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Abstract. In photoacoustic spectroscopy a sample in a closed gas cell is heated by 
periodically modulated light. When thermal waves generated by the warm spots inside the 
sample reach the surface they heat up the adjacent gas. This causes periodic pressure 
variations which are detected by a microphone. We present a matrix method which enables 
us to calculate the surface temperature of a multilayer structure with any number of 
homogeneous lamellae of any optical and thermal properties. This method is based on the 
multiple reflections and interferences of thermal waves inside the system of lamellae. 
Photoacoustic spectra simulated by this method reproduce the measured spectra. This is 
demonstrated for a mylar (polyethyleneterephthalate, PETP) foil coated with a thin 
antimony layer. 

PACS: 07.65G, 44.30, 78.30 

In photoacoustic spectroscopy (PAS) light from an 
intensity-modulated light source falls through a 
window onto a sample in a sealed gas cell (Fig. 1). The 
sample is heated by Joule's heat due to optical 
absorption. According to a model developed by Ro- 
sencwaig and Gersho [1] thermal waves transfer part of 
the heat to the sample surface from where the gas is 
heated up within a small boundary layer (typically 
1-2 mm thick depending on the modulation frequen- 
cy). This layer expands periodically and compresses 
the rest of the gas volume adiabatically like a piston 
causing pressure variations which can be detected by a 
sensitive micro ~hone attached to the cell. 
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Fig. 1. Experimental setup for )hotoacoustic spectroscopy 
(schematic) 

Rosencwaig and Gersho derived an expression for 
the pressure amplitude within the gas for the special 
case of an exponential decrease of absorbed light 
intensity inside a homogeneous sample (Lambert-Beer 
law). 

In the case of layered structures, photoacoustic 
spectroscopy can be very useful to determine optical 
and/or thermal parameters of the various layers or 
their thicknesses [2]. Several attempts have been made 
to describe photoacoustic spectra of such composite 
media by quantitative models. Mostly, however, the 
resulting expressions were only valid for certain com- 
binations of the optical and thermal properties of the 
layers. 

Here we present a method to simulate the photo- 
acoustic spectrum of a multilayer structure consisting 
of any number of homogeneous lamella with no 
restriction on the optical and thermal properties of 
each lamella. We use a matrix formalism to describe 
the optics of the system and an analogous method to 
calculate the surface temperature of the stack of 
lamella. After appropriate normalization the simu- 
lated spectra are in quantitative agreement with ex- 
perimental ones. 



60 

1. Simulation of Photoacoustic Spectra 

It has been shown 1,3] that photoacoustic spectra can 
be simulated by first calculating the surface tempera- 
ture of the sample and then normalizing it with respect 
to the simulated surface temperature of the reference 
material used in the experiment - in our case carbon 
black. 

To calculate that surface temperature we consider 
the system sketched in Fig. 2. Assuming that the 
system is invariant against translations perpendicular 
to the incident light and that the thermal properties are 
constant within each layer the one-dimensional equa- 
tion of heat conduction reads 

0 20j(z, t) OOj(z, t) P(z) exp (-- icot) 
2~ Oz 2 -Ojc~ ~t - 

Oj(z, t): oscillatory part of the complex temperature 
2~: thermal conductivity 

O~c~: volume-specific heat capacity 
P(z): density of absorbed power 

co: modulation frequency of the incident light 
j: layer index (O<j<m). 

With the ansatz Oj(z, t)= Tj(z) exp(-icot) we get: 

d 2 Tj(z) _ 72 Tj(z) = P(z) 
dz 2 2j (1) 

where + 
To calculate the temperature To(lo) at the surface of 

the multi-layer structure,Eq. (1) has to be written down 
for each layer separately. Together with the conditions 
that at each boundary the temperature O(z) and the 
heat flux density -2(dO/dz) are continuous and that 
O(z~ + ~ )  =0, the system of equations can be solved to 
obtain To(lo) if the distribution P(z) is known. P(z) 
reflects the optical properties of the sample and can be 
determined from the spatial distribution of the electric 
field inside the sample. Here we assume that the gas is 
non-absorbing and that the backing (i.e. layer m) has a 
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Fig. 2. Schematic diagram of the layer system considered in the 
nttmerical simulations 
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reflectance of 100% which is fulfilled in our experi- 
ments. This means that P(z) = 0 for z < lo and z >lm- I- 

