectively 
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or positive integer, the net result of(13) is O 1 = 0 due to 
the odd and even dependence on ~ of ~0 and K~32/;(2), q2!i(1)'~ 

respectively. 
On the other hand, if not all slits are filled with the 

atom flow (Fig. 3a), an unbalanced term comes out 
from (13) and the maximum error is 

(2'IM Kz W K 1 
_ _ e ~ , . T _ - -  
co o 2mo)oL~ 

dv Qo ~/4 
F(v)--- ~ dy ~ sinZr162 

0 V 0 0 

x _ . .  dv ~o rt/4 , (14) 
i P ' (v )7  ! dy o ~ sin2((fl~)d(flr 

where u=f i r  If d = e ~ l / f i  

tl Q1 K 2 + K 1  
(Do cL~ 

i dv oo F(v) v ! dy sin 2 (e- Y2/z~Z/I//2v ) 

m dv oo ~/4 
F(v)-@ 2 ~ dy ~ sin2~(u)du 

0 13 0 0 

(15b) 

where c is the velocity of light. 
If a misalignment d occurs between standing waves 

maxima, e.g. ~ 1 = ~ 2 + d  (Fig. 3c), leaving r162 the 
expression (13) yields 

(2'~' 

(D o 

dv Oo n/4 
F(u)--- ~ dy ~ ia2(~l-d)iEa(~Osin~o(~-d,r 

0 /) 0 -~z/4 

cOoL ~ ~ _ . dv Qo ~/4 
F(v) 75 ! dy 

0 - n/4 
ia2(~1 - -  d) i23(~1)  c o s  (P(~I - d ,  ~ l ) d ( f l ~ l )  

(16a) 

Even and odd (non-contributing) functions of/34 
under integration in (16a) can be easily separated. A 
simplified expression is possible for d=~  in the case 
fleZ/V ~ 1 

oi' 
~ i o  ~ /4 [  K sinZ(Cc~ K l + K z c s i n 2 U s i n ( 2 C c o s u ) ] d u  

(16b) 
(0 o c L  e _ . dv oo ~/4 

or (V)~ f  ! dY ! sin2(Ccosu)du 

where ~o(fl~)~-(Kl+Kz)tanfl~ is obtained from (6) 
with ~1 = ~z = ~ and the integration limit Q0 follows 
from a suitable approximation of the atomic beam 
cross-section dimension in the two interaction zones. 
By moving the grid it is possible to evaluate the total 
variation. 

This error can be reduced by adjusting the width of 
the semitransparent portion of the grid to be sure that 
all the slits are symmetrically filled with atoms. 

If there is a misalignment d between grid and 
standing waves (Fig. 3b), then ~1 = 42 = ~ + d  and the 
frequency error is 

t ~ J  m 

COo woL~ 
~o dv oo ~/4 + pa 

F(v)-:: ~ dy f ~(u)sin~o(u)du 
0 V 0 ~/4-- f ld  

X dv Qo ~/4 + pn 
iF( /7!d  S sin  Iu/cos ( )du 

-rq4- + pd 

(15a) 

being C =  (Z/v)e-Y2/ze~. 
This expression was compared with numerical 

integration of (16a) and it turned out to be a suitable 
approximation also when fieffv < 1. 

In the numerical computations the figures listed in 
Table i have been used. These correspond to the 
experimental realization of the Mg beam. Diagrams 
obtained from expressions (15b) and (16a) are reported 
in Fig. 4 as a function of)~, which is proportional to the 
standing wave amplitude inside the resonator. Both 
the grid and the second standing wave are supposed to 
be shifted by d = 1 0  pm from their ideal position 
separately. Curves b) and c) refer to grid and standing 
wave movement respectively. The value 
)~opx = 1581 m/s which normalizes the horizontal axis 
comes from [6], where the case of a perfectly colli- 
mated beam was considered, taking into account the 
actual velocity distribution and the experimental para- 
meters. The relative phase-shift error in a collimated 
beam is evaluated from Fig. 4 of the order of a few units 
in 1013 with the possibility of some reduction because 
of the even dependence on the misalignment d. 
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Table 1. Parameter values used in the numerical computations 

