

First-Stage Enrichment in CO₂-Laser-Induced ¹³C **Separation by a Two-Stage IRMPD Process: IRMPD of CHCIF₂/Br₂ Mixtures**

S. Arai¹, K. Sugita², P. Ma^{2*}, Y. Ishikawa², H. Kaetsu², and S. Isomura²

1 Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606, Japan

2 The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01, Japan

Received 17 October 1988/Accepted 3 November 1988

Abstract. We have been studying the practical CO_2 -laser-induced ¹³C separation by a twostage IRMPD process. The IRMPD of natural CHClF₂ in the presence of Br_2 mainly produced CBr_2F_2 , which was found to be highly enriched with ¹³C. The yield and ¹³C-atom fraction of CBr_2F_2 were examined as functions of pulse number, laser line, laser fluence, total pressure, and Br_2 pressure using a CO_2 TEA laser with an output less than 1 J pulse⁻¹ in order to optimize experimental conditions for 13 C separation. For example, we obtained CRr_2F_2 at a ¹³C concentration of 55% in the irradiation of the mixture of 100-Torr CHClF₂ and 10-Torr Br₂ with the laser radiation at a wavenumber of 1045.02 cm⁻¹ and at a fluence of 3.4 J cm⁻². The mechanism for the IRMPD is discussed on the basis of observed results. Using 8-J pulses, we were able to obtain 1.9×10^{-4} g of ¹³C-enriched CBr₂F₂ (¹³Catom fraction, 47%) per pulse under selected conditions. It is possible to produce 90% or higher ¹³C by the second-stage IRMPD of the CBr₂F₂ in the presence of oxygen.

PACS: 82.50, 33

Since the discovery of isotopically selective photodecomposition of molecules in intense IR fields, infrared multiple-photon decomposition (IRMPD) is expected to be applicable to practical isotope separation in a near future $\lceil 1 \rceil$. Of a number of isotopes from ²H to 235 U, 13 C separation has been most extensively investigated in IRMPD [2-9]. Most of previous studies have been succinctly reviewed in the introductory section of the paper by Outhouse et al. [7].

Although remarkably large selectivities have been achieved in IRMPD of fluorocarbons such as $CF_3X(X=Cl, Br, or I)$ [10, 11] and CHClF, [3, 9], it is very difficult to obtain practical amounts of ${}^{13}C$ at a sufficiently high purity in a single-stage IRMPD process. A number of previous studies have shown that 90% or higher ¹³C is only obtainable with a great sacrifice of its yield. In a few studies, high enrichment of

 13 C was attained by eliminating extensively 12 Cbearing molecules from natural CF₃I [12, 13]. However, the process cannot be efficient, because of the natural abundance ratio of 12 C to 13 C, i.e., 98.9%: 1.1%. There seems to be a general agreement that the practical enrichment of 13 C by IRMPD requires a twostage process.

In previous papers, we have proposed several chemical systems suitable for a two-stage IRMPD process, wherein the product in the first-stage selective IRMPD was at once used as the working substance in the second-stage IRMPD for further enrichment [14-16]. For example, the IRMPD of CHClF₂/Br₂ mixtures produced CBr_2F_2 at a high yield, if the ¹³Catom fraction was suppressed in the range of 30-50%. The second-stage IRMPD of the CBr_2F_2 in the presence of O_2 gave rise to CF_2O , which was highly enriched with $13C$ [16]. The subsequent hydrolysis of the $CF₂O$ was found to give ¹³C-enriched CO₂ as a final product, which was an useful material for chemical synthesis of 13 C-labeled organic compounds. This

^{*} Present address: Quinghai Institute of Saline Lake, Academia Sinica, Xining, People's Republic of China

process could be one of the most promising approaches to practical laser 13 C separation. In the present study we examined the first-stage enrichment as functions of several experimental parameters to establish optimal conditions for separation. In addition, the mechanism for the IRMPD will be discussed in light of observed results.

1. Experimental

The apparatus and procedures are almost the same as those described previously [16]. The beams from a Lumonics 103 CO₂ TEA laser were focused by a BaF₂ lens with a focal length of 170 cm after truncation by a circular iris (diameter 2.0 cm). A short irradiation cell (length 10 cm; inner diameter 2.0 cm) equipped with NaC1 windows at both ends was placed in parallel with the beam and in a vicinity of the focal point. In this optical geometry the fluence inside an illuminated zone can be regarded as almost homogeneous. The cell volume was 48.9 cm^3 . The fluence was, if necessary, varied by inserting one or more polyethylene films into the beam in front of the lens. The laser was operated at a repetition rate of 0.7 Hz using a mixture of He and $CO₂$ as a lasing medium. The resulting pulse had a triangle profile (80-ns FWHM) without a tail. Products were analyzed on a GC-MS (GC column, $6 \text{ m} \times 3 \text{ mm}$) Gaskuropack-55; column temperature 150° C).

