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Abstract. We present a simple analytical method to study birefringence and polarization 
mode dispersion (PMD) of graded-core stress-applied polarization-maintaining fibers. It is 
based on the equivalent step-index-fiber method. It is shown that the agreement between 
present results and the results obtained using the finite-element method is very good. 
Polarization characteristics of stress-applied polarization-maintaining fibers having a dip 
in the refractive index at the center of the core are also investigated. 

PACS: 42.80, 42.20 

Optical fibers composed of highly birefringent material 
are presently of great interest for use in a number of 
sensor applications and coherent optical communi- 
cations [1]. To realise dispersion-shifted polarization- 
maintaining fibers, stress-applied polarization- 
maintaining fibers with a graded-core profile have 
been proposed [2]. On the other hand, when manu- 
facturing imperfections occur, we can be left with a 
graded-core polarization-maintaining fiber. Therefore, 
it is important to study the birefringence and polariza- 
tion dispersion of such fibers. A finite-element method 
has been used to obtain the polarization characteristics 
of graded-core stress-applied polarization- 
maintaining fibers [2]. However, the numerical 
method provides little insight into physical parameter 
changes. No simple analytical method seems to exist 
for the study of such fibers. 

In this paper, we propose an analytical method that 
provides simple, closed-form expressions for the 
birefringence and PMD of graded-core stress-applied 
polarization-maintaining fibers without significant 
profile depression. Our objective here is to obtain an 
acceptable trade-off between the accuracy and the 
simplicity of the results. It is shown that in the latter, 
the present results agree very well with the results 
obtained using the finite-element method [2]. 

1. Geometry of the Problem 

Figure 1 shows the cross section of a graded-core 
stress-applied polarization-maintaining fiber, where a 
and b are the radii of core and cladding, respectively, 
and r 1 and r a are the inner and outer radii of stress- 
applying parts (SAPs), respectively, and 0 is the angle 
of the SAPs. Here the bulk refractive indices of the core, 
cladding, and SAPs are n(r), nc~ and ns, respectively. For 
simplicity we assume the refractive index in the SPA is 
matched with that of the cladding, i.e., ns=no~. The 
relative refractive-index difference between the core 
and the cladding is defined by A z 2 z = (n~o- nd)/(2nd), 
where nr is the maximum value of the core index. 

We use the representation [5] of the index profile of 
graded-core: 

nZ(r) = n2~ [ 1 + 2A h(r/a)] (1 a) 

with 

max{h(r/a)} = l O < r < a ,  (lb) 

h(r/a)=O r > a ,  (lc) 

where r is the radial coordinate, h(r/a) denotes the 
profile variation, and n(0)= noo. 
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Fig. 1. Cross section of graded-core polarization-maintaining 
fiber. The parameter value were the following: 2a=5pm, 
2b = 125 ~tm, rz/b = 0.76, 0 = 90 ~ E = 7830 kg/mm 2, v = 0.186, 
a 2 = 5.4 X 10 -- 7 o C -- 1, ~3 = 1.554 X 10-- 6 ~ - 1, T = -- 800 ~ 

For  an a-power profile: 

h(r/a) = 1 - (r/a) ~ , (ld) 

where ~ is a parameter between 1 and oo describes the 
index profile in the core. 

For  the dip in refractive index at the centre of the 
core: 

h(r/a) = 1 - q(1 -- r/a) ~ , 

where q denotes the relative dip depth and g is a 
parameter between 1 and ac which describes the dip 
width. 
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We approximately let 

a < r < r l  , (2c) 

r 1 _< r < b. (2d) 

B m c  1 = 0 (3a) 

because it is much smaller than that in the core and the 
vicinity of the core-cladding interface [9]. We also let 

Bmne=Bmco (3b) 

_ E ( e 2 - e 3 )  T -c 
1 - v  n 

• {2 ln(r2/r  O -  1.5 [(rE~b) 4 -  (rl /b)4]} sin0 (3c) 

by using (2b) and the concise expression for the materal 
birefringence in [7]. The parameters C, E, and v denote 
the stress-optic coefficient, the Young's modulus and 
the Poission's ratio, respectively, e 2 and a 3 denote the 
thermal expansion coefficients of a cladding and stress- 
applying parts, respectively, and T denotes the temper- 
ature change in the drawing process. The feasibility of 
such an approximation will be confirmed in the 
following. 

