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Motivation for this paper results from the approx- 
imated theoretical descriptions in the existing litera- 
ture, commonly used to interpret experimental data 
concerning power spectra measurements of high- 
repetition-rate laser pulses showing fluctuations in 
both intensity and time. It is intented that this work 
gives exact results which can be related to physical and 
experimental parameters characterizing continuously 
operating mode-locked lasers [1-3]. Practical insight 
for this study and mathematical background are found 
in a very helpful manner in fundamental textbooks 
[4, 5]. The paper is organized as follows. At first it 
presents the well-known result of the spectral density 
of a periodic and deterministic pulse train; in partic- 
ular the influence of the pulse durations and/or of the 
finite response of the detector on the spectrum is 
examined. The effect of amplitude fluctuations on the 
power spectrum in a sequence of equidistant pulses is 
analyzed by considering its stochastic properties. Gen- 
erally speaking, the effect of intensity noise is to 
produce new discrete components: the more corre- 
lation in the noise, the less the spectral distribution is 
affected. An example drawn from laser studies is given; 
here the spectral density is derived from pulse shape 
fluctuations involving either constant maximum 
amplitude pulses or correlated random intensity vari- 
ations. Finally, the power spectrum is evaluated in the 
presence of interpulse jitter and amplitude dispersion. 
The main concern is with both forms of fluctuations 
depending on the stochastic characteristics of the noise 

and leading to the appearance of a selective attenu- 
ation of the spectral lines as well as a continuous 
spectral density component. 

I. Periodic and Deterministic Signal 

First let us consider f ( t )  a sequence of equidistant and 
identical pulses fo(t), 

-I-oo -boo 

f ( t )=  2 fo ( t+k to)=fo( t )N  Z g)(t+kto) 
k =  - oo  k =  - oo  

= fo(t)| to), (1) 

where t o is the period and where the symbol | 
represents the convolution. The autocorrelation R~(z) 
of the train of impulses s(t, to) is also a sequence of 
pulses [6, 7] 

Rs(~) = to is(z, to) (2) 

and its Fourier transform is 
-boo 

Ss(co)___ COot ~ 1 • 6(~o + ke)o) , (3) 
k = - o o  

where co o = 2re/to. The power spectrum Ss(co ) corre- 
sponding to f ( t )  is the Fourier transform of the auto- 
correlation function Ri(z ) (Fig. 1) [6, 7]: 

Ri(z)-- fo(0| z)| 
= R yo(Z)| Rs(z) (4) 



42 B. Cunin et al. 

8 (t} -1 

x,,, i I RxlT) 

with 
, f o ( t )  n : t  

y(t) bin=to 1 lim(2/) -1 ~ a n a m + n .  (13) 
l--~ oO n :  - - l  Ry(T) 

For the random part Fl(t  ) of F(t), bm takes the form 
[8, 9] 

bm=to~E 1 (2/)- ~ 2 Fo(nto) Fo(nto+mto) 
L l oo n= - I  

= to 1RFo(mto) (14) 

so that 

RFI(z) = Z to 1RFo(kto) 6(z + kto). (15) 
k 

For the deterministic part F 2 of F(t), we evidently 
have 

RF2(z) = m~oRs(z) = to 'm~oS(Z, to) (16) 

and thus 

RF(z ) = to 1 ~ [nFo(kto ) + m2o] 6(z + kto). (17) 
k 

It is interesting to remark that the power spectrum 
SFo(~O ) of Fo(t ) is related to RFo(kto) by 

+ o o  

Rvo(kto) = (2~)-1 ~ d~OSFo(r exp(jkto~O ) (18) 
- -o0  

and also that 

Rvo(kto) = E{Fo(lto) F o [(/+ k) to] }. (19) 

Hence the spectral density of F(t) is given by 

S.r(~o ) = to 2 ~ SFo(~O + kcno ) + m2oO~oto 1 ~ ~(~0 + kcoo) . 
k k 

(20) 

Indeed, the Fourier transform of Rr~(z ) is 

SFI(oJ ) = ~ t o 1RFo(kto) exp(-jkto~O ) (21) 
k 

and applying the Poisson's sum formula (Appendix), 
this expression becomes the first term of the right-hand 
side member of (20). The second term Sea(co) is readily 
obtained from (3). 

