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Abstract. The motion of small scatterers in a laser beam results in Doppler shifts of the 
scattered light. Various homodyne or heterodyne experiments may be used to measure such 
shifts. The stochastic nature of spatial particle arrangements and of the photon-detection 
process leads to statistic data processing schemes like temporal correlation or the 
computation of structure functions. Photon correlation is one of these schemes and has 
found numerous applications in velocimetry and Brownian motion studies. Topics of 
current interest are dead-time corrections, the use of photon structure functions, and 
multiple tau measurements, which access large ranges of time constants in a single run. 

More recent data processing techniques are recurrence rate correlation for the 
immediate determination of velocity correlation functions in seeded fluid flows and the 
measurement of amplitude-weighted phase structure functions, which is able to resolve very 
small particle displacements otherwise completely obscured by random Brownian motion. 
Rate correlation found applications in hydrodynamic studies of the route to turbulence, 
while the major use of phase structure function processing is a very significant increase in the 
sensitivity of electrophoretic mobility measurements by light scattering. 

PACS: 05.40. + 6, 47.80. + v, 06.50.Dc 

Moving scatterers like seed particles in a flow, macro- 
molecules undergoing Brownian motion, or local 
fluctuations of the refractive index in a fluid, generally 
produce a Doppler shift, i.e. they scatter light at a 
frequency slightly different from the illuminating wave. 
Since such scatterers typically move at velocities 
slower than the speed of sound, which lies some 6 
decades below the speed of light, the relative frequency 
change is rather small, e.g. 10- 6... 10-1 

If optical path differences in the scattering experi- 
ment do not exceed a few mm or some l04 wavelengths 
(for visible light), such small frequency shifts produce 
no considerable change of wavelength. Light propa- 
gation may be calculated correctly, if we assume iden- 
tical wavelengths for incident and scattered light - the 
assumption of quasi elastic light scattering (QELS). 

As a second consequence of the relative smallness 
of terrestrial Doppler shifts, most times they cannot be 
resolved by classical spectromeiters like gratings or 
etalons. The typical shift frequencies between 1 Hz and 
some 100 Mhz are, however, well within reach of direct 
electronic processing, and the technique of light- 
beating spectroscopy or intensity interferometry may 
be applied [-1-4]. 

Even though this technique was introduced by 
Hanbury-Brown and Twiss as early as 1956 [5], it was 
not until the invention of the laser as a strong coherent 
source of illumination that QELS and intensity inter- 
ferometry were used to study the motion of small 
particles. Sensitivity and efficiency of experiments were 
considerably increased when Pike's group at Malvern 
developed photon correlation [6, 7]. This technique 
provides quantum limited single photon counting 
sensitivity together with real-time performance and 
digital precision of the electronic signal processor. 

Photon-correlation spectroscopy found two major 
fields of applications: laser velocimetry, particularly in 
large wind tunnels, and particle sizing by measurement 
of diffusive Brownian motion [1-4]. The latter techni- 
que experiences a continuing growth of applications in 
many branches of biology, chemistry, and physics 
ranging from industrial production control to funda- 
mental studies on interacting particle systems. 

High-power lasers or large-aperture scattering 
geometries often provide signal intensities well above 
the dead time limit [8] of photon-counting detectors. 
The common use of neutral-density filters cures the 
problem, but at the expense of increased shot noise. 
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Furthermore, the availability of analog signals with 
good signal-to-noise ratio allows novel signal process- 
ing techniques to be applied, which may be used to 
extract information about dynamic properties of the 
scattering system beyond those obtainable by photon 
correlation. 

An example is recurrence rate correlation, based on 
threshold crossing events of an optical intensity, which 
provides temporal velocity correlation information 
about the motion of scattering particles. Rate corre- 
lation was invented by Erdmann at Seattle ]-9, 10] and 
further developed and applied to periodic and chaotic 
flows by our group at Kiel [11-16]. 

Completely new light scattering experiments are 
feasible, if the signal processing is based on the phase 
rather than the intensity of Doppler shifted light. My 
first application was the study of turbulent random 
phase screens as a model of atmospheric wave propa- 
gation [17-20]. 

More recently, I developed a signal processing 
scheme involving amplitude weighted phase structure 
functions (AWPS). The AWPS technique allows the 
measurement of extremely small collective particle 
motion otherwise completely obscured by diffusive 
random motion. Our major application is the light 
scattering study of electrophoretic mobilities with 
significantly increased sensitivity [21 23]. 

Even though all these dynamic light scattering 
techniques, particularly photon correlation, have been 
described in many separate publications, this paper 
appears to be the first one presenting the various 
techniques in their common optical and statistical 
context. Quite clearly, space does not permit a com- 
plete review of all the relevant work in the field. In fact, 
for the most recent technique, AWPS, some relevant 
work has not been completed yet. 

Still I hope that a coherent and up-to-date sum- 
mary of three dynamic light scattering techniques - 
photon correlation, rate correlation, and AWPS - may 
provide a useful orientation to readers new to the field 
as well as broaden the view of those already familiar 
with some light scattering experiments. 

Because all techniques discussed in this paper make 
use of similar optical scattering setups and statistical 
data processing schemes, I will start with two funda- 
mental sections which cover these topics in a general 
manner. Three more specific sections will then apply 
our general concepts to specific experiments and 
discuss particular problems and applications. 

1. Optical  Setups 

Dynamic light scattering experiments are perfor- 
med with many different optical setups. They may be 
roughly classified into experiments with a single il- 

luminating laser beam and experiments with two 
interfering beams in the measurement volume. Further 
differences arise due to the use of coherent and 
incoherent detection schemes. Finally we may discuss 
single or multi particle scattering. 

1.1. Single Beam Setup 

a) Single Particle Scattering. Illumination of a point- 
like particle by a focused laser beam is commonly (and 
quite well) approximated as plane-wave illumination 
characterized by an initial wave vector k~. A small 
detector in the far field selects a single direction of the 
scattered light field to be described by a final wave 
vector k:. The assumption of quasi-elastic light scatter- 
ing corresponds to neglection of the very small length 
difference between k i and k:. For a laser wavelength ,~ 
in the medium we assume 

[k,I = Ik:l = 2 ~ / 2 .  (1) 

Particle motion over a distance small compared to the 
diameter of the illuminating beam causes negligable 
amplitude changes at the detector, but significant 
phase changes will be produced, if the motion x(t) has a 
nonzero component perpendicular to the bisector of k~ 
and k:. We obtain a complex amplitude at the detector 

up(t) = a(x(t)) exp [i(k i - k:) x(t)] (2) 

which depends on the scattering geometry through the 
difference of the initial and final wave vectors only. 
This difference is the scattering vector commonly 
denoted by 

q = k i -  k : .  (3) 

Its magnitude depends on the wavelength and the 
scattering angle 0 between k~ and k:, 

Iql = (4rc/2) sin (9/2), (4) 

and may vary between 0 and 4rc/2, corresponding to 
virtual fringe separations down to one half of the 
illuminating wavelength. In practice, it is often difficult 
to obtain good signals at very small scattering angles 
and values below 5 ~ are rarely used in dynamic light 
scattering. 

Since photodetectors are sensitive to optical inten- 
sities only, the phase change in (2) cannot be observed 
by the simple setup of Fig. 1. In order to produce 
significant intensity changes, a single scattering par- 
ticle must move a distance comparable to the illuminat- 
ing beam radius, which happens on much longer time 
scales than those required for significant phase 
changes. The shape of the intensity signal is governed 
by the beam profile, typically close to a Gaussian for 
gas lasers. The measurement of number fluctuations in 
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Fig. 1. Schematic setup for single-beam scattering consisting of 
laser, focusing lens, detection aperture, and detector, typically a 
photomultiplier tube 

amplitude result in a pure phase change of UD - a 
simple rotation of the random walk graph (Fig. 2) in 
the complex plane. 