Parameter Value Parameter Value 

D 1.15m 7 -i 4.6x 10-3 s 
L 0.3m ct 736ms -1 
L~ 0.27 m ~7 4 
za 0.3 m H 2200 m s- ~ A- ~ 
z~ 0.5 m K 1540 ms -~ A- 
a 2xlO-3m I 0.3A 
~o 8 x 10 -3 m rim 10 -3 
2 498 x 10 6 m  XoP'r 1581ms-a 

5" 10 -~a 

- b 

I I I 
1 2 X~t/'~Op T3 4 

Fig. 4. Relative frequency error 1f21/O9o1 for grid b and second 
standing wave c misalignments (d = 10 gm) as a function of Z/)Cop T 

5. N o n - o r t h o g o n a l  Interact ion  
with a C o l l i m a t e d  A t o m i c  B e a m  

When a non-orthogonal  interaction occurs, the travel- 
ling wave produces not only a cavity phase shift, but a 
first order Doppler effect as well. This latter effect is 
considered in a paper in preparation [12]. Here the 
analysis is concerned with the phase shift between 
points belonging to the coordinate axes ~ and (2 
respectively. 

If 0 is the angle between the velocity vector v and z, 
following the previous notation for the Bloch vector R, 

~r~la 

(D o 

if the atoms cross a standing wave g(z) cosfl~ where ~(t) 
=~o+VCt and Z=Zo+V~t , the differential equation 
system for the components Rj is formally the same as 
written in [6, Eq. (A.7)]. 

In this case the M~ elements can be written as 

i322=ia23 =cos(3 ,  

ia32 = - - /a23  = sin(a, (17) 

where, for a gaussian beam, 

'~' e - ~(fl~o tana) 2 
r = e-y~/20~ ,5_ _ _  cosfl~o (18) 
~a 0 COS 0 

is an even function of O and nearly constant if 
flOo tan O ~ 1. 

In order to get a strong interaction with the 
Ramsey technique, the standing wave maxima and the 
slit centres have to be aligned. In this case the phase- 
shift expression is given by (6) after a suitable choice of 
origin for ~ 1 and ~2. Apart the small O dependence of (a, 
present in expression (18), the bias evaluations given by 
(15a) and (16a) can be easily transferred to this case. 

Another possibility can occur with standing wave 
and grid positions as shown in Fig. 5, the atomic beam 
having an inclination 0. Now atoms cross the two axes 
41 and ~2 at coordinates ~1o and ~20 given by 

~lo=~-(L/2)tanO, ~2o=~ +(L/2)tanO (19) 

and the phase difference between ~2o and ~ 1 o, linked by 
the trajectory (19), is 

(Pa = arctan {Kt tan(fi~l o)} 

+ arctan {K2 tan(fl~2o)} + (c~,2 - a,1)rc 

= arctan {K1 tan [fl(~ - L/2 tan 0)] } 

+ arctan {Kz tan [fl(~ + L/2 tan 0)] } 

+ (c~,2- c~,l)=. (20) 

For  a given ~ value, (p~ is periodic with 0; the period 
Ta is given by (ilL~2) tan Ta = ~, that is 
T a ~- 2/L_~ 1.67 mrad in the case examined. 

For  fully symmetric trajectories ~(t)= Go +vr and 
~ ( t ) = - ~ o - V c t ,  the product ~832,823;(2)/(1) is unchanged, 
whereas ~o a has opposite values, apart the additive term 
(~,2-a,~)~ which is unaltered; given a 0 value, ~oa is 
odd in 0 only if K~ = K 2. 

The phase-shift bias, assuming slits equally filled 
with atoms therefore gives a net result different from 
zero if O #: 0. The general expression in this case is 

~ l o  ~/4 
1 i F(v) !dy ~ ia32(fi~20)ia23(fl~10)sinq)ad(flr 

- r~14 

~/4 , (21) oo dv Qo 

(DoL~ ! F(v)~ ! dy ~ io32(fl~20)i~Ea(fi~xo)COSqOfl(fl~ ) 
- ~ 1 4  
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Fig. 5. A possible geometry of a non-orthogona! 
interaction of a collimated beam 
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Fig. 6. Phase-shift error as a function of the 
inclination 9 for a non-orthogonal interaction 
as in Fig. 5. g scale in units of 2/L is also 
shown. A X=0.5 ZoeT, �9 X=Zopx, II Z =  1.5 XOI, T 

where the relationships between ~2o, ~1o, and ~ are 
given in (19). 