At this stage it is of interest to note that the 
autocorrelation RG(z ) and the spectral density Sa(a~) of 
a sequence of equidistant pulses G(t) with a fluctuating 
amplitude and defined by 

G(t) = fo(t) | f ( t )  (22) 

can be easily deduced by considering Fig. 1. Thus 

R G(z) = fo(z) | fo( - z) @ Rv(z ) (23) 

and 

SG(,o ) ----Ifo(o~)l ~ SF(~o). (24) 

Fig. 1. If fo(t ) is the response function of the linear system L and 
X(t) [resp. Y(t)] is a random function of time at the input [resp. 
output] of L with autocorrelation Rx(z ) [resp. Rr(z)], then [8, 9] 
Y(t) = X(t) | fo(t), R y(z) = R~(z) | fo(z) | fo( - z) 

with 
+ c o  

Ryo(Z) = I fo(t) fo( t + z) dt 

SI(c~ ) = Y~ COot o 11fo(~O)12 6(w + kwo) 
k 

= ~ r oto l[fo(kcoo)j2 6(co + kcoo), 
k 

where ~ stands for 
k k = - c o  

transform of fo(t). 

(5) 

and f0(co) is the Fourier 

2. Periodic Sequence of Pulses 
with a Randomly Modulated Ampfitude 

Let us define the random impulse train 

F(t) = • [Fo(kto) + taro] b(t + kto) = F l(t) + F2(t ) (6) 
k 

with 

F,(t) = ~ Fo(kto) ~(t + kto), 
k (7) 

F 2( t) = rnvoS( t, to), 

where Fo(t) is a stationary stochastic process with zero 
mean. The expectation and the autocorrelation of F(t) 
are given by 

ElF(t)] = mroS( t, to), (8) 

Rr(z ) = E[F(t  + z) F(t)]. (9) 

Since Fl(t  ) and F2(t ) are orthogonal (i.e., E[F1F2] = O) 

RF(Z ) = Rr,(z ) + RF2(z) 

= Rv,(z ) + m2ons(z). (10) 

Using the fundamental result [6] that for a periodic 
sequence of impulses 

S(t, to) = Z a,b(t + nto) (11) 
I t  

the autocorrelation Rs(~) has the form of 

Rs(z) = Z b,,6(z + into) (12) 
m 
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Fig. 2a-c. Reduced power spectra S(m/Coo) of periodic signals with deterministic and randomly modulated amplitudes: a pulse train 
with fixed amplitude: f(t), (1) and Si(m), (5); b impulse train with fluctuating amplitude: F(t), (6), Sv(m) [(20) with Sro(m) of triangular 
shape], and SeW(co) [(26), white noise case]; e pulse train with fluctuating amplitude: G(t) (22), S~(m) (24), and SW(m) (27). fo(m) is the same 
as in Fig. 2a 
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The white noise situation deserves particular inter- 
est. Indeed Fo(Ito) and Fo[(l+ k)to] are independent; 
by changing Rv by RFWo 

W 2 RFo(Z) = O'Vo 6(z) (25) 

the power spectra of FW(t) and GW(t) are 

sW(a))=tola2o +m2oa)oto~ Y b(a)+ka)o), (26) 
k 

sw(a)) = If0(a))l 2 sw(a)), (27) 

as we easily see from (19 and 20). 
The spectrum SeW(a)) (26) consists of(i) a continuous 

component whose amplitude is given by the variance 
of the white noise; (ii) a discrete part with elements at 
multiples of the repetition rate l / t  o. In the case of finite 
duration pulses fo(t), the continuous spectrum is 
shaped by that of the pulse, i.e. [fo(a))l 2. 