A Lumonics 822 $CO₂$ TEA laser, which provides 10-J pulses at a maximum output, was employed for preliminary large-scale photolysis. The lasing medium was a mixture of He, CO_2 , N_2 , and H_2 . The pulse consisted of an initial spike (200 ns FWHM) and a long tail containing 30% of the total energy. The output was adjusted to 8 J per pulse. The beams focused by a lens (focal length 210 cm) were introduced into a 4-m long irradiation cell with NaC1 windows; the fluence distribution was inhomogeneous along the beam. In an empty cell the fluence was found to be 7.9 J cm^{-2} at a beam waist. Sample gases were continuously circulated during irradiation by means of a small pump. The cell volume including the pump was 5.0×10^3 cm³.

2. Results

The detailed infrared spectrum of $CHCIF₂$ and the IR band assignments have been reported in the paper by McLaughlin et al., where $CHCIF₂$ was dissolved into liquid argon at $110K$ [17]. The compound has an intense band at 1100 cm⁻¹ due to a symmetric ¹²C-F stretching vibration mode, and its isotope shift by ${}^{13}C$ is 24 cm⁻¹. The CO₂ laser radiation in the 9P and 9R branches pumps $CHCIF₂$ molecules to high vibrational states via multiple-photon absorption. The products in the IRMPD of neat $CHCIF₂$ have been found to be C_2F_4 and HCl [18].

Upon adding Br_2 to CHClF₂, C_2F_4 is replaced by new products CBr_2F_2 and $C_2Br_2F_4$; the yield of the former product is much larger than that of the latter. Figure 1 shows their yields as a function of pulse number, where $CBr_2F_2 = {}^{12}CBr_2F_2 + {}^{13}CBr_2F_2$ and $C_2Br_2F_4 = {}^{12,12}C_2Br_2F_4 + {}^{12,13}C_2Br_2F_4$

 $+^{13,13}C_2Br_2F_4$. In the yields, the sum of CBr_2F_2 , $C_2Br_2F_4$, and unconsumed CHClF₂ was taken as 100%. In the experiment the mixtures of 10-Torr CHClF₂ and 1-Torr $Br₂$ were irradiated with the $9P(22)$ line at 1045.02 cm⁻¹. The fluence was about 3.1 cm⁻². The yield of CBr_2F_2 increases linearly with increasing pulse number, while that of $C_2Br_2F_4$ increases concavely. Therefore, the ratio between the two yields, $[CBr_2F_2]/[C_2Br_2F_4]$ apparently increases with increasing pulse number, although the data scatters widely as shown in Fig. 2. In Fig. 3, the 13 C-atom fractions in CBr_2F_2 and $C_2Br_2F_4$ are plotted against pulse number. Both 13 C-atom fractions have almost the same value, i.e., about 34 at the beginning of irradiation. However, the fraction in CBr_2F_2 decreases and that in $C_2Br_2F_4$ increases with an increase in pulse number. The decrease in CBr_2F_2 is probably due to diminishing concentration of a 13 C-bearing molecule in $CHCIF₂$. On the other hand, the increase in $C_2Br_2F_4$ may arise from the secondary photolysis of $C_2Br_2F_4$, as explained later in detail.

To clarify the pulse number effects on the IRMPD further, ¹²C- and ¹³C-production yields in CBr_2F_2 and $C_2Br_2F_4$ as well as corresponding yields per pulse are plotted against pulse number in Figs. 4 and 5. Their definitions are as follows:

¹²C-production yield in CBr₂F₂,

$$
{}^{12}Y(CBr_2F_2) = \frac{\text{amount of } {}^{12}C \text{ in } CBr_2F_2}{\text{initial amount of } {}^{12}C \text{ in } CHClF_2}
$$

¹³C-production yield in CBr_2F_2 ,

$$
{}^{13}Y(CBr_2F_2) = \frac{\text{amount of } {}^{13}C \text{ in } CBr_2F_2}{\text{initial amount of } {}^{13}C \text{ in } CHClF_2}.
$$

The initial amounts of 12 C and 13 C in CHClF, are equal to 98.9 and 1.1% of CHClF₂ before irradiation, respectively.