However, particle motions relative to each other 
will produce phase as well as amplitude or intensity 
changes in up. The single-beam setup is hence suitable 
to determine velocity gradients [30, 31] or - a parti- 
cularly important application - Brownian motion. In 
this context, the single-beam setup is commonly refer- 
red to as homodyne scattering experiment. 

photon correlation as well as single-beam rate corre- 
lation are based on such comparatively slow intensity 
changes. 

Particle diameters which are not small compared 
to the wavelength complicate the computation of the 
absolute magnitude of the amplitude factor a in (2), but 
do not change the general form of this equation. The 
dependence of a on the scattering angle 0 is the central 
topic of static light scattering and exceeds the scope of 
this paper. The same restriction holds for polarization 
effects like depolarized scattering. We will assume light 
that is linearly polarized perpendicularly to the scatter- 
ing plane, simplifying our calculations to scalar com- 
plex scattering amplitudes. 

b) Many Particle Scattering. Working with coherent 
illumination, the complex amplitudes scattered by all 
the particles in the measurement volume add up at the 
detector and we obtain the resultant amplitude 

N 

uo = • a(x;(t)) exp [iqxj(t)], (5) 
j = l  

wherej  labels the individual scattering particles. Eq. (5) 
may be interpreted as a random-walk problem in the 
complex plane and for independent stochastic particle 
positions (noninteracting particles) the central limit 
theorem predicts Gaussian statistics for the detector 
amplitude in the large N or many particle limit (Fig. 2). 

Again, we are unable to measure a small collective 
particle motion with the single beam setup of Fig. 1. 
Identical phase changes of each particle's complex 

Im {u) 
a N exp l iq x N ) 

a 1 exp ( iq  x 1 ) Re {u)  

a2exp(i~q x2) 

Fig. 2. Coherent multi particle scattering as a random walk in the 
complex plane 

1.2. Dual-Beam Setups 
a) Reference-Beam Technique. In order to detect phase 
fluctuations in the scattered light, we need an inter- 
ferometer. The simplest possible change of the single 
beam arrangement in Fig. 1 is the addition of two beam 
splitting mirrors to create a reference beam with wave 
vector identical to k~ (Fig. 3). 

The same result may be achieved by a single beam 
splitter plus a mirror (Fig. 4), a more commonly used 
setup which provides easier alignment. 

If UR denotes the fixed complex amplitude of the 
reference beam at the detector, we obtain a detector 
intensity 

Igt) = [u~(t)l 2 = lu . I  2 

+ 2 Re {u~ j~l as(x~(t))exp[iqxj(t)] } 

j=~1 [iqxj(t)] 2. + ~ aj(xj(t))exp (6) 

B.S. 
I LASER I---0 

LENS ~ ~ ~  
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V 
Fig. 3. Schematic reference beam setup with two beam splitters 
(B.S.) 

LLASERI---O - ~  
LENS B.S. 

J 

Fig. 4. Schematic re~rence beam setup with a single beam splitter 
(B.S.) 
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The last term in (6) is typically neglected for reference 
amplitudes large compared to the scattered amplitude, 
and the cross term dominates the dynamic (i.e., time 
dependent) part of the detected signal. 

The reference beam or heterodyne setups provide 
high sensitivity to collective as well as relative particle 
motions. Applications are velocimetry, mobility 
studies, and again Brownian motion. 

b )  Real -Fr inge  Technique. Instead of mixing or hetero- 
dyning a scattered beam with a constant reference 
beam on the detector, interference may be produced 
just as well by mixing of light that is scattered from two 
illuminating beams (Fig. 5) which cross under an angle 
0. Application of (2) yields a detected intensity 

In( t  ) = lu/,(t)l 2 

= 2 la(x(t))l 2 {1 + cos [q t x( t ) -  q2x(t)] } (7) 

for single particle scattering where 

qa = k ~ l  -kf 
and 

q2 = ki2 - ky 

denote the two scattering vectors. Because (7) depends 
on the difference, 

q = q 1 - qz = kr - k I -  ki2 + k s = k~ - ki2, (8) 

of these scattering vectors only, the scattered intensity 
remains independent of the detection direction or kf. 

This independence is easily understood if we look 
upon the two illuminating beams in Fig. 5 as produc- 
ing real interference fringes in the measurement vol- 
ume. These fringes are parallel to the bisector of the 
two beams and have a spacing of 

s = 2zc/Iql = 2/2 sin (0/2). (9) 

Motion of a scattering particle perpendicular to these 
fringes results in a sinusoidal modulation of the 
scattered light with the Doppler frequency 

v o = 5c( t )/s = qYc( t ) /2n , (10) 

given by the ratio of the relevant velocity component 
and the fringe spacing. 

Particle motion all the way across the measure- 
ment volume causes a low-frequency change in lal a, in 
addition to this sinusoidal modulation. For constant 

particle velocity we obtain the characteristic Doppler 
bursts of laser Doppler velocimetry. Figure 6 shows 
such a burst for the simplest case of particle motion 
perpendicular to the fringes and right through the 
center of the measurement volume. 

c)  Coherent  and Incoherent  Detection.  So far we have 
neglected finite aperture effects of the detector, i.e. we 
assumed a single final wave vector k r. Quite clearly, a 
vanishing detector aperture implies vanishing signal 
intensity and is of no use for any practical purpose. In 
order to reduce shot noise, we would like to use as large 
a detector aperture as possible. 

Many setups used for quasi-elastic light scattering, 
however, do not tolerate large apertures. Many par- 
ticle homodyne as well as reference beam experiments 
require coherent addition of complex amplitudes scat- 
tered by all particles inside the measurement volume. 
Hence their mutual optical phase differences should 
not vary by more than a small fraction of 2re across the 
detector aperture. For a measurement volume of 
diameter d, this coherence condition limits detection 
apertures to a cone characterized by the coherence 
angle 

(51) 

With 2= 0.5 ~tm and d=0.5 mm we obtain an angle of 
0.001 rad corresponding to a detector aperture smaller 
than 0.2 ram, if the detector is placed 200 mm away 
from the measurement volume. The very small amount 
of scattered light which passes such a small detector 
aperture is responsible for the widespread use of single 
photon counting detection in QELS. 

If detector apertures are increased beyond one 
coherence cone, averaging of the speckle pattern in the 
detector plane reduces the contrast or the useful 
modulation of the detected signal. At large apertures, 
this reduction is proportional to the square root of the 
aperture area. This is exactly the same rate by which 
relative shot noise decreases with increasing aperture. 
Hence, larger apertures do not produce any gain in 
signal-to-noise ratio. In practice, detector apertures 
are kept within the order of one coherence area to 
avoid unnecessary dead time saturation of photon 
count rates. 

Still, there exist other dynamic light scattering 
experiments, which do allow incoherent, large apar- 
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V ~  Kf t Ki2 

LENS ~ / ~  

Fig. 5. Schematic symmetric real-fringe setup 
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t 
Fig. 6. Typical laser Doppler burst signal 
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ture detection without loss of contrast. Our discussion 
of single particle scattering in the symmetric dual beam 
or real fringe geometry showed, that the detected 
intensity did not depend on the scattering angle or k s 
(at least for point-like scatterers). Hence, an increase of 
the detector aperture simply increases the useful signal 
instead of producing a large constant background due 
to speckle averaging - the problem of coherent detec- 
tion schemes. 

Loosely speaking, the coherence requirement of 
QELS has been shifted from the receiver to the 
transmitter side of the real-fringe experiment. The 
strong analog signals, which can often be achieved by 
large aperture incoherent detection, made-the real- 
fringe technique the most popular one for laser 
Doppler velocimetry. It allows the use of inexpensive 
analog processors to measure Doppler frequencies in 
real time. 