2. Equivalent-Material Birefringence Profiles 

Material birefringence B~, in stress-applied optical 
fibers is produced through the photoelastic effect, and 
is given by 

B m  = r/x - -  r / y ,  (2a) 

where nx and ny denote the refractive indice for x and y 
directions, respectively. 

It has been shown in [8] that the material birefrin- 
gence hardly depends on the refractive-index profile in 
the core. In fact, the material birefringence distribution 
in stress-applied fibers is complex and varies with 
position. For  simplicity we calculate the equivalent- 
material birefringence distributions by averging the 
material birefringence profile in each region. For  
example, 

a 2~ 

I Brads 
Bmr o o O<_r<_a, (2b) a 21t 

I yds 
0 0 

3. Modal Birefringence and PMD 

The analysis is limited to weakly guiding and weakly 
anisotropic fibers. First, a stress-applied fiber with 
step-index profile in the core is considered. Since the 
equivalent-material birefringence n x - n y  in the fiber is 
known, the modal birefringence B of such fiber can be 
derived from [4], where B = (fix-fly)/k (fl~ and fir are 
the propagation constants for the H E ~ I  and HEY~I 
modes, respectively, k is the free-space wave number). 

The result is 

B= BmcoS(V) + BmneH(V) 

+ (Bran ~ - Stool) 2 0  ( R ) / V  2 , (4a) 

with 

S(V)  = ( V  2 + U 2 J ~ ( U ) / j E ( U ) -  2 U J I ( U ) / J o ( U ) ) / V  2 , 
(4b) 

H ( V )  = 1 -- S ( V ) ,  (4c) 

(wR) 2 
D ( R ) -  2Ko2(W ) [K2~(WR) - K o ( W R ) k 2 ( W R ) ]  , (4d) 

where R = r l /a ,  V =  kanco(2A) 1/2. 
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Fig. 2. Normalized frequency dependence of parameters required 
to calculate birefringence 

Given V and its relation to W,, then U can be found 
from [-6]: 

UJI(U)/Jo(U) = WKa(W)/Ko(W) (5a) 

together with the condition: 

V z = U 2 + W 2 . (5b) 

The symbols S(V), H(V), and O(R)/V z indicate de- 
pendence on the normalized frequency. The depen- 
dence of the birefringence on normalized frequency is 
plotted in Fig. 2. 

Polarization mode dispersion, that is, the group 
delay difference between the two polarization modes 
would be 

1 d(kB) 
= - - -  (6a) 

c dk ' 

where c is velocity of light. 
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Fig. 3. Normalized frequency dependence of parameters required 
aS(V) 

to calculate polarization dispersion: (1) S ( V ) + V ~ ,  

gD(R) 2 H(V)+V asafunctionofV;(2)2 -D(R)+V-~-~- /V 

as a function of V with different R 

Results can be derived to be 

= _ v O S ( V )  

c 

+ Bin, e IH(V) + V 0H(V) / 

-}- (Brahe-- B m j  

T OD(R)7,. 2~ x 2 I-D(R)+ v~j/v I (6b) 

by substituting (4) into (6a). 
The dispersion of the stress-optic coefficient C has 

been neglected in the derivation of (6b) because it is 
small compared with the other terms in the useful 
region [,10]. The normalized frequency dependence of 
the polarization dispersion is also plotted in Fig. 3. 

Now, we consider a graded-core stress-applied 
polarization-maintaining fiber as shown in Fig. 1. 
When e or g is infinite, the fiber is reduced to the step- 
core stress-applied fiber. 

It has been observed [-3] that the fields of the HE 11 
mode on n:o =~ n:~ graded-core fibers without significant 
profile depression look like the fields of the HE~ 1 mode 
on some step-index fiber. One can find an equivalent 
step-index fiber (ESF) whose HEl l  fields closely 
approximate those of the given graded fiber by using 
the variational method. 

To estimate the polarization characteristics of the 
graded-core stress-applied fiber, we approximate it by 
an ESF with anisotropically, azimuthally, radially 
perturbed refractive-index profiles. Obviously, the 
results [-4] for the anisotropic step-index fiber apply to 
the anisotropic graded-core fiber provided we replace 
radius a and normalized frequency V by 5 and V,, where 
d and ~" can be found in [-3, 5]. The parameters d and P 
are the radius and the normalized frequency of the 
ESF, respectively. It is assumed that the equivalent- 
material birefringence profile B m in each region is given 
by 

B m ~ Bmc o 0 -<- f-< 5 ,  (7a) 

~Bmn e a~F~I71,  (7b) 