¹²C-production yield per pulse in CBr_2F_2

 12 y(CBr₂F₂) = 12 Y(CBr₂F₂)/pulse number

¹³C-production yield per pulse in CBr_2F_2

 13 y(CBr₂F₂) = 13 Y(CBr₂F₂)/pulse number

 $^{12}Y(C_2Br_2F_4)$, $^{13}Y(C_2Br_2F_4)$, $^{12}y(C_2Br_2F_4)$, and 13 y(C₂Br₂F₄) are defined similarly to those for

Fig. 1. Yields of CBr_2F_2 and $C_2Br_2F_4$ vs. pulse number. CHClF₂, 10 Torr; Br₂, 1 Torr; laser line, 9P(22) at 1045.02 cm⁻¹; fluence, 3.0-3.2 J cm⁻²

Fig. 2. Ratio of $[CBr_2F_2]$ to $[C_2Br_2F_4]$ vs. pulse number. Irradiation conditions, see the caption of Fig. 1

Fig. 3. ¹³C-atom fractions in CBr_2F_2 and $C_2Br_2F_4$ vs. pulse number. Irradiation conditions, see the caption of Fig. 1

 CBr_2F_2 . In Fig. 4, ¹³ $Y(CBr_2F_2)$ reaches a plateau value of 0.5 at 600 shots and the further irradiation does not result in an essential production of ${}^{13}\text{CBr}_2\text{F}_2$. However, ¹² $Y(CBr_2F_2)$ appears to increase after 600 shots; therefore, the ¹³C-atom fraction in CBr₂F₂

Fig. 4. Carbon isotope production yields in CBr_2F_2 and $C_2Br_2F_4$ vs. pulse number. ${}^{12}Y(CBr_2F_2)$, ${}^{13}Y(CBr_2F_2)$, ${}^{12}Y(C_2Br_2F_4)$, and ${}^{13}Y(C_2Br_2F_4)$, see text. Irradiation conditions, see the caption of Fig. 1

Fig. 5. Production yields per pulse vs. pulse number. 12 y(CBr₂F₂), $^{13}y(CBr_2F_2)$, $^{12}y(C_2Br_2F_4)$, and $^{13}y(C_2Br_2F_4)$, see text. Irradiation conditions, see the caption of Fig. 1

decreases at high pulse numbers. ${}^{13}y(CBr_2F_2)$ decreases with increasing pulse number above 600 shots, whereas $^{12}y(CBr_2F_2)$ is approximately flat in the region examined, as shown in Fig. 5. On the other hand, both ${}^{12}y(C_2Br_2F_4)$ and ${}^{13}y(C_2Br_2F_4)$ show

Fig. 6. ¹²y(CBr₂F₂), ¹³y(CBr₂F₂), $^{12}y(C_2Br_2F_4)$, and 13 y(C₂Br₂F₄) vs. laser line. CHClF₂, 10 Torr; Br₂, 1 Torr. Fluence and pulse number: $9P(20)$, 3.2 J cm⁻² and 100 shot, 9P(22), 3.1–3.3 J cm⁻² and 100–300 shots; 9P(24), 2.4–2.9 J cm⁻² and 200-1000 shots; 9P(26), 3.1 J cm⁻² and 1000 shots; 9P(28), 2.8 J cm⁻² and 1000 shots; 9P(30), 2.3 J cm⁻² and 1000 shots

Fig. 7. ¹³C-atom fractions in CBr_2F_2 and $C_2Br_2F_4$ vs. laser line. Irradiation conditions, see the caption of Fig. 6

rapid decreases even at the beginning of the irradiation. This fact suggests the secondary photochemical decomposition of the compound.

Figures 6 and 7 present laser line effects on ^{12}C and 1^3C -production yields and 1^3C -atom fractions in

¹³y(CBr₂F₂), ¹²y(C₂Br₂F₄), ¹²y(CBr₂F₂), and **Fig. 8.** $^{13}y(C_2Br_2F_4)$ vs. fluence. CHClF₂, 10 Torr; Br₂, 1 Torr; laser line, 9P(22). Pulse number: 1000 shots at 1.10 J cm⁻²; 1000 shots at 1.35 J cm⁻²; 1000 shots at 1.65 J cm⁻²; 180 shots at 2.21 J cm⁻²; 150 shots at 3.10 J cm⁻²; 100 shots at 3.26 J cm⁻²

Fig. 9. ¹³C-atom fractions in CBr₂F₂ (a) and C₂Br₂F₄ (b) vs. fluence. Irradiation conditions, see the caption of Fig. 8

 CBr_2F_2 and $C_2Br_2F_4$, respectively, on the IRMPD of mixtures of 10-Torr CHClF₂ and 1-Torr Br₂. Large scatters in the figures may be caused by the differences in experimental parameters such as fluence and pulse number among the runs. Roughly speaking, ¹²y(CBr₂F₂) and ¹³y(CBr₂F₂) decrease, and the ¹³Catom fraction in CBr_2F_2 increases, as the laser line is changed in the order from $9P(20)$ (1046.85 cm⁻¹) to $9P(30)(1037.44 \text{ cm}^{-1})$. Although the final products are different from each other between the cases with and

Fig. 10. Yields of CBr_2F_2 and $C_2Br_2F_4$ vs. Br_2 pressure (a), and ¹³C-atom fractions in CBr₂F₂ and C₂Br₂F₄ vs. Br₂ pressure (b). CHClF₂, 10 Torr; laser line, $9P(22)$; pulse number, 100 shots; fluence, about 3.4 J cm⁻². The ¹³C-atom fraction in C₂F₄(A) produced with the photolysis of neat CHClF₂ (10 Torr) is also shown in Fig. 10b