Furthermore, the high signal quality offered by 
incoherent detection experiments allows the applic- 
ation of new signal processing schemes like rate 
correlation and the measurement of phase structure 
functions, which are covered in the last sections of this 
paper. 

An occasional problem of incoherent detection 
should not be overlooked, however. While the addition 
of complex amplitudes scattered by an arbitrarily large 
number of particles in the measurement volume did 
not reduce the signal contrast in coherent detection 
experiments, the addition of intensities in incoherent 
detection tends to build up a useless and often 
disturbing constant background. This background 
grows proportional to the number of scatterers N 
while the useful fluctuations grow like the square root 
of N only, due to random phase addition. The low- 
frequency background is typically removed by analog 
high pass filtering. There is, however, no possibility to 
remove its shot noise contribution in the signal 
frequency band. This noise again grows like the square 
root of N and we realize that incoherent detection 
experiments do not profit from an increased number of 
scattering particles in the measurement volume. 

Since incoherent detection often allows the use of 
detector apertures of the order of 10000 coherence 
areas, only extreme particle concentrations - in this 
case more than 10000 per measurement volume - 
result in a signal-to-noise advantage of reference beam 
setups. Such concentrations are rare in velocimetry 
applications but may well occur in diffusion studies on 
concentrated suspensions. 

2. Statistics for Dynamic Light Scattering 

The stochastic nature of many particle light scattering 
as well as of light detection suggests the use of 

statistical concepts to extract physical information 
from dynamic light scattering experiments. This sec- 
tion summarizes useful concepts like correlation and 
structure functions of doubly stochastic random pro- 
cesses, some important model distributions, and more 
specific problems like noise considerations and dead 
time distortions. 

2.1. Correlation of Doubly Stochastic Processes 

Signals considered in dynamic light scattering are 
typically doubly stochastic processes, where properties 
of a fluctuating physical quantity like light intensity 
(photon correlation) or particle velocity (rate corre- 
lation) are to be determined from measurements of a 
second quantity like the rate of photon detections 
(photon correlation) or of threshold crossing events 
(rate correlation). The first or underlying quantity x(t) 
typically constitutes a continuous stochastic process 
which governs certain statistical properties of the 
second discrete process n(t), a number of pulses 
counted during a sampling interval of length ts cen- 
tered at a time t. Quite naturally, we will restrict our 
attention to discrete times t, which are integer multi- 
ples of t s (Fig. 7). 

The relations between the two processes x(t) and 
n(t) simplify considerably if we assume that x(t) 
changes slowly as compared to the sample time clock 
interval t~. In this limit, the continuous process x(t) is 
well approximated by the discrete values it takes on at 
the clock times. Since ts is typically chosen small 
enough in practical correlation experiments, we will 
accept this approximation throughout this paper. 

Correlation measurements of doubly stochastic 
processes use two fundamental properties satisfied by 
many such processes. Firstly, we assume a linear 
relationship between the the expectation of n(t) and the 
instantaneous value of the underlying process x(t). If 
(A[B) denotes the conditional expectation of A given 
B, this linearity condition reads 

(n(t)lx(t) ) .  = Cx(t) . (12) 

Ib II IIIIIIIIII II IIIIIIII I1_ 
w 

nit) 
(c) ~ _  

Fig. 7a-c. Example of (a) a continuous process x(t), (b) derived 
sequence of events, and (c) the resulting discrete process n(t) 
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The index n is used to stress the fact that averaging is 
restricted to fluctuations of n(t) for a fixed value of x(t). 
C is a constant which can often be made equal to 1 by a 
proper choice of units. 

As a second condition we require statistical inde- 
pendence of counts n(t) and n(t+ ~) for arbitrary but 
fixed values x(t) and x(t + z) of the underlying process. 
From this independence condition we obtain a con- 
ditional expectation 

(n(t)n(t + z)[x(t), x(t  + z)).  

= (n(t)rx(t)), (n(t  + z)lx(t + v)),. (13) 

Our two fundamental conditions immediately yield 
the important relation between the temporal corre- 
lation functions of the two processes, 

G,(z) = (n(t)n(t + z) ) 

= ((n( t )n( t  + z)[x(t), x(t  + z)) .)~ 

= < <n(t)Ix(t)). <n(t + :)lx(t + z)).>x 

= C2(x( t )x( t  + :))x = C2Gx(z) �9 (14) 

(... 5~ denotes averaging over the underlying process. 
The use of the letter G for correlation functions is 
defined in (14). If necessary to avoid confusion, the 
process which is correlated is denoted by an index. 

It should be stressed that beyond our two funda- 
mental conditions of linearity (12) and independence 
(13), we did not need any further assumptions to derive 
the central relation (14). Particularly, we did not have 
to specify certain distributions for x(t) or n(t). This 
generality will, however, be lost if we compute more 
complicated properties of doubly stochastic processes 
and we will introduce important distribution models 
like Poisson, Gaussian, and Gamma processes in later 
sections. 

Since the autocorrelation of x(t) may be Fourier 
transformed to obtain the power spectral density - the 
well known Wiener-Khintchine theorem - spectral 
information about x(t) may be determined from the 
measured correlation of n(t). This idea of"time domain 
spectroscopy" is the basis of many applications of 
correlation techniques in dynamic light scattering. 

2.2. Structure Function 

While correlation functions are the most widely used 
concept to describe the temporal behavior of stochas- 
tic processes, comparable information is contained in 
the mean square change of the process, now known as 
its structure function [241, 

D~(~) = ( I x ( t ) -  x(t +.c)] 2 5. (15) 

In spite of the similarity of wording, this structure 
function has no relation to the so called structure 

(b) ~ ~ / ~  ~ 

s(co) 

{c) 

co 
Fig. 8. (a) structure function, (b) correlation, and (c) power 
spectrum of a sinusoidal periodic signal 

T 

C c l ~  

Fig. 9. (a) structure function, (b) correlation, and (c) power 
spectrum of a Lorentzian random process 

factor which describes anglular scattering cross sec- 
tions in static light scattering. 

For stationary processes x(t), correlation and 
structure functions are connected by 

Dx(z) = 2 (x(t)  2 ) - 2 (x( t )x( t  + z)) = 2Gx(0) - 2G~(z). 
(16) 

Essentially, structure functions are correlograms 
turned upside down. Eq. (16) and the Wiener- 
Khintchine theorem [66] may be used to transform a 
structure function into a power spectrum. Figures 8 
and 9 show two examples. 

While structure functions are just a possible alter- 
native to correlations for stationary processes, they are 
the only possible choice to characterize non-stationary 
processes with stationary increments, for which corre- 
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lation functions cannot be defined. Examples for such 
processes are Brownian motion and many optical 
phase signals. 

For later reference we state Einstein's famous result 
for the mean square displacement of a particle due to 
diffusion in one dimension [67], 

Ox(z) = ( [ x ( t ) -  x(t + z)] 2) = 2Oz. (17) 

D denotes the constant of diffusion and we recognize 
(17) as the structure function of the particle position 
x(t). 

Finally, we calculate the structure function of our 
doubly stochas$ic process n(t). Under the validity of the 
two fundamental conditions of linearity (12) and 
independence (13), we obtain 

D,(z) = (n(t) 2 - 2n(t)n(t + z) + n(t + z) 2) 

= ([n(t) 2 - (n(t)lx(t))z.] + [n(t + z) 2 

- (n(t  + r)lx(t + ~))2] + [(n(t)lx(t))2 

- 2(n(t)]x(t)),  (n(t  + z)[x(t + ~)5, 

+ (n(t  + z)[x(t + ~)52])x = (Vat  [n(t)lx(t)])x 

+ (Var[n( t  +'c)lx(t + z)])x+C2D~('c). (18) 

In comparison with (14) we find an additional back- 
ground term equal to the sum of the conditional 
variances of n(t) averaged over x(~) at the two times t 
and t + ~. Caution, these conditional variances are not 
equal to the variances of n(t), but always smaller than 
these. For stationary x(t), the two conditional va- 
riances are equal and the background does not depend 
on the lag time. 