2. Spatial Distribution of Heat Sources 

The time-averaged divergence of the Poynting vector S 
determines the density of absorbed power 1-4]: 

(VS> = lo . 2n~Kiko . (2) P(z)= - ( V S > =  - I ~  I ~ -  

ko: wavevector in vacuum 
~i= nj+it~: complex index of refraction in layer j 

E~: electric field at position z in layer j 
Eo: electric field incident onto layer 1 

I o ~ [Eol2: intensity within the gas (layer 0). 
To calculate Ej(z) we use an extended version of the 

matrix method described in I-5]. This works only in the 
case of homogeneous media, that means wave propa- 
gation without scattering. The incident wave 
Eoexp( iko~z- i .  2rccg. t) will be partly reflected and 
transmitted at the interfaces between the layers. Thus 
in general in each layer waves will propagate in 
positive and negative z-direction: 

E} -+)(z) = E} • exp( _+ i ko~z-  i. 2nc~. t). 

If we write E~+)(z) as the first and E~-)(z) as the 
second component of a column vector the electric fields 
can be transformed through an interface (Fig. 3) by 
multiplying with a 2 x 2 matrix: 

1 1 (3a) 
t,E}:>,) = \E}->) 

2hi / 
z i j -  ~ j  

Fresnel's amplitude reflection and trans- 
mission coefficients for an electromag- 
netic wave, at perpendicular incidence 
from medium i onto an interface to 
medium j. 

The propagation of the waves through a homo- 
geneous medium (Fig. 4) can be described by multipli- 

U='; ii:Ei§ I+lZ 
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Fig. 3. Electric fields at an interface 
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Fig. 4. Propagation of electric waves through a homogeneous 
medium 

cation with another type of 2 • 2 matrix: 

E(_)jz=z, o(Od))\E(_)jz=z2 (3b) 

where 

q~(z) = exp (iko fiz). 

The electric fields to the left of the interface between 
the gas and the sample can be derived from those to the 
right of the interface between layer m -  1 and layer m by 
successive matrix multiplications: 

.., C,.!1~m(Qrn:[," " Om]l'rn) (E(m+)~tE(m-)) 
+') 

\T2, T22,J \E(,,,-))" 
(4) 

Since layer m is treated as a halfspace we can 
assume E~-)=0. Dividing (4) by the incident wave's 
amplitude E(o +) we get: 

ro" \T2, T2U \ 0 / '  

where ro,, and to,. are the amplitude reflection and 
transmission coefficients of the complete layer 
structure: 

to,.= l /Tl l ,  ro,.= T2,/Tll. 
But what we really want to know is the electric field 

within the layers. Therefore all the transfer matrices 
from layer m up to the interface between layer j and 
layer j + 1 inclusive are multiplied which gives us the 
matrix _M. Then at position z inside layer j the nor- 
malized components ~ and fi of the electric field are: 

E(o +)- ~(z) : ~ Component of the electric field travelling in 
E(o +). flj(z):J positive/negative z-direction inside layerj. 

The appendix illustrates this matrix method for the 
special case of a Fabry-Perot  resonator. 

Since the total electric field is the sum of the 
contributions travelling into both directions Eq. (2) 
can be rewritten in terms of e and/7: 

P(z) = I o  2nj~@o -[c~j +/~j[2. (6) 

This expression for the density of absorbed power 
also incorporates the effects of optical multiple inter- 
ference inside the layer structure. 

Now that the spatial distribution of heat sources is 
known we can turn to the thermal part of 
photoacoustics. 