It is noteworthy to mention that in the white noise 
case, G(t) can be equivalently expressed by 

GW(t) = ~ Akfo(t)| + kto) , (28) 
k 

where the random variables Ak are mutually indepen- 
dent, identically distributed and where the expectation 
and variance are supposed to exist. 

In Fig. 2 are illustrated the plots of the spectral 
densities of the different signals f(t), F(t), G(t), FW(t), 
and GW(t). 

3. Sequence o f  Pulses  Exhibit ing Width Fluctuations 

Let h(t, Ok) be a function of the random variable 0 k, 
which represents for Ok = 0 the temporal variation of a 
pulse characterized by the width 0, and let L(t) be the 
random function defined by 

L(t) = Y. h(t + kto; Ok) 
k 

= 2 h(t; Ok)| + kto). (29) 
k 

It is assumed that {Ok} are mutually independent and 
equally distributed with a probability density fo(O). 
The expectation of L(t) is given by 

E[L(t)] = E[h(t; Ok)]| Y. 3(t + kto) 
k 

+oo 

= I h(t;O)fo(O)dO| (30) 
- -  o o  k 

which represents a periodic function in contrast to the 
general case of a particular outcome, (29). The autocor- 
relation is calculated directly from the general defi- 
nition [6, 8] 

RE(z) = E (. L(t) L(t + z) dt 

= EL(z)| z) 

= E Y, h,,(z; {Ok})| + into) (31) 
n l  

with 
n =  + l  

h,.(z; {Ok})=to I lim(2/) -x ~ h(z; 0.)  
l-~oo n = --1 

|  Or,+,). (32) 

Before evaluating the spectral density of L(t), it is of 
interest to remark that for m 4:0 

E[h,,(z; {Ok})] = E[h(z; O)] |  O)] (33) 

and for m = 0 

E[ho(z; {Ok})] = E[h(z; O) |  O)], (34) 

where O is a random variable with the same proba- 
bility density as Ok. 

The spectral density is evidently given by 
+oo 

sL(a))= S eJ  RL(z) dr 
- a t 3  

= to l{E[I/~(a); o)12] - E 2  [Iti(a); OI] 

+ a)oEE21h(a); O)12 Z &o + ka)o)}, (35) 
k 

where/~(o); O) is the Fourier transform of h(t; 0). 
The random pulse duration modulation gives rise 

to a continuous power spectrum and to a decrease of 
the power of the discrete components. To make the 
calculation look less abstract, let us consider the 
following examples. 

- For Gaussian-shaped pulses with constant am- 
plitude maximum npo and with a standard deviation 0 

h(t, O) = nvo exp ( -  t2/202) (36) 

it is easy to show that 

h( a), O) = nvo O]//~ exp ( -  02a)2/2). (37) 

To go further, it will be assumed that the random 
variable O is uniformly distributed between 0,,(1-r) 
and 0~(1 +r) with 0 < r <  1. By defining the reduced 
parameters: f2=a)/a) o, Or=l/Oma)o, one gets the re- 
duced expressions of the expectations: 

x _1 ~2r exp[_f22(1 + r2)/20~ ] sinh(r~22/O~ ) (38) 
r ~ z  

and 

2 2 21 f2~ EEl (O, Ol=]=n o  O.Wr a2 

x {(1 - r) exp [ O2(1 r )  2/~,-~ 2-] I i 

- (1 + r) exp [ -  ~2(1 + r)2/O~] 

l /~  ~ r  (erf[-f2(1 +r)/f2r]-erf[O(1--r)/f2r])}(39) 
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- The Gaussian-pulses which exhibit both corre- 
lated amplitude and duration fluctuations can be 
modeled by 

h(t, O)= ( 0 ~ ) - 1  me ~ e x p ( -  t2/202). (40) 

It should be noted that in contrast to the previous 
q - m  

example, tbe integral 5 dt h(t, O)= mFo is a constant. 