This background shifts the structure function of 
n(t) to higher values and must often be subtracted out 
prior to further processing. Two schemes may be used. 
First, we may extrapolate D,(z) towards the lag time 
zero to obtain the background. This scheme makes use 
of the continuity of the structure', function of a con- 
tinuously differentiable random process. 

The second scheme requires explicit knowledge of 
the statistics of n(t) to compute the conditional va- 
riance in (18). This calculation is still independent of 
the statistics of x(t). In order to proceed with this 
scheme we must now focus our interest on model 
distributions. 

2.3. Stochastic Models 

While the Poisson process, which is characteristic for 
independent point events, clearly constitutes the most 
important candidate for our discrete process n(t), a 
large number of models may be treated for the statistics 
of the underlying continuous process x(t). Saleh [32] 
gave a detailed discussion of several such models. Our 
attention will be restricted to a single model, the 
Gamma distribution, only, which includes the popular 

Gaussian process as well as the exponential distri- 
bution as limiting cases. 

a) Poisson Process. The number of photons detected 
within a sampling interval of constant light intensity as 
well as the number of non-interacting point particles in 
a measurement volume are Poisson distributed ran- 
dom variables. Hence, the Poisson process will suffice 
as a model for n(t) in most dynamic light scattering 
applications. 

Let us, for simplicity, assume that the constant of 
proportionality in (12) equals 1 and omit unnecessary 
time arguments. The assumption of Poisson statistics 
for n(t) then reads 

P(n[x) = x" exp ( -  x)/n! (19) 

with conditional factorial moments 

( n ( n -  1)... ( n -  m + 1)Ix) = x m . (20) 

For m = 1, (20) immediately yields our linearity con- 
dition (12). 

Averaging over the - still unspecified - statistics of 
x(t) yields the Poisson transform of the density px(x), 

V(n) = ~ x" exp ( - x) px(x) dx/n ! (21) 
0 

with factorial moments 

( n ( n -  1)... (n - m + 1)) = ( x " ) ,  (22) 

equal to the ordinary moments of x. Equation (22) is 
frequently used to obtain moments of x from measured 
histograms of n. 

If the counts n(t) are statistically independent for 
non-overlapping sampling intervals, we may compute 
higher-order correlations of n(t). Up to fourth order, 
these mixed moments are required to calculate the 
estimator variances of measured correlograms and 
structure functions. Writing nl for .n(t0, x~ for x(tl), 622 
for 6(t~, t2), etc., and omitting the time index where it is 
not really required, we obtain [32, 26] 

(n )  = ( x ) ,  (23) 

(n ln2)  = ( X 1 X l )  -}- 012(x)  , (24) 

(nln2n3) = (X1X2X3) ~-~12~X1X3) -~ (~23(X1X2) 

"-~ 613(X1X2) -[- ~123(X) , (25) 

(nln2nan4) = ( x l x z x s x 4 )  + 6 tz (XlXaX4)  

-~ (~lS(XlX2X4)-~"" ~- ~123(X1X4) 

-~- r 
+ .-. + 651234 [3 (X2) + ( X ) ] .  (26) 

The Poisson character of the counting statistics shows 
up, whenever two or more of the considered (discrete) 
times coincide. For the ordinary second-order auto- 
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correlation (24), this leads to an additional contri- 
bution at zero lag time, which becomes large as 
compared to the rest of the eorrelogram at small mean 
count rates. 

In photon correlation applications, this zero spike 
may be avoided by cross correlation of the signals from 
two detectors, which are optically superposed by 
means of a beam splitter. This scheme reduces after- 
pulsing problems, as well [-33]. 

With Poisson statistics for n(t), the conditional 
variance in (18) yields 

Var (nix)= ( n ( n -  l)]x) + (nix) - (n ix )  2 = x = (nix),  
(27) 

amounting to a background equal to twice the mean 
count rate, which may easily be corrected in digital 
structure functions. 

b) Gamma Process. Intensity statistics in dynamic 
light scattering generally depend on the geometry of 
the measurement volume [-34, 35]. This dependence, 
however, vanishes in the limit of many independent 
particles (or particle clusters), where the central limit 
theorem predicts Gaussian statistics for the complex 
amplitude scattered into a coherent detector aperture. 

Gaussian amplitudes yield exponential intensity 
statistics 1-32]. Real experiments generally show nar- 
rower intensity distributions, because of the finite real 
detector area discussed in Sect. 1.2c. The effect of 
partial coherence may be modelled by adding inde- 
pendent exponentially distributed intensities originat- 
ing from the individual speckle areas within the 
detector aperture, which leads to a Gamma distributed 
sum intensity [-32]. The probability density and the 
generating function of a Gamma distribution are 

p(x) = ( x / f l ( x ) )  1- t/~ e x p ( - x / / / ( x } ) / f l ( x }  r(1/f l) ,  (28) 

( e x p ( -  sx)5 = (1 + / / ( x )  s)- 1/a (29) 

The moments are 

(x" )  = (x}m(1) (1 +fl)(1 +2//)... [1 + ( m -  1)//], (30) 

particularly, 

(x = (x) 0 +//). (31) 

The distribution parameter//may be recognized from 
(31) as the relative contrast or the degree of coherence 
of the signal or the "intercept" of the correlogram. 1/// 
denotes a number of degrees of freedom, - in dynamic 
light scattering easily identified with the number of 
independent speckles in the detector aperture. 

In order to compute correlation and structure 
functions, we need the joint distribution at two times or 
its generating function, 

(exp [-- sx(t) - s'x(t + x)] } 

= [(1 + fl (x} s) (1 + f l ( x )  s ' ) -  f12e2 (x )  2 ss'] - ~/a, (32) 

which contains the temporal correlation coefficient 
0(~) as a parameter. (32) yields a correlation function 

(x ( t ) x ( t  + z)) = @}2 [1 + fl0(~)2]. (33) 

Since ~(z) does not need to be specified, arbitrary 
shapes of the correlogram may be generated by the 
Gamma model. 

The final discussion of two special cases will further 
illustrate the generality of our model. For/3 = 1, the 
density (28) is just an exponential density. This case of 
perfect coherence is obtained for the intensity statistics 
of the widely used quasi-thermal or Gaussian light. 

For very small values of//, infinite divisibility of the 
Gamma distribution and the central limit theorem 
predict an approach towards a Gaussian distribution 
with mean (x} and variance//(x} 2. In this limit, the 
Gamma model may even serve to describe many 
particle reference beam experiments. 

2.4. Noise Considerations 

The usefulness of structure functions and correlation 
functions is largely determined by their noise perfor- 
mance. For a doubly-stochastic process, two separate 
sources of noise must be considered. 

Firstly, random fluctuations of n(t) about its ex- 
pectation Cx(t) cause a counting noise. This type of 
noise is known as photon noise in photon counting 
experiments and may be associated with fluctuations 
of the particle arrival rate in rate-correlation experi- 
ments. It dominates at small count rates (less than 1 per 
sample time) and is easily recognized in measurements, 
because it shows up as random scatter of the measured 
values in the various lag time channels of a structure 
function or correlogram. 