Fig. 11. ¹²y(CBr₂F₂), ¹³y(CBr₂F₂), ¹²y(C₂Br₂F₄), and ¹³y($C_2Br_2F_4$) vs. Br_2 pressure. Irradiation conditions, see the caption of Fig. 10. \Box and \Box are $^{13}y(C_2F_4)$ and $^{12}y(C_2F_4)$, respectively, for near CHCl $F₂$

without $Br₂$, the initial photochemical step is the decomposition of a resonant molecule $CHCIF₂$ in an intense laser field. Therefore, the product yields and product selectivities should depend on the initial decomposition. The tendencies in Figs. 6 and 7 are consistent with those observed for the IRMPD of neat CHCl $F₂$ [3].

Figures 8 and 9 show fluence effects on yields and ¹³C-atom fractions in CBr₂F₂ and C₂Br₂F₄, where the pressures of CHClF₂ and Br₂ are 10 and 1 Torr, respectively, and the laser line is $9P(22)$ at 1045.02 cm⁻¹. As observed for IRMPD in general, the

Fig. 12. Absolute yields per pulse vs. $CHCIF₂$ pressure. $^{12}y_a(CBr_2F_2)$, $^{13}y_a(CBr_2F_2)$, $^{12}y_a(C_2Br_2F_4)$, and $^{13}y_a(C_2Br_2F_2)$, see text. Br_2 , 10% of CHCl F_2 ; laser line, 9P(22); pulse number, 100 shots; fluence, ca. 3.5 J cm^{-2}

production yields increase and the selectivities in products decrease with an increase in laser fluence. When a fluence was higher than 10 J cm^{-2}, we found a large amount of CBrClF₂ in addition to CBr_2F_2 and $C_2Br_2F_4$. The formation can be explained by a thermal chain mechanism, as described later.

Figures 10 and 11 shows the $Br₂$ pressure effects on the yields, ¹³C-atom fractions, and production yields in CBr_2F_2 and $C_2Br_2F_4$. The CHClF₂ pressure and fluence were kept constant at 10 Torr and ca. 3.4 J cm^{-2} , respectively. The irradiation wavenumber was $9P(22)$ (1045.02 cm⁻¹). Since all mixtures were irradiated with 100 pulses, 12 y or 13 y equals 12 *Y*/100 or ¹³Y/100 in Fig. 11. The total yield of CBr_2F_2 , i.e., $t^2CBr_2F_2 + t^3CBr_2F_2$ reaches a plateau value above 20-Torr Br_2 , while the total yield of $C_2Br_2F_4$ decreases with increasing Br_2 , as shown in Fig. 10a. The ¹³Catom fractions in both CBr_2F_2 and $C_2Br_2F_4$ show slight decreases with increasing $Br₂$ in Fig. 10b. It is worth mentioning that the extrapolated value of the atom fraction vs. $Br₂$ pressure curve to the ordinate agrees closely with the atom fraction observed for the C_2F_4 produced from the IRMPD of neat CHClF₂ under the same irradiation conditions. 12 y(CBr₂F₂) and $13y(CBr_2F_2)$ increase initially with an increase in Br₂, while both ¹²y(C₂Br₂F₄) and ¹³y(C₂Br₂F₄) appear to decrease with increasing $Br₂$.

Effects of total pressure on absolute production yields are shown in Fig. 12, where the absolute production yield of ¹²CBr₂F₂, ¹²y_a(CBr₂F₂) is defined as the amount of ¹²C in CBr₂F₂ (in a mole unit) divided by pulse number. The other absolute yields $^{13}y_a(CBr_2F_2)$,

Fig. 13. ¹³C-atom fractions in CBr₂F₂ and C₂Br₂F₄ vs. CHClF₂ pressure. Irradiation conditions, see the caption of Fig. 12

Fig. 14. Logarithmic plots of I_0/I_t vs. CHCIF, pressure, I_0 and I_t are the laser pulse energies passing through empty and filled cells, respectively. The optical path length of a cell is 10 cm. Laser line, 9 $P(22)$; fluence, 3.0–3.3 J cm⁻²

Fig. 15. The infrared absorption spectrum of ¹³C-enriched CBr_2F_2 . The CBr_2F_2 was produced from the IRMPD of the mixture of 100 Torr CHClF₂ and 45 Torr Br₂. Laser line, $9P(22)$; fluence at a beam waist, about 6.3 J cm⁻²

 $^{12}y_a(C_2Br_2F_4)$, and $^{13}y_a(C_2Br_2F_4)$ are defined similarly to ¹² $y_a(CBr_2F_2)$. The ratios of [CHClF₂] to [Br₂] are 10 in all mixtures. The detailed irradiation conditions are described in the figure caption. Both $^{12}y_a(CBr_2F_2)$ and ¹³y_a(CBr₂F₂) initially increase and, after passing

maxima, gradually decrease with increasing CHCIF, pressure, as shown in Fig. 12. The maxima seem to be located around 100 Torr. On the other hand, $^{13}y_a(C_2Br_2F_4)$ increases by a factor of about 4 with an increase in the pressure and $^{12}y_a(C_2Br_2F_4)$ is flat in the region examined. The 13 C-atom fractions in CBr₂F₂ and $C_2Br_2F_4$ clearly increase with increasing pressure, as shown in Fig. 13. Such an increase in selectivity with increasing pressure has been also observed for the **IRMPD** of neat CHClF₂ [3].