The Fourier transform gives 

~((o, 0) = mvo exp(-- 02co2/2). (41) 

With the same uniform distribution as above, and with 
the same definitions of the reduced parameters, one 

Fig. 3. Reduced power spectra gL~(~2) = to(2rcn~oO~)- 1 SLI(g~) of 
periodic signals (Gaussian-shaped pulses) with fixed amplitude 
(nFo) and widths uniformly distributed between 0,.(1-r) and 
0~(1 +r), calculated, (35, 38, and 39), with Or=(Omc%) -1 =200 
which corresponds for example to a repetition rate of 79.6 MHz 
and a mean width 0,. of i0 ps. The curve A represents the 
continuous part of the spectrum. The discrete lines ~] 8(0 + k) are 

k 
superimposed on curve A and limited by the envelope B 

can write 

aT EEl~(O'O)l]=me~ 4 rf2 

x {erf[f2(1 + r)/V~f2r] - erfEf2(1 - r)/V2f2r}}, (42) 

m2 ~ -  f2 T 
E[lh(f2,8)12] = Fo-4 r(2 

x {erf[f2(1 +r)/Or]--erf[g2(1 --r)/Or]}. (43) 

In Figs. 3 and 4 are represented, for different values oft, 
the reduced power spectra, see (35), gL(f2)= toSr.(g2)/c~ 

0~__ T/2 2 for fixed amplitude ( - r027r0m) and constant energy 
(~ = m2o) pulses. 

4. General Case 

We now turn to the problem of evaluating the spectral 
density of a sequence of pulses for which both the 
amplitudes and the occurrence times are random. It is 
assumed that the two processes are independent and 
stationary. In the following, H(t) denotes the random 
function characterizing this pulse train. H(t) can be 



46 B. Cunin et al. 

SL2 
1- \ 

\ 
\ 

0 , 5 -  

r= 0.25 \ 
t 

\ 
\ 

s6o 10lO0 

SL2 1\ 

0 . 5  

01 

r =0.75 

\ 
\e s 
\ 
\ 
\ 
\ 

s~o ldoo 

expressed in the form of 

H(t) = f o [ t -  T(t)] | (44) 

where fo(t) is the impulse response function of a linear 
system undergoing a stochastic delay and F(t) a 
random function (Fig. 5). The autocorrelat ion Rn(T) is 
given by 

Rn(T ) = E[H*(t) H(t + v)] 
+ a z  

= E  ~ d u d v f o [ t - u -  T(u)] 
- o o  

x F(u) fo It + T-- v-- T(v)] F(v). (45) 
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Fig. 4. Reduced power spectra Sin(O) = toSz2(~2)/m~o of periodic 
signals with correlated amplitude and width fluctuations, con- 
stant energy; (35, 42, and 43). See legend of Fig. 3 for the 
parameters description 

Recalling that  T(t) and F(t) are independent processes 
one has 

+ o o  

RH(~) = E I I  du d v f o [ t -  u -  T(u)] 
- - 0 0  

x fo[t + ~ -  v -  r(v)] R e ( v -  u), (46) 

where F(t) and RF(~) are, respectively, defined by (6 and 
17). 

As previously fo(C0) is the Fourier  transform of 
fo(t); the above expression can be written as 

RH(~)= 1 E +~ + 4n 2 ~ dudv ~ do~ld~zRv(v-u)  
- -  0 ~  - - C O  

x fo* (on 1) exp { --jw 1 It - u - T(u)] } 

x fo(r exp { + j o  2 [t + ~ -  v -  T(v)] }. (47) 

If Cr(oh, a~2; v - u )  is the second order character- 
istic function of the stat ionary random function T(t) 
given by 

(9T(~Ol, c~2;v-u)=E{exp[jo)lT(u)+jo)2T(v)]} (48) 

the last relationship can be written as 

1 +oo 
RH(*) = ~ 2  ~ I ~i du dv dco~ de02 fo*(O~ 1) 

x fo(CO2) r T(C01, -- ~02 ; V -- U) 

x Re(v-- u) exp [--jaJ l(t-- u) +jOgz(t + T -- v)]. (49) 
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Fig. 5. Schematic of a stochastic delay with X(t) and Y(t) 
=fo[(t-r(t)]| being random functions of time 