3. Temperature at the Sample  Surface 

From a mathematical point of view it is no problem to 
obtain To(lo) from the system of two homogeneous and 
( m - l )  inhomogeneous differential equations. Since 
the general solution of (1) is known [6] the set of 
boundary conditions immediately leads to a system of 
2(m + l) linear equations which can be solved analyti- 
cally - at least in principle. The underlying physical 
structure, however, will be completely concealed by the 
resulting involved formula. 

In this section we present a method which allows us 
to derive To(lo) by using a simple physical picture. We 
interpret To(lo) as the superposition of those thermal 
waves which start from the heat sources within the 
layered structure and eventually reach the surface. On 
their way to the surface they have been reflected and 
transmitted at the interfaces of the system of layers - 
possibly several times. Before we illustrate that for the 
special case of a homogeneous sample, we take a 
detailed look at thermal waves. 

3.1. Thermal Waves 

Thermal waves are a solution of the homogeneous 
equation of heat conduction: 

T(z, t)= T o �9 exp(vz-kot) .  

What happens to a thermal wave at an interface 
between two media of different thermal properties? 
Evaluating the boundary conditions (continuity of 
temperature and heat flux density) we arrive at: 

Oij = 2y~ + 2j7~ 

%J - 2y~ + 2jTj 

Amplitude reflection and trans- 
mission coefficients for a thermal 
wave, at perpendicular incidence 
fro.m medium i onto an interface to 
medium j. (7) 
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These equations are analogous to Fresnel's for- 
mulae for normal incidence if we interpret the product 
2y, as the admittance of medium i for thermal waves. 
The factor ( -  ] + i)~/~ is common to all terms in the 
fractions and can be cancelled. Usually the thermal 
properties of the layers are independent of the modu- 
lation frequency, and so in contrast to the optical 
analogue the thermal ~u and z u are frequency- 
independent real numbers. 

3.2. Surface Temperature of  a Homogeneous Sample 

The underlying setup is shown in Fig. 5. At position 
z = Zo we assume a narrow source 

Tl(Zo)3(z- Zo) exp ( -  icot) 

for thermal waves. From that spot those waves will 
propagate to the left and right and in general will 
partially be reflected and partially be transmitted at the 
two interfaces. 

On the sample's side of the interface between the 
sample and the gas, the thermal wave travelling from z o 
to the left will contribute to the temperature with an 
amount 

T~ : Tl(Zo)" 4)1(Zo--to) 

To(lo) : 

This leads to a factor of 

1 + be + be2 + . . .  = 1/(1 - b  e) 

with the abbreviation be -= 41o4124)2(d). be describes 
one full passage includ.ing reflection at the gas interface 
(41o), propagation to the backing (4)1(d)), reflection at 
that interface (012), and propagation back to the 
surface (4)1(d)). 

All in all the point source's contribution to the 
surface temperature is 

X(Zo) = Tl(zo) . Zlo 

4) 1 (Zo - lo) + 412 4)~(d)4)1( - Zo + lo) 
X ] __ 41o4124)2(d ) (8) 

This X(zo) is the Green's function of the problem. In the 
stationary case Tl(zo) can be expressed by P(zo) if we 
assume a balance between the absorbed power density 
P(zo) and the power carried away to the left and right 
by the heat flux: 

P(zo)  
74 ( Zo) - 

22171 " 

For a continuum of temperature sources we have to 
integrate (8) over Zo. This leads to the final expression 
for the surface temperature of a homogeneous sample 
with internal heat sources: 

f P(Z)4)1 (Z - -  l o ) d z  J- 412 r  S P ( z ) r  1 ( - z ~- l o ) d z  
lO lo lo (9) 

221h 1 - -  4 1 o 4 1 2 4 ) 2 ( d )  

where 4)1(z)= exp(71z). The wave travelling from z 0 to 
the right is partially reflected at the interface sample- 
backing and then propagates to the surface; its contri- 
bution is 

T~ = Tl(zo)O12Ol(2d- zo + to). 

The sum T~ + T l then is transmitted to the gas (zl o). Like 
the electromagnetic waves in a Fabry-Perot resonator 
the thermal waves can pass through layer 1 repeatedly. 