 $CHCIF₂$ does not absorb appreciably the laser radiation under the present irradiation conditions, unless its pressure exceeds 100 Torr. A plot of $log(I_0/I_t)$ vs. CHClF₂ pressure is given in Fig. 14, where I_0 and I_t correspond to the light intensities passing through the 10-cm length cell without $CHCIF_2$ and with $CHCIF_2$ at a certain pressure, respectively. The absorption cross section seems to become larger at higher pressure, deviating from the Lambert-Beer law. One possible explanation is as follows. Laser radiation is considered to pump resonating molecules at a particular rotational state. The observed increase in absorption may be caused by collision-induced rotational relaxation which supplies resonating molecules at the state. Another possible explanation is that the secondary absorption of laser radiation by the "hot" molecules of non-resonating 12 CHClF₂ increases with increasing pressure.

The observed effects of experimental parameters on the IRMPD of CHClF₂/Br₂ mixtures suggest favorable conditions to large scale 13 C separation. The absolute yield of ¹³C is largest in the CHClF₂ pressure range between 50-100 Torr. As the pressure of $Br₂$ is increased, the yield becomes larger. A beam from a $CO₂$ laser must be focused to some extent to induce IRMPD of $CHCIF₂$ in large scale separation, because the parallel beam emerging from a laser cavity has usually a fluence below 2 J cm^{-2} . However, the fluence at a beam waist should not exceed $10J \text{ cm}^{-2}$ to suppress the thermal chain leading to the formation of CBrClF₂. The change of the 9P(22) line into a line at its red side results in an increase in selectivity and a decrease in yield. On the other hand, a line at a blue side gives a lower selectivity and a higher yield, as compared to the $9P(22)$ line. Figure 15 shows typical infrared absorption spectrum of CBr_2F_2 enriched with 13_C obtained under favorable experimental conditions to large scale 13 C separation suggested from the above results. The CBr_2F_2 was isolated from the irradiated mixture by a preparative gas chromatograph equipped with a 3-m silica gel column (column temperature, 130°C). The ¹³C-atom fraction in CBr_2F_2 was determined to be 37% in mass spectrometric analysis. The spectrum for natural CBr_2F_2 has three intense bands with peaks at 830, 1090, and 1150 cm^{-1} [19, 20]. In addition to these peaks, the spectrum in Fig. 15 presents peaks at 800, 1060, and 1125 cm^{-1} due to 13 CBr₂F₂.

Finally, we attempted to produced 13 C-enriched $CBr₂F₂$ using a larger pulse provided from a Lumonics 822 $CO₂$ TEA laser. The experimental conditions are: CHClF₂, 100 Torr; Br₂, 45 Torr; laser line, $9P(22)$; fluence at beam waist, 8 J cm²; pulse number, 100 shots. CBr_2F_2 containing 47% ¹³C was found to be produced at a rate of 1.9×10^{-4} g pulse⁻¹. If the laser is operated at a repetition rate of 10 Hz, the production rate of ¹³C amounts to 0.20 g h⁻¹. This value is close to the production rate of 0.22 g h⁻¹ for 50% ¹³C, which has been reported of the IRMPD of neat $CHCIF₂$ using a 100-W laser (10 J, 10 Hz) [7].

3. Discussion

The experimental results obtained with the [RMPD of $CHCIF₂/Br₂$ mixtures can be explained satisfactorily in terms of the following mechanism:

 $CHCIF_2 + nhv \rightarrow CF_2 + HCl$ (1)

$$
CF_2 + HCl \rightarrow CHClF_2 \tag{2}
$$

$$
2CF_2 \rightarrow C_2F_4 \tag{3}
$$

$$
CF_2 + Br_2 \rightarrow CBr_2F_2^* \tag{4}
$$

$$
CBr_2F_2^* \rightarrow CBrF_2 + Br \tag{5}
$$

$$
CBr_2F_2^* + M \rightarrow CBr_2F_2 + M \tag{6}
$$

 $CBrF_2 + Br_2 \rightarrow CBr_2F_2 + Br$ (7)

 $2 \text{CBrF}_2 \rightarrow C_2 \text{Br}_2 \text{F}_4$ (8)

$$
2\,\text{Br} \rightarrow \text{Br}_2. \tag{9}
$$

It has been well established in the product-analysis study [18] and in the direct mass-spectroscopic study using a molecular-beam technique [21] that the initial step in IRMPD of CHClF₂ is the decomposition of highly vibrationally excited CHClF₂ into a CF₂ radical and a HC1 molecule. The threshold energy of the decomposition has been estimated to be 54 kcal mol^{-1} [21].