Remarking that (2n)-lfdvexpE-j(col-coz)V] 
= a((,01 --(.02) and performing the change of variables 
v -  u = w and v = v and the neglect of the subscript of oh 

/ +m 
R~(~) = ~ j ~  do)dwlL(~o)ff 4r(co,-co; w)Rv(w) 

x exp [jcn(z - w)]. (50) 

Substituting Re(w) by (17) and using the Poisson's 
sum formula (Appendix) for F. 6(z + kto), RH(z) is simply 
equal to 

+ o o  

R,,(~) = 57_t~ ~ f I  d(o dWlfo(O~)ff ~(co, - co; w) expd~)  

x [nvo(W) + m2o] F. exp [-jw(co + kcoo) ] . (51) 
k 

Defining the Fourier transforms ~o(co, Q) and 
tp(co, O), respectively, of RFo(W)(OT(co,--co;W) and 
4T(CO, --co; W), it is not difficult to show, by using the 
frequency shifting theorem, that the general expression 
of the power spectrum Sn(co) has the following form 

s~(co) = to ~tfo(co)l ~ Z Eq~(co, co + k(Oo) 
k 

+ rn~o~O(co, co + kcoo)]. (52) 

In order to calculate the spectral density Sn(co) of 
an impulse train with time and amplitude fluctuations, 
let us first define the random function I(t) by 

H(t) = I(t)(D fo(t) (53) 

so that 

S~(~) = I L(~)I2 s,(o~), (54) 

We return to (50) and (17) from which we see that 
+ 0 o  

S1(co)=to 1 ~ dwexp(-jcow)~(aT((O,-co;kto) 
--o~ k 

x [RFo(kto) + m2o] &(w + kto). (55) 

In the white noise case for the arrival times 
{Tk=T(kto)} is taken as a sequence of mutually 
independent and identically distributed random vari- 

ables, so that the characteristic function ~gT(CO) verifies 

[~T(CO)I2=q~r(CO,--CO;W) for w=#0. (56) 

In this case the spectral density of the impulse train 
becomes 

+ m  

SW(~~ = to 1 I dw exp(-jcow) 
--O0 

x {Ea -I  ~T(~ )123  ERvo(0) + @o] 6(w) 

+ ~ I VT(CO)I z ERFo(kto) + m~ o] 6(w + kto)}. (57) 

By substituting for RFo(0 ) from (18) and by using (20) 
for the Fourier transform of RF(w), it is easy to obtain 
the final result 

s~(~) = (2~to)-~ E1 -I  ~r(~)l ~] 

x [ ~(  SFo(co) doa + 2rCm~o 1 

+ I ~r(co)[ 2 ~ [to 2SFo(CO "4- k(DO) 
k 

+ m2ocooto x g)(oa + kcoo) ] . (58) 

SW(co) may be considered as the power spectrum of 
a sequence of impulses whose amplitudes and inter- 
pulse durations are randomly varying. The first term of 
the right-hand side of (58) clearly reveals the coupling 
between the amplitude fluctuations and time jitter. It 
leads to a high-band frequency power spectrum whose 
intensity is related to the average power of the 
amplitude noise @o + m2Fo with @o = (2~)- 11 Seo(CO) de) 
=Rvo(0). The cut-off frequency coc of the equivalent 
high pass filter is given by ]~T(COgl z - -2 -1=  0. Let us 
recall the general statements kgT(0 ) = 1 and ~r(oo)= 0. 
The second term gives rise to a series of lines at 
multiples of coo attenuated at high frequencies (~0 > cog- 

The situation where the pulses are fixed in ampli- 
tude but undergo white noise fluctuations in position 
can be examined by means of (58) in which we set 
o'~ = 0. A straightforward calculation shows that the 
spectral density SW(co) of the random function describ- 
ing the jittered pulse train given by 

K(t) = • mFo 6(t + kt o + Tk) (59) 
k 

is of the form of 

s~(co)= m~o {to 1[1 - r  %(~o)12] 
k 

+ ~,ot0-11 ~.(~)[2 ~ a(~ + k~Oo)}. (60) 

As previously mentioned, in the situation of inter- 
pulse duration fluctuations, the effect of the temporal 
jitter is to diminish the power available in the high 
frequency part of the discrete components since 
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I~T(co)I2<I and to generate a continuous high fre- 
quency spectrum rnZoto 111-17JT(CO)]2]. 