Much less obvious - but equally important - than 
wide bandwidth counting noise, are the typically band 
limited fluctuations of the underlying signal x(t), which 
result in "signal noise" that is highly correlated in 
adjacent channels. Its dominance at high count rates 
yields smooth measured curves, which, however, ap- 
pear to be badly reproducible in repeated 
measurements. 

The fundamental calculation of both types of noise 
for photon correlation functions of a Gauss-Lorentz 
light, i.e. of light with Gaussian amplitude statistics 
and Lorentzian spectrum, was carried out by Jakeman 
et al. [37, 38]. They found a slight decrease of the single 
channel estimator variance with increasing lag time, 
and a pronounced increase of this variance with 
decreasing mean count rates - the photon noise 
regime. Above some 10 counts per coherence time, 
noise levels saturate - photon noise becomes negli- 
gable, as compared to signal noise. 
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Both types of noise are also treated in [26] where I 
compared the noise of normalized photon correlation 
as well as photon structure functions for the same case 
of Gauss-Lorentz light. Both, homodyne and hetero- 
dyne experiments with perfectly coherent detection 
were treated. 

Correlation functions generally show less sensitiv- 
ity to wide bandwidth counting noise. Exponentially 
distributed x(t) yields a ratio up to 1/~ on favor of the 
standard deviation ofcorrelograms. For Gaussian x(t), 

this ratio is reduced to ]/~ [25, 26]. 
Signal noise, however, with its typical narrow 

bandwidth, affects structure functions less than corre- 
lograms. In contrast to correlograms, structure func- 
tions show a pronounced decrease of their estimator 
variance at small lag times for high count rates [26]. As 
a consequence, reliable information about fast signal 
components may be obtained by structure functions 
within shorter measurement times than by 
correlograms. 

Furthermore, computer simulations [25] as well as 
theoretical considerations [26] indicate better stability 
of structure functions to very short total measurement 
times. Similar advantages exist for drifting signals and 
signals with a large constant background [24]. 

2.5. Dead Time Distortions 

A typical systematic error of all counting systems is due 
to dead time effects which are caused by finite response 
times of the detector or the counting electronics. Dead 
time effects are particularly annoying, because their 
presence violates both of our fundamental conditions. 

While deviations from linearity due to dead time 
saturation are limited to high count rates, which must 
be a significant fraction of the inverse dead time, the 
independence condition does not hold even at small 
count rates, if we consider lag times comparable to the 
dead time. 

a) Paralyzability. For quantitative dead time investi- 
gations, we must specify the type of dead time behavior 
in our system. Well suited for theoretical studies are 
two limiting cases. 

In one limit, any input event blocks the system for a 
certain dead time, no matter whether the particular 
event fell within some other input event's dead time 
period or not. Such a system becomes completely 
blocked at very high count rates and is therefore called 
paralyzable. Examples are single beam rate correlation 
experiments or photon counting photomultipliers with 
ideal Schmitt-trigger type discriminators. 

Monostable pulse shaping circuitry and the input 
counters of digital correlators, however, are better 
modelled by the other limiting case of nonparalyzable 

systems. This type of systems simply ignores input 
events, which fall into a dead period, without further 
extension of this period. The output event rate appro- 
aches the inverse dead time for very large input event 
rates. Figure 10 illustrates both cases. 

b) Dead-Time Effects in Correlograms. In contrast to 
the large number of papers dealing with dead-time 
distortions of single-time photon counting statistics 
(references in [8, 32]), calculations of correlation dis- 
tortions seem to have been restricted to first order 
approximations [32, 40] or exotic cases of clipped 
correlograms [41], until my recent studies of dead time 
effects in photon correlation [8] and structure [42] 
functions of doubly stochastic Poisson type input 
processes. 

These studies showed that the problem is most 
easily solved for the case of a paralyzable system. For 
such a system, the probability of an output event 
depends on the number of input events falling into one 
dead time interval immediately preceding the output 
event considered, but not on any events further back in 
time. If this number is zero, the output event has the 
same probability as the corresponding input event. If 
this number exceeds zero, the probability of the output 
event vanishes. Integration over the sampling intervals 
of width t~, separated by a lag time z yields the 
conditional expectation of the digital correlation for 
given values of the underlying process x(t) or - for the 
sake of brevity - x~, 

(non~txox~) = C2xox~ exp [ -  C(x o + x~) tJt~] f ( z ,  t~, ts) 

with 04) 

1 for ~>t~+ts ,  

f ( z ,  ta, t~) = 1 -- (t a + t~-- ~)z/2t2 for t a + t~ > z > t d, 

(z + t~-- ta)2/2t 2 for t a > z > td-- t~, 

0 for t a - t ~ > z .  
(35) 

Equation (34) replaces (13) and shows both, saturation 
nonlinearity in the exponential function, and statistical 
dependence in the factor f, because of paralyzable 
system dead time td. 

,o, II III I III 

v 
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t 
Fig. 10. (a) signal without dead time and signals of a (b) 
nonparalyzable or a (c) paralyzable system 
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For nonparalyzable systems, the region where f 
deviates from unity extends beyond the sum of dead 
time and sample time. Furthermore, this factor now 
depends on the count rate [8]. The exponential 
nonlinearity in (34) gets replaced by terms like [8, 32] 

(1 + Cxtta/ts)- t. (36) 

Obviously, dead time effects depend on the statistics of 
the underlying process x(t). Using the fairly general 
Gamma model of Sect. 2.3b, the paralyzable system 
yields a normalized dead time distorted correlation 

g.(z) = ( n o n , ) / ( n )  2 = f (z ,  td, t,) 

1 + fi(1 - 2e - 2fie 2) (1 + fie)- 202 + f12e2(1 + fig) - 2/._)4 
x 

[ ]  - -  f1292(1 + fie) - 2 0 2 ]  2 + 1//~ (37 )  

e is used as a dimensionless measure of the input count 
rate times the dead time, 

e = C ( x )  ta/t s . (38) 

The nonparalyzable case is not easily computed in 
closed form, but may be well approximated by a 
paralyzable system with a dead time distributed at 
values 

(2_+ ]f2)t a (39) 

with weights 

(2-T- ~f2)/4, (40) 

which is a tractable problem [8]. This approximation 
holds over much larger ranges of e than power series 
expansions because the latter possess asymptotic con- 
vergence only. 

c) Dead-Time Effects in Structure Functions. In ad- 
dition to the same distortions as in correlograms, 
digital structure functions of Poisson processes show 
another dead time effect due to the presence of single 
time second moments in (18). Since dead times tend to 
narrow counting distributions, the second-order mo- 
ment in the relation between structure function and 
correlation, 

((n o - n~) 2) = 2 @2) _ 2 (none),  (41) 

falls below the value obtained for a true Poisson 
process. The usual normalization by subtraction of 

<n2> = C2 < xZ> + C <x > (42) 

must be replaced by subtraction of the corresponding 
dead time corrected moment [42]. 

In the paralyzable case, this moment reads [39, 8] 

<n2>=C(l_2ta/ t~+ 2 2 ta/t ~ ) ( x  a exp( -  2Cx))  

+ C ( x  exp( -  Cx))  (43) 

for dead times t a below the sampling time ts. For larger 
dead times, the first term on the right-hand side of (43) 
vanishes. 