Gas 

d 
I ~--'-Z 

Io Zo ll 
Fig. 5. A Fabry-Perot resonator as an example of the application 
of the optical matrix method 
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After some arithmetic rearrangements one can see that 
(9) is equivalent to the formula obtained by directly 
solving the differential equations [6]. In [-7] an equa- 
tion analogous to (9) was derived by a similar 
approach considering thermal waves but for the 
special case of exponential decrease of absorbed light 
intensity within the sample. 

3.3. Surface Temperature of  a Multilayer Structure 

Equation (8) can simply be generalized for the case 
where the heat sources are in a layerj somewhere in the 
middle of a multilayer structure. All we have to do is to 
replace 012 by the thermal reflection coefficient r , ,  of 
the rest of the multilayer structure which follows to the 
right of layer j  and to replace 41o and Zip by Oo and 0o, 
the thermal reflection and transmission coefficients for 
the part of the multilayer structure to the left of layer j. 

The quantities 0m, 0o, and tjo can be calculated 
using the matrix formalism which was described for the 
optical case in Sect. 2. Because of the complete analogy 
of (7) and Fresnel's formulae we only have to replace 
the optical terms 4, z, and 4) by their thermal analogues 
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which leaves (3a, b) virtually unchanged for thermal 
waves: 

and 

T(-)]===, 

J \ T y 7  

(o(Od) ) ( T{ + ?] 
\ T % J  . . . .  " 

In this picture T) +) and TJ-) are the analogues to 
~j(z) and fi](z) from (5) so that (9) can be written as 

- -  1 l j  

To,flo)= 220? 0 �9 f P(z)Eej(z)+flj(z)]dz. (10) 
l j -  t 

In the case of the homogeneous sample this can be 
verified immediately by comparing (8) with (12b) and 
using the relation 

TIO TO1 

22tyl - 22oYo " 

Equation (10) describes the contribution of the heat 
sources in layer j to the temperature at the sample 
surface. In the general case of a multilayer structure 
containing heat sources in each layer we consider 
( m -  1) "auxiliary" structures which are identical to the 
original one except that P(z) is forced to be zero outside 
layer j ( j= 1,..., m-1) .  These auxiliary structures can 
be described by (10) giving the surface temperature 
To,flo). Because the equation of heat conduction is a 
linear differential equation the sum of all these To,flo ) 
is the surface temperature of the original multilayer 
structure: 

--1 ,..-a b P(z) [~j(z) -t- fl~(z)]dz (11) T~176 22o?o j=~, j - ,  

4. Experimental Setup 

A photoacoustic gas-microphone cell [3, 8] was used 
to obtain the experimental spectra. The cell was 
mounted inside a rapid-scan Fourier spectrometer so 
that the modulation frequency for light of wavenumber 

is proportional to g: 

~o = 27c~. 1)M, 

where vM is the change of path difference with time due 
to the constant motion of the interferometer mirror. 

The cell itself consists of two independent sample 
compartments each containing a microphone, and 
since the incident light beam can be directed to any of 
these cells interchangeably, it is possible to measure a 
sample and a reference spectrum immediately after 
each other. Both cells were flooded with dry helium�9 

Carbon black was used as reference material. Carbon 
black absorbs 100% of the incident IR radiation. The 
backing of the cell is coated with gold which reflects 
100% in the spectral regime of interest so that there are 
no heat sources within the backing. 

5. Results and Discussion 

Here we show results for an interesting double-layer 
system - interesting in so far as the interplay between 
optical and thermal properties of the sample, which is 
inherent to photoacoustic spectroscopy, leads to sur- 
prising phenomena. 

Figure 6 shows reflectance and transmittance of 
our sample: a mylar (polyethyleneterephthalate, 
PETP) foil of thickness 12 gm coated with approxi- 
mately 110 A of antimony. The measured spectra were 
fitted using three Lorentz oscillators for the dielectric 
function of the antimony layer taking into account the 
contributions of free and bound electrons. The PETP 
can be described by ten oscillators characterizing the 
molecular vibrations. These oscillators were fitted to 
reflectance and transmittance of the pure foil 
previously. 