We could not observe an appreciable amount of $CBrClF₂$ under the present experimental conditions, although the compound was found to be a main product in the IRMPD of the same mixture [22]. Since the laser line used in the previous study $(9R(36)$ at 1088 cm^{-1}) was much closer to the intense absorption peak due to 12 CHClF₂, the absorption of large laser energy probably resulted in considerable temperature rise in the illuminated zone. The following thermal chain occurred and formed $CBrClF_2$.

$$
Br + CHClF_2 \rightarrow HBr + CClF_2 \tag{10}
$$

$$
CCIF_2 + Br_2 \rightarrow CBrClF_2 + Br. \tag{11}
$$

We detected a large amount of $CBrClF_2$ in the irradiation of the mixture with the $9P(22)$ line, when the fluence was beyond 10 J cm^{-2}.

The Arrhenius parameters of reaction (2) reported previously are as follows: $log A$ (cm³ mol⁻¹ s⁻¹) $= 11.35, E = 6.2$ kcal mol⁻¹ (1 kcal = 4.19 kJ) [23, 24]; $log A = 11.33$, $E = 12.1 + 2.7$ kcal mol^{-1} [23, 25]. Although the pre-exponential factors agree with each other, the activation energies show a large difference between them. From these parameters, the rate constants k_2 at 300 K are calculated to be $k_2 = 6.8 \times 10^6$ cm³ mol⁻¹ s⁻¹ for $E = 6.2$ kcal mol⁻¹ and $k_2 = 3.3$ \times 10² cm³ mol⁻¹ s⁻¹ for E = 12.1 kcal mol⁻¹. The rate constants of the dimerization reaction of $CF₂$ have been determined previously to be $k_{3D}=1.3\times10^{11}$ $(T/300 \text{ K})^{1/2}$ exp($-1200/RT$) cm³ mol⁻¹ s⁻¹ by Dalby [26] and $k_{3T} = (2.5 \pm 0.5) \times 10^6 \text{ T}^{1/2}$ $\exp[-(200\pm50)/T]$ by Tyerman [27], where k_{3D} corresponds to $2k_{3T}$ because of the difference in a definition. The rate constant at 300 K is figured out to be either $k_{3D} = 1.7 \times 10^{10}$ cm³ mol⁻¹ s⁻¹ or $k_{3T} = 2.2$ $\times 10^{10}$ cm³ mol⁻¹ s⁻¹. Therefore, the relative rate of the formation of C_2F_4 to that of CHClF₂ is expressed by the following equation.

$$
\frac{R(C_2F_4)}{R(CHCIF_2)} = \frac{k_3[CF_2][CF_2]}{k_2[CF_2][HCI]} = \frac{k_3[CF_2]}{k_2[HCI]}
$$

$$
\geq 2.5 \times 10^3 \frac{[CF_2]}{[HCI]}.
$$

 $[CF₂]$ may be in the same order as [HCl] in irradiated mixtures. Whether $E = 6.2$ kcal mol⁻¹ or $E = 12.1$ kcal mol^{-1} , $R(CHClF₂)$ is negligibly small as compared to $R(C_2F_4)$.

The rate constant of reaction 4 has been determined to be $k_4 = (1.6 \pm 0.5) \times 10^9$ cm³ mol⁻¹ s⁻¹ at 550 K [28]. From the above-mentioned equations, $k_{3D} = 5.9 \times 10^{10} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1} \text{ and } k_{3T} = 4.1$ $\times 10^{10}$ cm³ mol⁻¹ s⁻¹ at 550 K. The ratio between the rates of reaction (3) and reaction (4) at 550 K can be given by the following equation.

$$
\frac{R(C_2F_4)}{R(CF_2 + Br_2)} = \frac{k_3 [CF_2] [CF_2]}{k_4 [CF_2] [Br_2]}
$$

= (37 or 51) × $\frac{[CF_2]}{[Br_2]}$.

Under the present irradiation conditions, the temperature in the illuminated zone may be lower than 550 K because of the weak absorption of $CHCIF₂$ for the 9P(22) line. The ratio of $[\text{CF}_2]$ to $[\text{CHCIF}_2]$ is roughly estimated to be 0.7×10^{-3} from the production yield per pulse and $V_{\text{cell}}/V_{\text{ill}} (\sim 15)$, where V_{cell} and V_{ill} are the volumes of the cell and the illuminated zone, respectively. Therefore, CF_2 radicals seem to be scavenged

mostly by Br_2 , as Br_2 is larger than 10% of CHClF₂. However, we cannot estimate the ratio exactly at this moment, because the temperature in the illuminated zone and the activation energy of reaction (4) are unknown. In all the mixtures examined here, we could not find C_2F_4 as a product.