With the Gamma model of Sect. 2.3b, (43) may be 
computed as [42] 

(n2)=cZ(l_2ta/ ts  + 2 2 t d / t  s ) ( X )  2 (1 "[- j~) (1 - -  2fla) 
+ C ( x )  (1 + fig) (44) 

for dead times smaller than the sample time. 
Corresponding considerations for nonparalyzable 

systems lead to 

(n 2) = C2(x2/(1 + Cxta/ts) 2) + C (x/(1 + Cxta/t,) 3 ) 
(a5) 

and, with a Gamma process for x and power series 
expansion in e [42], 

(n 2) = C(x)Z(l +/3) [1-2(1 +2fl)g 

+ 3(1 + 2/?)(1 + 3fl)e 2] + C ( x )  [ I  - 3(1 + fi)e 

+ 6(1 +//) (1 + 2fi)e 23 + O(e3). (46) 

Without knowledge of the counting statistics, structure 
functions of stationary processes may be converted to 
correlations, if a monitor channel actually measures 
(n2). This scheme works even in the presence of dead 
times. My digital structurator/correlator [28, 43, 44] 
computes (n 2 ) in place of the zero lag time channel of 
the structure function, which is zero by definition and 
hence redundant. 

3. Photon Correlation 

Following our summaries of the basic optical designs 
and statistical concepts useful in dynamic light scatter- 
ing, we start the description of specific applications 
with photon correlation- certainly the best known and 
most widely used one of the signal processing schemes 
in quasi-elastic light scattering. 

Many optical setups, as discussed in Sect. 1, require 
the use of coherent detection. This implies small 
detection angles and hence low light levels at the 
detector. Single-photon counting with its essentially 
quantum-limited noise performance has long become 
the standard technique for the measurement of weak 
scattered light signals. 

The digital nature of single-photon counting pulses 
makes them well suited for processing by digital 
correlators, which offer a large dynamic range and 
absence of distortion or processing noise. In fact, it was 
only after the invention of Malvern's classic single bit 
correlator [6, 7], that intensity spectroscopy had its 
real breakthrough. 

We will proceed with sketches of the two major 
applications of photon correlation today, the study of 
Brownian motion for particle sizing and the measure- 
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ment of flow velocities by light scattering from tracer 
particles. 

3.1. Brownian-Motion Studies 

Brownian motion of suspended particles, e.g. macro- 
molecular solutions, or even thermal diffusion of 
fluctuations of the local refractive index in pure liquids, 
result in a system of many scatterers, which move 
relative to each other. In Sect. 1.1 we showed that such 
a relative motion produces intensity fluctuations of the 
light scattered from a single probing laser beam into a 
coherent (small) detector aperture. The fact that the 
single beam or homodyne setup is insensitive to 
collective motion of the scatterers yields high stability 
against convection or vibration problems and has 
made the homodyne technique very popular in many 
branches of physics, chemistry, and biology. 

a) Amplitude Correlation. The principle of diffusion 
measurements by light scattering is most easily ex- 
plained by considering amplitude or so called first 
order correlation functions. From (5) we may compute 
them as 

G (z) = (uv(O) u;(~) ) 

= N([a[ 2) (exp [iqAxj(r)]), (47) 

if we assume statistical independence of the scatterers, 
i.e. neglect particle interactions, and assume identical 
particles or monodisperse suspensions. Furthermore, 
we make use of the usual assumption of slowly varying 
absolute single particle amplitudes, which allows us to 
perform phase averages separately. Equation (47) 
depends on the lag time �9 through the average particle 
displacement Ax(r) only, which Einstein found to be 
normally distributed with variance (17) or 

(A x(z) 2 ) = 2Dz, (48) 

true for lag times large compared to hydrodynamic 
relaxation times. Computation of the average in (47) 
thus amounts to taking the Fourier transform into 
q-space of the Gaussian particle displacement density 
and yields 

aa('c ) = N(la] 2 ) e x p ( -  qZDz), (49) 

an exponential decay with a time constant from which 
we may obtain D, the constant of diffusion. This 
exponential correlation corresponds to a Lorentzian 
spectrum. Typical time constants or bandwidths are 
between I Hz and 1 MHz, indeed very small as com- 
pared to optical frequencies. This is the reason for the 
great success of time domain spectroscopy in diffusion 
measurements. 

Using the Stokes-Einstein relation [67], 

O = kr/(6ntla), (50) 

where k denotes Boltzmann's constant, T the absolute 
temperature, and t/the viscosity of the solvent, we may 
calculate the particle radius a from measured diffusion 
constants D. Thus we have an optical technique to 
determine sub-wavelength particle sizes. Possible appli- 
cations are studies of solid particles, macromolecules, 
emulsion droplets, micelles, and a large number of 
microbiological systems in the size range between 
several nm and some 1 gm or more. 

b) Intensity Correlation. While amplitude or first- 
order correlations are most easily computed, all 
photon correlation experiments really yield intensity 
or second-order correlation functions only. With the 
assumptions used in Sect. 3.1a, we quickly obtain the 
intensity or photon correlation 

G(~) = (n(0) n(~)) = (uo(0) u;(0)uD(~)u;(~)) 

= ~ ajamapaq 
j 1 m=l  p = l  q= l  \ 

x exp {iq Ix j(0) - xm(0) + xv(r) + xq(r)] }) 

= N(lal 4) + N ( N -  i) (]al2) 2 
/ 

• { 1 + [(exp [iqA x(r)])l 2} 

= N(la[ 4)  + N(N-- 1) (lalZ) 2 

x {1 +exp(-2qZD'c)}. (51) 

For a large number of particles in the measurement 
volume N, (51) simplifies to the Siegert relation [46] 

g2(z) = G2(z)/(n) 2 --- 1 + [gl(r)l 2 . (52) 

This relation generally holds for Gaussian amplitude 
statistics. The small g will be used for normalized 
correlations throughout this paper. 

For identical, independent particles, (52) predicts a 
singly exponential decay also for the intensity 
correlation, 

g2(r) = 1 + exp( -  2qZD'c). (53) 

Compared to the amplitude correlation, (53) shows an 
additional background and a decay that is faster by a 
factor of 2. 

Real experiments with finite coherence at the 
detector produce lower contrast in the signal and lead 
to a reduced second-order correlation 

g2(z) = 1 + fl exp( -  2qZDz). (54) 

Even though the intercept fl could - in principle - be 
computed from the optical setup, it is commonly 
determined from the actually measured correlogram. 

The usual evaluation procedure of correlation data 
involves normalization by the mean count rate or a 
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very large lag time value of the correlogram ("far 
point"), subtraction of the background, and a linear 
regression to the logarithm of g2(r)- 1. The slope of the 
fitted line yields the time constant and hence D, its 
intercept with ~ = 0 is/Y. 

c) Polydispersity. Of course, quasi-elastic light scat- 
tering is not restricted to monodisperse, noninteract- 
ing particles. Many real suspensions show polydispers- 
ity, i.e. a spread in particle size, and at high con- 
centrations, interactions will always influence the 
Brownian motion. Both effects lead to a spread in the 
time constant in (49), which may be modelled by a 
continuous distribution or by a sum over discrete 
values. 

This distribution of time constants is related to 
gl(z) by a Laplace transform, g2(~) contains additional 
cross terms and is hence less suitable for direct 
polydispersity analysis. The common first step of such 
an analysis is thus inversion of the Siegert relation (52) 
to obtain 

igl(z) I = [g2(~)_  1] 1/2. (55) 

Unfortunately, the Laplace inversion of finite ac- 
curacy data constitutes an ill-posed problem [4]. 
High-frequency components in the distribution of time 
constants tend to be averaged out by integration over 
the very smooth Laplace kernel and are easily buried in 
experimental noise. Hence, they cannot be reconstruc- 
ted upon inversion. McWhirter and Pike [47] clearly 
explained this behavior in terms of an eigenfunction 
analysis of the Laplace transform. 

In practice, bimodal size distributions cannot be 
clearly resolved, if the two peaks are separated by less 
than a factor of about 2. Still, mean diffusion constants 
may be determined with about 1% accuracies, even for 
rather wide particle size distributions [46]. 