~Bmcl ?t < r=<b-, (7c) 

where f, fl, and b-are the radial coordinate, the inner 
radius of the SAPs and the outer ridius of the ESF with 
anisotropically, radially perturbed refractive-index 
profiles, respectively. It is also assumed that f l /d  ~ Q/a. 
After using these crude approximations, (4)(6) also 
apply to the graded-core stress-applied fiber provided 
we replace those parameters (V, U, 14/) with parameters 
(V, U, W) of the ESF. The parameter ~V/V can be found 
by the rigorous approach described in E3]. Although 
this approach requires complicated calculations, it is 
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Fig. 4. Variation of the modal birefringence B as a function of 
normalized frequency V: Reference [2], - . . . . .  this paper 
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Fig. 5. Variation of the polarization dispersion with V in Fig. 4 
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Fig. 6. Variation of birefringence and P M D  with V for the fiber 
having different dip depth q: (1) g =  ~ case, (2) g = 2  case 

very accurate. If we focus on a limited, but useful range 
(e.g., 1.6___ V___ 3), the simple expression for V/V is 
obtained as follows [5]: 

r'/v = + 2)31/2 

for h(r/a)= l-(r/a) ~ (8a) 

= [1 - 2q/(g + 1) (g + 2)]'/2 

for h(r/a) = 1 - q(1 - r/a) ~ . (8b) 

Eq. (4a) will reduce to 

B = B~co [1 + 2D(rl/a)/V 2] (9) 

by using (3). The value of B approaches Bmoo as V 
becomes large. After using (3) and (4), (6b) reduces to 

z =Bmc~ ~ _1/v~2];. (10) 

The value of P M D  approaches Bm~o/C for larger 
V-values. From (8), ? = V when e or g is infinite. 

4. Results and Discussion 

To test the feasibility of the present formulation, we 
first consider a graded-core stress-applied 
polarization-maintaining fiber studied by Hayata et al. 
in [2]. The parameters are chosen to be the same as in 
[2], which are presented in the caption to Fig. 1. 

Figure4 shows the variation of the modal 
birefringence B as a function of normalized frequency 
V Solid curves correspond to the finite-element calcu- 
lations E2] and broken curves correspond to the 
analysis obtained by using (8) and (9). As can be seen 
from the figure, the two curves agree very well in the 
region of interest (1.6 < ? <  3), where most of the modal 
field power of the fiber is confined in the core region. 
However, the agreement between the two sets of results 
is not so good in the small-V region, where the fields 
extend deep into the cladding. When the normalized 
SAP distance (rl/a) is large (=  5.4), the error remains 
acceptable for the usual applications. It can also be 
seen from the figure that the smaller the parameter cr is, 
the larger the error. Therefore, the present formulation 
can be used for estimating the birefringence quite 
accurately for graded-core stress-applied polarization- 
maintaining fibers with larger c~-values and large 
normalized SAP distance (rl/a). 

Figure 5 shows the variation of the polarization 
dispersion with E As can be seen from the figure, the 
P M D  becomes large in the small-V region. Therefore, 
we have to pay careful attention to design. 

Next, we consider stress-applied polarization- 
maintaining fibers having a dip in the refractive index 
at the center of the core. All parameters used in the 
calculation are the same as in the first example, except 
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for the refractive index distribution in the core. 
Figure 6 shows the variation of birefringence and 
P M D  with V for a polarization-maintaining fiber 
having different dip depth q for g = 1 and 2, respec- 
tively. It is known from Fig. 6 that central index dips 
have little influence on the B and P M D  in the large-V 
region. As shown in Fig. 6, the birefringence in the 
small-V region gradually decreases as the degree of the 
dip increases. However, the P M D  gradually increases 
with increase of the degree of the dip in the same V 
region. It can be seen from Fig. 5 and Fig. 6, the value 
of B and P M D  becomes nearly constant as the V-value 
becomes large, and then B and P M D  can be approx- 
imated with the material birefringence Brae o in the 
core and Bmco/C, respectively. 

In conclusion, we have given a derivation for the 
modal birefringence and the P M D  of graded-core 
stress-applied polarization-maintaining fibers using 
the equivalent step-index-fiber method. The 
equivalent-material birefringence profile has been ob- 
tained to analytically deal with the polarization char- 

acteristics of the fiber. It has been shown that the 
present formulation can be used to analyse the 
birefringence and P M D  of graded-core stress-applied 
fiber with ease. 
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