In the general case, a practical and quantitative 
evaluation of Sn(co) depends on the kind of assumption 
made regarding the temporal jitter and the amplitude 
fluctuations as well as the type of detector used to 
measure the power spectrum. The bandwidth limi- 
tation of the detection system whose impulse response 
is go(t) gives rise to a limited power spectrum 

sj(co)--I&(co)l ~ s.(~o). (61) 

Assuming that the high cut-off frequencies co~ and co~c of 
I~o(co)] and ]fo(co)] verify co~ <<< cot, the spectral density 
can be readily approximated by 

Sj(co) = [go(co)i2 St(co) �9 (62) 

Fig. 6a-c. Reduced power spectraSWK(O)ofanimpulsetrain with 
fixed amplitude (o90--5 x 10 s s -~) showing white noise fluctu- 
ations in position (aT-- 10 ps); a without any perturbation by the 
detector, (64); b, e by taking into account the response of the 
detector [(66) with q= t and q=3]. The curve A represents the 
continuous part due to the interpulse jitter and the envelope B is 
obtained by adding the discrete lines ~ J(f2 + k) 

k 

To go further, the impulse response of the detector 
is taken as that of the simplest integrating device, i.e. 
go(t) = (l/zD) e x p ( -  t/zD) and thus ]~o(co)] z 
= 1/(1 + co2z2). The time jitter will be supposed normal 
with zero mean and variance a2; then 

7~T(co) = exp ( -  a2co2/2). (63) 

In Fig. 6a is plotted the reduced power spectrum 

~xvx ( f2) = toSW ( f2)/m~o 

= 1 - exp [ - (Q/OT) 2] 

+ exp [ -- (f2/f2T) 2] Z 6(f2 + k) (64) 
k 

deduced from (60 and 63) with O=co/wo and 
f2T=(aTO90) -1 and for the values a t =  10 ps and co o 
= 5.108 s -  1 (to = 12.56 ns) which would correspond to 
an impulse train with stable amplitude (a2o = 0) and 
showing white noise fluctuations in position like those 
observed in a synchronously pumped picosecond dye 
laser beam. If such a sequence of impulses is also 
subjected to an amplitude noise characterized by the 
autocorrelation function Re(z) = aZo exp(-Izl/zF0) such 
that 

Svo(co ) = 2a~o ZVo/(1 + co2z2o) (65) 
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the power  spec t rum sW(co) given by  (58) takes  the form 
il lustrated in Fig. 7a. 

The  influence of  the detec tor  is made  evident  in 
Figs. 6b, c, and  7b  represent ing the reduced power  
spect ra  

~K,K, i(~'~) X I~0(~~)l 2 = ~K,I(~r X (1 AI-qZf22/O~)- l ,  (66) 

where q = T D / a  T. 

Fig. 7a, b. Spectra S-~v~ (O), (58), obtained by adding the contri- 
bution of an amplitude noise characterized by (65) with a2o 
=0.2m2,o and ~OoZFo = 10 to those of Fig. 6. (a'): detail of (a); (b): 
q = 3. The amplitude noise spectra ~ Svo(~2 + k) [resp. the discrete 

lines ~6(Q+k)] are superimposed on curves A (resp. B)and 

limited by the envelopes B (resp. C) 

Appendix 

Poisson's sum formula [6] 

f ( t  + kto)= to 1 ~, f(kcoo ) exp (jkco ot). 
k k 

With the particular form obtained with t = 0 

E f(kto) = to 1 E f(ka~o). 
k k 
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