A large number of procedures have been used to 
invert correlation data. They range from a simple 
cumulant fit to main frame programs like CONTIN. A 
recent review was given by Stock and Ray [46]. More 
details may be found in the papers by Ostrowsky and 
Sornette, Bertero and Pike, Ford and Chu, Danovich 
and Serdyuk, as well as Provencher in [4]. Yet the 
search for reliable procedures still continues and seems 
to be revived by linear optimization schemes now [-48]. 

A common feature of many inversion schemes is a 
logarithmic spacing of the time constants in calculated 
distributions, i.e. grid points are chosen as a geometric 
series. Eigenfunction theory [47, 4] justifies this choice 
and even suggests a geometric pattern for the spacing 
of lag times in the correlation function. Such a channel 
spacing would optimize the resolution over large lag 
time ranges with a limited number of channels - and 
hence limited cost - of the correlator. 

First attempts to approximate a geometric lag time 
spacing by the introduction of suitably spaced delay 
channels, however, unfortunately sacrificed the noise 
performance of the instrument [49]. Splitting conven- 
tional correlators into up to 4 separate units with 
different sample times provided a costly but very 
limited approximation of the ideal geometric spacing. 

d) New Structurator/Correlator. A novel correlator 
architecture was required to provide a n  increasing 
width of the sampling time intervals proportional to 
the geometrically increasing lag time over a large range 
of times. Only such an increase in sampling interval 
width would keep the signal-to-noise ratio of a geo- 
metrically sampled correlogram at the same level as it 
would be for a correlogram with constant lag time 
increment and a very large number of channels [49]. 

The major benefits of a geometric channel spacing 
- lower cost of the instrument and less computer time 
used for inversion procedures - all result from the 
reduction in the number of channels required to span a 
certain lag time range. These benefits would be most 
noticable for a very large range of simultaneous lag 
times, say a spread like 1 : 10000 or more. 

Based upon fast input data buffering, a new 4 by 4 
bit fully parallel pipelined channel design, and a 
separate 16 bit processor to compute very large lag 
time channels, I developed an architecture for my 
digital structurator/correlator [28, 43, 44], which 
achieves multiple tau operation with up to 23 groups of 
8 linearly spaced channels each. The sample time is 
doubled between adjacent groups, yielding a pseudo 
geometric structure over a range of more than seven 
decades of simultaneous lag times, e.g. between 1 gs 
and several 10 s. 

Such an enormous lag time spacing greatly eases 
the measurement of very wide distributions of time 
constants, as they are observed in strongly interacting 
samples [64]. Figure 11 presents as an example the 
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Fig. 11. Photon correlation function measured by homodyne 
scattering under 20 ~ from strongly interacting latex spheres, 
covering more than seven decades of lag times in a single run 
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multiple tau correlogram of a sample, where 50 nm 
latex particles in deionized water show strong and 
long-range electrostatic repulsion. The time constants 
extend over much more than three decades. 

Besides offering such an enormous range of simul- 
taneous lag times, the structurator/correlator is the 
first available instrument able to compute digital 
structure functions with the same: high speed (sample 
times down to 20 ns, count rates up to 100 MHz) as 
correlograms. The possibilities offered by the use of 
photon structure functions instead of correlations - 
particularly on highly polydisperse systems - are still 
largely uninvestigated today. 

Theoretically expected [26] are improvements, if 
fast components are to be measured in the presence of 
slower ones at sufficiently high count rates. Such 
components, which correspond to small length scale 
refractive index structures, are typically weak, due to 
the strong particle size dependence of scattering ampli- 
tudes in the Rayleigh regime. These components are 
often difficult to determine by photon correlation 
functions. 

e) Reference-Beam Measurements. Because of their 
uncritical setup, single-beam homodyne optics domi- 
nate Brownian motion studies. The same measure- 
ments may, however, be done with one of the reference 
beam setups as described in Sect. 1.2, as well. 

Advantages in the signal-to-noise ratio and the 
possibility to reach smaller scattering angles make 
reference beam or heterodyne techniques preferable, if 
very large diffusion constants are to be determined. 
This is the case for studies of thermal diffusion in pure 
liquids [33] or diffusion of concentration fluctuations 
in liquid mixtures. 

Improvements due to heterodyning should also 
exist for polydispersity problems, because reference 
beam techniques yield as an essential contribution to 
the correlogram the product of reference intensity and 
the first order or amplitude correlation of the scattered 
light. Thus there is no need to reduce a second-order 
correlation to a first-order correlation, a procedure 
which significantly reduces the signal-to-noise ratio of 
homodyne measurements at large lag times. 

Disadvantages of heterodyne techniques are their 
high sensitivity to mechanical vibration or convective 
flows in the sample, as well as particularly stringent 
requirements for laser stability and absence of after- 
pulsing in the photo detector. The last problem may be 
circumvented by cross correlation, at the price of a 
reduced signal-to-noise ratio [33]. 

3.2. Velocimetry 

a) Laser Doppler Techniques. Wlaile the sensitivity of 
heterodyne experiments to collective particle motion 

was just a nuisance in diffusion studies, it is the desired 
effect for the measurement of flow velocities. In the 
transition regime between both applications we find 
mobility studies, e.g. on biological systems. 

The principle of laser Doppler velocimetry (LDV) 
was already explained in Sect. 1.2, when we discussed 
dual beam setups. Velocity information is obtained 
from the size of the Doppler shift of laser light scattered 
by small particles (0.5 gm... 5 gin, typically), which 
move with the flow under study. 

Many LDV experiments use symmetric real fringe 
setups with large aperture incoherent detection, in 
order to produce strong Doppler signals that are 
suitable for analog real time processing by counter or 
tracker systems [11, 50]. 

More demanding applications, however, like long- 
range and backseattering setups, or measurements that 
need extreme accuracy [51], often require the high 
sensitivity and the statistically correct averaging of- 
fered by photon correlation processing. 

The typical LDV measurement volume in the 
crossing region of two laser beams consists of a fringe 
pattern with Gaussian envelope (Fig. 6). A flow veloc- 
ity v perpendicular to the fringes produces a norma- 
lized and baseline corrected correlogram like 

g2(z) = exp( -  vzzz/2R 2) [I -}- fi cos(qvz)],  (56) 

where R denotes the radius of the measurement 
volume, q the scattering vector length or 2re/fringe 
separation, and fl is the fringe visibility. 

Velocity fluctuations, e.g. due to turbulence, are 
measurable, if their relative magnitude exceeds the 
ratio of fringe separation to the diameter of the 
measurement volume, i.e. for turbulence levels above 
the inverse number of fringes. With typical systems 
using some 10... 100 fringes, resolutions between 1% 
and 10% may be obtained. The correlogram may be 
computed as a velocity average of (56), 

g2('C) = ~ p(v) exp( -  v2za/2R2) [I -1- fl cos(qvz)] dr. (57) 
o 

Again, an inversion problem must be solved to recover 
p(v), the velocity distribution. For the simplest case of 
many fringes, the exponential factor in (57) may be 
neglected and a straightforward Fourier transforma- 
tion yields p(v). More sophisticated inversion schemes 
combine Fourier transforms with corrections for the 
neglected exponential. Maximum resolution may be 
obtained by eigenfunetion expansions. The papers by 
Abbiss, Brown, and Inman and Bradbury in [4] 
contain reviews of the various inversion schemes. 

Inversion of photon correlation data is greatly 
simplified, if the character ofp(v) is known a priori as a 
model distribution, where just a few parameters must 
be fitted. Gaussian distributions, if necessary modified 
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by a Gram Charlier series, were used to model 
turbulence [52] with good success but occasional 
convergence problems. 