Expression (21) with the integration limits on/3~ 
indicated is a quasi-periodic and odd function of ~ if 

~ 1 and ~ can be taken as nearly independent of ~. 
The two-zone distance L is not only explicit in the 
factor Lo, but terms in ~ +-L/2 t an0  are also in the 
integrands, namely in i~32, i,~23, and q~. This effect 
cannot be discussed directly. Moreover it must be 
pointed out that, for atoms crossing the same slit, part 

interact with equal phase, part with opposite phase 
fields when 

2(n/2 + 1/8) < (/~L/2) tan• < (n/2 + 3/8)2. 

In Fig. 6 the diagram of O~o/o o is presented as a 
function of ~ having X/)~oPT as a parameter. At varying 
/~, with period 2/L, when the inclination approaches 
2/4L there are many atoms which suffer a large phase 
shift and, moreover, cross standing waves of opposite 
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phases. The pattern of O~/(D 0 is then rather irregular 
in the region 2/4L < 0 < (3/4)2/L. 

A computed evaluation of(21) for different L values 
has shown that the bias f21o/(D o is proportional to 1/L, 
the ratio between integrals being independent of L. 

With reference to the experimental case when a 
symmetry exists around the z axis and the slits are 
centered at ~ = i2/2, if the grid is displaced by d, each slit 
is crossed by atoms seeing a phase shift which cannot 
be compensated. The bias is 

t2;O 1 o 

(D O 

~/4 + Bd ,gui 

f d u e  5 dOi~32(~20)i~23(410)sinq~o(420,410) 
r~/4-  gd i t~li 

(DoL e oo dv ~o ~/,* + aa ~ 
So F(v) 7 ! dy I duZ I 

-2 t /4  + fld i ,9]i 
dOia32(~2o)iaz3(~l o) cos cp(~2o, 41 o) 

(22) 

6. Interaction with a Divergent Beam 

According to the results of the preceding sections, 
when a divergent beam interacts with two standing 
waves, the phase-shift bias is compensated overall if a 
perfect geometrical symmetry exists with respect to the 
z axis. Only asymmetries in the beam flux density # or 
in the relative positions of standing waves, grid and 
beam can produce phase shifts which, when integrated, 
do not average to zero. 

In the case of the Mg beam considered, the full 
divergence is about 10 mrad, but the full aperture 0 of 
the atom flows across a slit is nearly 4-independent, 
that is 

6) ~_ 2a/(D -- L 1 + L/2) ,  

where 2a is the diaphragm aperture (Fig. i). 
The corresponding upper and lower limit values for 

0(~) are respectively 

0, = (4 + a)/(D - La + L/2) 

and 

01 = (~ - a)/(O -- L 1 + L/2) .  

In the experimental situation described 
O ~- 4 • 10- 3 and the range A over r 1 or 42 spanned by 
atoms crossing a single slit is A ~- (L/2)O + 2/4-~ 32/2. 

where expressions (19) hold between ~---u/[3 and the 
coordinates 420 and 410 through 0, the expressions 
i~32, ia23, and q~o are independent of i, depending only 
on ~, but the integration limits along 0 depend on i; in 
fact 

2 2 
i ~ + ~ + d + a  

Oui ' ~  D _ L I  + L/2 ' 

d < 0  

.2 2 
t ~ - g - d + a  

0',i - 
D - D I  + L/2 ' 

d > 0  

.2 2 ,t 2 
z ~ - 8  + d - a  i ~ + g - d - a  

Ou~- D _ L x  + L / 2  , O'u= D _ L I  + L / 2  , 

with the exception of the extreme slits where the limits 
are imposed by the atomic beam dimensions. Figure 7 
shows the computed dependences of O'm/(D o on d, 
having Z/Xomr as a parameter. For a displacement 
d=2/2, the geometry of the experiment reproduces 
itself exactly, whereas for d = 2/4 the observed Ramsey 
fringe is inverted [1], the contrast and the phase shift 
being practically the same although different atom 
paths are sampled. 