The thermal parameters we needed for the simu- 
lation of the photoacoustic spectra (Fig. 7) were taken 
from the literature (Table 1). Experiments and simu- 
lations are in good agreement. Discrepancies near 
1000 cm- t  are due to the comparatively bad agree- 
ment between measured and simulated reflectance in 
that regime. 
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Fig. 6. Reflectance and transmittance of a Sb-coated PETP foil 
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Table 1. Thermal properties of the materials considered in the 
experiments and simulations 

Material e [kg/m3] c [Jt(kg. K)] ,1 [Wt(m. K)] 

Helium 0.I785 5230 0A42 
PETP 1390 1300 0.13 
Antimony 6 690 208 17.5 
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Fig. 7. Photoacoustic spectra of the Sb-coated PETP foil. a Sb in 
front, b PETP foil in front 
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Fig. 8. Photoacoustic spectrum of the pure PETP foil 

Since the foil lay loosely on the backing it was not 
perfectly parallel to it, and light which was transmitted 
through the sample and reflected from the gold coating 
had lost its phase information when it reentered the 
sample. We simulated that by setting the optical 
properties of the backing equal to those of vacuum but 
leaving its thermal properties unchanged. In a first step 
we calculated Pv(z) for light incident on the front of the 
sample. Then we considered the same system under 
illumination from the back side which gave us PB(z). 
Finally we replaced P(z) in (11) by the weighted sum 
P(z) = Pr(z) + T. PB(z) where T is the transmittance of 
the sample. 

The overall structure of both photoacoustic spectra 
is determined by the absorption within the antimony 
layer, and superimposed are the Fabry-Perot fringes 
due to optical multiple reflections within the foil. These 
fringes occur only because the antimony coating 
improves the quality factor of the PETP layer as a 
resonator. They cannot be seen in the photoacoustic 
spectrum of the uncoated foil (Fig. 8). 

If we compare the photoacoustic spectra for the 
two possible orientations with respect to the incident 
light the major difference is that the absorption peaks 
of the PETP are almost completely suppressed if the 
antimony is hit first by the light. This can be under- 
stood very easily in the picture of the thermal waves. 
The waves starting from within the PETP have to cross 
the interface to the antimony layer if they want to reach 
the sample surface and the gas; and at that interface the 
thermal reflection coefficient is Q=-0 .82 .  So the 
major part of the heat generated at absorption bands 
in the PETP foil cannot reach the surface but remains 
contained in the foil. 

One condition for the applicability of the matrix 
method is that the individual layers are non-scattering 
for both optical and thermal waves. In the case of 
optically scattering media the matrix method for the 
thermal waves can still be applied if P(z) can be 
determined using another method. 

Acknowledgement. We thank J. Brunn for helpful discussions and 
critically reading the manuscript. 

Appendix 

The Matrix Method for a Fabry-Perot Resonator 

As an example we consider a Fabry-Perot resonator 
(Fig. 9). Multiplying all the transfer matrices according 
to the rules given above yields: 

o ) 

1712 ~ 1 2  
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Fig. 9. A homogeneous sample as an example of the application 
of the thermal wave method 

"FOI'FI2 ~ 001+~12(~2(d) 001~12--1-(~2(d)} 

• t,E~-W 

and thus 

to~ = 1 +Oo~O~24~(d) 

Ool + ~~ (12a) 
ro2=  1 + 

The electric fields travell ing right and  left are: 

(%l,t  o 

X - -  
%2 ~12 1 ) 2  0 J 

1 ( ~ b l ( z - l l )  012~l(z-ll) '](to2" ] 

~,(~) = ~o, 
1 + eom,~4,~(d) ' ~ ( ~ - t o ) ,  

f l a ( z )  = 1 + 0 o , 0 1 2 ~ 2 ( d  ) �9 c~l(-z +lo). (12b) 
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