It is not clear what fraction of the excited $CBr_2F_2^*$ is stabilized via reaction (6). The exothermicity of reaction (4) has been estimated to be 67 kcal mol⁻¹ [22] or 51 kcal mol^{-1} [29]. The dissociation energy of a C-Br bond is generally about 64 kcal mol^{-1}. However, the formation of $C_2Br_2F_4$ indicates the occurrence of reaction (5), since the compound is probably formed via the dimerization of $CBrF₂$ radicals. As the pressure of Br_2 is increased, the yield of $C_2Br_2F_4$ relative to that of CBr_2F_2 decreases rapidly owing to the competition between reactions (7) and (8) in addition to the competition between reactions (5) and (6).

At the beginning of the irradiation the 13 C-atom fractions in CBr_2F_2 and $C_2Br_2F_4$ are close to each other, as shown in Fig. 3. However, the fraction in $C_2Br_2F_4$ becomes much larger than that in CBr_2F_2 , as the pulse number is increased. This result was explained by the isotopically selective secondary decomposition of CBr_2F_2 in the previous paper [16]. The detailed examination on the pulse number effects on the product yields reveals that both $^{12}y(C_2Br_2F_4)$ and ${}^{13}y(C_2Br_2F_4)$ decrease much more rapidly with increasing pulse number as compared with 12 y(CBr₂F₂) and ¹³ $y(CBr_2F_2)$. We attribute the rapid decreases to the secondary photochemical decomposition of $C_2Br_2F_4$ in this paper. Natural $C_2Br_2F_4$ in a liquid phase has an intense absorption band centered at 1007 cm^{-1} [30]. Our measurement in a gas phase showed the absorption at 1015 cm^{-1} . The laser irradiation of this compound with the $9P(22)$ line at 1045.02 cm^{-1} is likely to induce IRMPD via the absorption due to the band. Since the $9P(22)$ line is located at the blue side of the band peak, ¹²C-bearing molecules in $C_2Br_2F_4$ may be somewhat selectively decomposed in the secondary photolysis. As the result, $C_2Br_2F_4$ is further enriched with ¹³C. The mechanism is considered to be:

$$
C_2 Br_2F_4 + n'h\nu \rightarrow C_2 BrF_4 + Br \tag{12}
$$

$$
\rightarrow 2\,\mathrm{CBr}\mathrm{F}_2\tag{13}
$$

$$
C_2 BrF_4 + Br_2 \rightarrow C_2 Br_2F_4 + Br. \tag{14}
$$

The path via reaction (13) followed by reaction (7) contributes the net decomposition of $C_2Br_2F_4$ in the presence of Br_2 .

The first-stage IRMPD is intended to produce more or less 40% ¹³CBr₂F₂ at a yield as large as possible. The further enrichment must be made at the second stage. Figure 15 shows that ${}^{12}CBr_2F_2$ and

 13 CBr₂F₂ have the sharp peaks at 1090 and 1060 cm^{-1} , respectively, in their infrared spectra. Ritter has demonstrated isotopically selective decomposition and isotopic segregation in the IRMPD of natural CBr_2F_2 [31]. Since a CO_2 laser was tuned to the line at 1081 cm^{-1} in their study, ¹²C-bearing molecules selectively decomposed and unconsumed CBr_2F_2 showed ¹²C-depletion as compared to natural carbon. On the other hand, our previous results have demonstrated that 13 C-bearing molecules decompose preferentially in the irradiation of $CBr₂F₂$ with the $9P(28)$ line at 1039.37 cm⁻¹ [16]. In the presence of O₂, we finally obtained $CF₂O$ at a ¹³C-atom fraction as high as 86%, using CBr_2F_2 at about 30% as a starting material. The mechanism leading to the formation of $CF₂O$ may be essentially the same as the IRMPD of $\text{CC1}_2\text{F}_2/\text{O}_2$ mixtures [32, 33].

$$
CBr_2F_2 + n''hv \rightarrow CBrF_2 + Br \tag{15}
$$

$$
CBrF_2 + O_2 \rightarrow CF_2O + BrO \tag{16}
$$

$$
2\,\text{BrO}\,\rightarrow\,\text{Br}_2+\text{O}_2\,. \tag{17}
$$

One can easily convert the $CF₂O$ into $CO₂$ without a change in ${}^{13}C$ concentration via hydrolysis:

$$
CF2O + H2O \rightarrow CO2 + 2HF.
$$
 (18)

The IRMPD of CBr_2F_2/O_2 mixtures must be studied in details to optimize the experimental conditions for the second-stage enrichment.