~(~ID 

3 -10  -14 - 

10  2 0  3 0  4 0  5 0  

? 
1 

d(~m) 

F i g .  7.  P h a s e - s h i f t  e r r o r  O l o / o )  0 a s  a f u n c t i o n  o f  

t h e  g r i d  d i s p l a c e m e n t  d f o r  a n  o r t h o g o n a l  

d i v e r g e n t  b e a m .  - -  - -  - -  Z = 0 .5  ZOPT, - -  

.~ = ~OPT, -- . . . .  ~ = 1.5 ~OPT 
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If these evaluations are compared with those of a 
collimated beam, the beam divergence appears to play 
an important role in reducing the frequency bias by 
averaging contributions corresponding to different 
paths. In fact, a reduction of a factor of nearly 100 is 
obtained, comparing Fig. 4 with Fig. 7, for the same 
power level at a grid displacement of 10 gin. 

If the asymmetry consists of a small angle 9o 
between the beam axis and the z axis, an expression 
similar to (22) can be introduced with the following 
new integration limits both at numerator and 
denominator: 

9 u+90 and 9 , i + 9  o f o r g ,  

-z/4+fld and n/4+fld foru  

provided the origins of 41, 4, and r are moved to keep 
standing wave maxima and slit centres on a straight 
line with inclination 90. 

Accordingly the following expressions hold: 

!2 0 Z e -  ~(/~~176 tan~ 
=e-"z/2~z~J eO-- 

v cos9 

x cos Iu-T-f lL( tanO-tango)] ,  (23) 

~Oo=arctan {Kl tan[u- ~---~ (tanO-tango)l} 

+ arctan {Kz tanlu+ ~-~ (tan~-tango)l}. (24) 

By introducing (23) and (24) with the appropriate 
integration limits in (22) an expression for O1D(9o)/Co o 
is obtained. It is straightforward to notice that the 9o 
dependence is odd and different from zero, even for 
d=0 .  As u is centered around zero, very strong 
variations in q~o are to be expected when 
fl(L/2) tan 90 ~- 7r/2 that is 9o -~ 2/2L, for K 2 4= K 1- This 
is shown in Fig. 8 where the computed values of 
Oln(90)/Cno in the case X=Xom- are reported. The 
averaging effect due to divergence is again rather 
strong and the relative frequency error can be limited 
to the level of units in 1014 if proper checks of suitable 
experimental conditions are performed to avoid 9o 
positions around 2/2L. When d=~ 0, far from this go 
value, the effect of a 10 gm displacement should be 
limited to the l 0  -14  level, as it turns out from Fig. 7. 

As far as the dependence of frequency uncertainty 
on the field amplitude is concerned, it is likely that 
divergence imposes, for the maximum output signal, a 
Z value higher than the ZOPT used in these compu- 
tations. An appropriate value should occur between 
ZOPT and 1.5 ZOPT, but the diagrams of Figs. 4 and 7 
show that the error increase is not substantial. Accord- 
ingly the phase-shift error for the described experi- 
mental set-up of the Mg beam should be lower than 
10 -13 even with a two-zone distance of only 0.3 m. 

From the experimental point of view the odd 
dependence of the error on displacements and incli- 
nations could be exploited for a better definition of the 
operation condition close to the ideal case. Moreover 
the beam reversal technique, which is also useful to 

10.10 - 1 4  

 1o( o) 
too 

5.10 -14  

/ \ 

d=O 

t I 
So(o r.o) 

Fig. 8. Relative frequency error f21D(9o)/Co o for a 
divergent beam with inclination Oo with respect 
to the z axis. The diagram refers to Z=ZoPr 
with the grid centered for maximum signal 
(d=O) 
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reduce the residual first order Doppler effect, could be 
performed with two counterpropagating atomic 
beams whose alignment could be easily checked by 
optical methods due to the absence of selecting mag- 
nets in the structure. 

7. Conclusions 

In atomic beams with the transverse dimensions much 
larger than the wavelength, specific problems arise 
when determining the Ramsey cavity phase-shift effect 
on the resonance frequency; this is of interest in 
submillimetric standards based on Mg or Ca atoms or 
on molecular transitions. Moreover, determination of 
fundamental constants through millimetric transitions 
of Rydberg atoms should face similar problems. A 
rather general analysis of the effect has been performed 
whereas computations were limited to the experi- 
mental realization of an Mg standard. The beam 
divergence yields atom trajectories whose phase shift 
between the two zones assumes very widespread values 

of opposite sign as well. As a consequence, a strong 
averaging effect occurs which reduces the frequency 
error to a level lower than in the case of a collimated 
beam. 
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