References

- 1. V.S. Letokhov: *Nonlinear Laser Chemistry* (Springer, Berlin, Heidelberg 1983) p. 252
- 2. W. Fuss, W.E. Schmid: Ber. Bunsenges. Phys. Chem. 83, 1148 (1979)
- 3. M. Gauthier, C.G. Cureton, P.A. Hackett, C. Willis: Appl. Phys. B 28, 43 (1982)
- 4. G.I. Abdushelishvili, O.N. Avatkov, V.N. Bagratashvili, V.Yu. Baranov, A.B. Bakhtadze, E.P. Velikhov, V.M. Vetsko, I.G. Gverdtsitelii, V.S. Dolzhikov, G.G. Esadze, S.A. Kazakov, Yu.R. Kolomiiski, V.S. Letokhov, S.V. Pigul'skii, V.D. Pis'mennyi, E.A. Ryabov, G.I. Tkeshelashvili: Soy. J. Quant. Electron. 12, 459 (1982)
- 5. H. Kojima, T. Fukumi, S. Nakajima, Y. Maruyama, K. Kosasa: Appl. Phys. B30, 143 (1983)
- 6. M. Gauthier, A. Outhouse, Y. Ishikawa, K.O. Kutschke, P.A. Hackett: Appl. Phys. B35, 173 (1984)
- 7. A. Outhouse, P. Lawrence, M. Gauthier, P.A. Hackett: Appl. Phys. B 36, 63 (1985)
- 8. V.Yu. Baranov: IEEE J. QE-19, 1577 (1983)
- 9. A.V. Evseev, V.S. Letokhov, A.A. Puretzky: Appl. Phys. B 36, 93 (1985)
- 10. M. Drouin, M. Gauthier, R. Pilon, P.A. Hackett, C. Willis: Chem. Phys. Lett. 60, 16 (1978)
- 11. T. Watanabe, T. Oyama, O. Hayashi, Y. Ishikawa, T. Ishii, S. Arai: Nippon Kagaku Kaishi, 1517 (1984)
- 12. S. Bittenson, P.L. Houston: J. Chem. Phys. 67, 4819 (1977)
- 13. H. Kojima, T. Fukumi, S. Nakajima, Y. Maruyama, K. Kosasa: Chem. Phys. Lett. 95, 614 (1983)
- 14. S. Arai, T. Watanabe, Y. Ishikawa, T. Oyama, O. Hayashi, T. Ishii: Chem. Phys. Lett. 112, 224 (1984)
- 15. P. Ma, K. Sugita, S. Arai: Chem. Phys. Lett. 137, 590 (1987)
- 16. S. Arai, K. Sugita, P. Ma, Y. Ishikawa, H. Kaetsu, S. Isomura: Chem. Phys. Lett. 151, 516 (1988)
- 17. J.G. McLaughlin, M. Poliakoff, J.J. Turner: J. Mol. Struc. 82, 51 (1982)
- 18. E. Grunwald, K.J. Olszyna, D.F. Dever, B. Knishkowy: J. Am. Chem. Soc. 99, 6515 (1977)
- 19. C.E. Decker, F.F. Cleveland, R.B. Bernstein: J. Chem. Phys. 21, 189 (1953)
- 20. C.E. Decker, A.G. Meister, F.F. Cleveland, R.B. Bernstein: J. Chem. Phys. 21, 1781 (1953)
- 21. Aa.S. Sudbø, P.A. Schulz, Y.R. Shen, Y.T. Lee: J. Chem. Phys. 69, 2312 (1978)
- 22. S. Popok, C.M. Lonzetta, E. Grunwald: J. Org. Chem. 44, 2377 (1979)
- 23. D.S.Y. Hsu, M.E. Umstead, M.C. Lin: ACS Syrup. Ser. 66, 128 (1978)
- 24. J.W. Edwards, P.A. Small: Nature 4939, 1329, June 27, 1964
- 25. G.R. Barnes, R.A. Cox, R.F. Simmons: J. Chem. Soc. (B) 1176 (1971)
- 26. F.W. Dalby: J. Chem. Phys. 41, 2297 (1964)
- 27. W.J.R. Tyerman: Trans. Faraday Soc. 65, 1188 (1969)
- 28. K. Sugawara, T. Nakanaga, H. Takeo, C. Matsumura: Chem. Phys. Lett. 134, 347 (1987)
- 29. J.C. Stephenson, D.S; King: J. Chem. Phys. 69, 1485 (1978)
- 30. R.E. Kagarise, L.W. Daasch: J. Chem. Phys. 23, 130 (1955)
- 31. JJ. Ritter: J. Am. Chem. Soc. 1O0, 2441 (1978)
- 32. J.J. Ritter, S.M. Freund: J.C.S. Chem. Commun. 811 (1976)
- 33. W.S. Nip, P.A. Hackett, C. Willis: Can. J. Chem. 59, 2703 (1981)