Easier than for turbulence, correct models may be 
formulated for simple periodic flows. For a sinusoidal 
flow, (57) yields a series of Bessel functions. Using this 
series up to second-order provided an excellent fit to 
correlograms measured in a singly periodic Taylor- 
Couette flow, i.e. the flow between an inner rotating 
and an outer fixed cylinder. Figure 12 shows an 
example. 

b) Laser Transit Velocimetry. For low turbulence 
levels, a second laser technique has been established 
besides LDV. The dual focus or laser transit velo- 
cimeter (LTV) uses two narrowly focused parallel 
laser beams, in order to determine flow velocities from 
the measurement of the time delay between the cross- 
ing times of a single particle, that transverses both 
beams. 

Again, photon correlation is the most suitable 
technique for long range measurements with low 
scattered light intensities. A single detector and auto- 
correlation or a separate detector for each beam and 
cross correlation may be used. In both cases, the 
velocity is determined as the ratio of the beam 
separation and the lag time corresponding to the 
correlation maximum. 

As compared to LDV, LTV allows measurements 
closer to reflecting and scattering walls, where many 
technically important flow phenomena are located. 
More information about laser transit velocimetry may 
be found in the paper by Brown in [-4]. 

c) T~me-Resolved Velocimetry. Analog processors for 
laser velocimetry signals typically provide real time, 
instantaneous velocity information (although with a 
limited accuracy, usually in the 1% region). Photon 
correlation processing, however, owes its advantages, 
like the ability to recover a weak signal buried in noise 
or the statistically correct averaging even at high 

Gin 2) ( "C ) 

fPi 
/+ ,  , +  . 

0 2 /4 TI ms 

Fig. 12. Photon correlation function measured by the real fringe 
technique on a rotating Tay]or-Couette flow in a region of singly 
periodic instability (crosses) and model fit (continuous line) 

turbulence levels, to long-time averaging. Hence veloc- 
ity information from photon correlation systems is 
typically precise, but time averaged. Even if high 
signal-to-noise levels allow for short data collection 
times, there remains the time consuming problem of 
recovering velocity information from measured 
correlograms. 

The high cost of a real-time photon correlation 
velocimeter, e.g. a fast correlator plus a parallel FFT 
processor for inversion, has restricted the use of such 
systems to laboratory tests. The inability of simple 
photon correlation setups to provide real time flow 
data probably explains, why photon correlation found 
much less acceptance for velocimetry than for particle 
sizing applications. 

4. Recurrence Rate Correlation 

Information about the temporal character of flows, 
which is so difficult to obtain by photon correlation, 
may however be determined quite elegantly by a 
different correlation technique. This technique, now 
known as rate correlation, allows immediate measure- 
ments of temporal velocity correlation functions. 

4.1. Single-Beam Rate Correlation 

Rate correlation was invented by Erdmann and Gellert 
[-9, 10], who used a simple single beam geometry, as 
described in Sect. 1.1, with incoherent detection. Of 
course, such a system is "blind" to Doppler shifts, but it 
is well suited to count particle transits by comparing 
the scattered light intensity against a fixed threshold. 

Let us consider these particle transit events as our 
discrete counting signal n(t). Their average rate is 
proportional to the particle density, the cross section of 
the observed measurement volume, and the flow 
velocity v(t). For constant particle concentration we 
obtain 

(n(t)]v(t) ) = Cv(t) (58) 

with constant C- jus t  our linearity condition (I 2). If we 
limit our attention to lag times larger than the longest 
particle transit time through the measurement volume 
and assume noninteracting particles, we obtain statis- 
tically independent counts n(t) and n(t+ ~) for given 
velocities the second one of our two fundamental 
conditions. Hence we may apply our theory of corre- 
lations of a doubly stochastic process and arrive at 

<n(t)n(t + ~)} = C z<v(t)v(t + ~)}, (59) 

proportionality between rate correlation and velocity 
correlation. 

The constant C depends on particle concentration, 
laser power, detector sensitivity, and the set threshold. 
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In practice, it must be determined experimentally, if 
absolute velocity units are required. For many experi- 
ments, however, normalized correlation information 
suffices, and C need not be determined. 

The existence of a "forbidden region" at small lag 
times is typical for rate correlation techniques. It limits 
temporal resolution just like the finite size of the 
measurement volume limits spatial resolution. For 
single-beam rate correlation, the "forbidden region" 
equal to a particle's transit time shows a strong 
similarity to the dead-time problem in photon 
correlation. 

Practical advantages of single-beam rate corre- 
lation as compared to other optical velocimetry 
schemes are the extremely simple setup, the use of 
efficient incoherent detection, and the small bandwidth 
required for signal processing. These advantages 
become important for longe-range measurements at 
large velocities. 

Disadvantages are the critical dependence on uni- 
form seeding, the difficult determination of the con- 
stant C in (59), and the unusual radi'al velocity com- 
ponent measured by single-beam rate correlation. 

4.2. Cross Beam Rate Correlation 

In order to obtain correlations of single Cartesian 
velocity components, I combined the idea of rate 
correlation with the conventional symmetric real 
fringe optics of laser Doppler veloeimetry. Incoherent 
detection and forward scattering produce a strong 
analog signal. High-pass filtering removes the low- 
frequency pedestal due to the mean intensity profile in 
the measurement volume. There remains a pure ae 
signal o f -  possibly overlapping -- Doppler bursts. The 
zero crossings of these bursts are the counted events, 
our rate signal. 

a) Low Seeding. At low particle concentrations, we 
neglect burst overlap, i.e. we ignore situations with 
more than one particle inside the measurement volume 
at any one time. Hence the burst arrival rate equals 
that of single-beam rate correlation, with the exception 
of a differently shaped measurement volume. 

The additional presence of fringes in the measure- 
ment volume serves to code the velocity direction. 
Particles moving in a fringe plane do not produce any 
zero crossings in the high-pass filtered Doppler signal. 
Only a velocity component v perpendicular to the 
fringes contributes to the zero crossing rate. The rate of 
such crossing events inside a burst equals 2v/s, if s 
denotes the fringe separation. 

As a result, we obtain a crossing rate proportional 
to v and hence a rate correlation function 

(n(t)n(t + ~) ) --- C 2 (v(t)v( t + "c)) (60) 

for lag times -c outside of the "forbidden region" below 
the longest particle transit time through the measure- 
ment volume. Differentiation between forward and 
backward flows is, just like in conventional LDV, 
possible by frequency shifting [12-14]. At the same 
time, frequency shifting may ease the correct setting of 
the high pass cutoff frequency. The size of the "for- 
bidden region" is not affected by frequency shifting. 

While cross beam rate correlation does measure a 
more useful Cartesian velocity component, the other 
disadvantages of single-beam rate correlation, in parti- 
cular the dependence on uniform seeding, are not 
overcome at low seed particle concentrations. Com- 
plexity of the optical system and processing band- 
width requirements are much higher for the cross 
beam technique. 

b) High Seeding. In the opposite limit of high seeding 
concentration, we may assume many particles inside 
the measurement volume all the time. With incoherent 
detection, we obtain Gaussian intensity statistics. The 
theory of Gaussian random processes [53] relates the 
rate of zero crossings to the curvature of the temporal 
correlation of the high pass filtered Doppler signal, 

(I( t ) I( t  + v)) = exp( - vz 'cz /2R 2) cos  ( q w ) ,  (61) 

at lag time zero by 

(n(t)Iv(t))/t s = 2 [(v/s) 2 + (v/27cR) 2] 1/2. (62) 

t~ is again used to denote the length of a sampling 
interval. With typical beam radius values R more than 
a decade above the fringe separation s, the last term in 
(62) may be safely neglected. Hence we obtain a zero 
crossing rate close to twice the Doppler frequency and 
a rate correlation 

(n(t) n(t + ~)) = (2tJs) 2 (v(t)v(t + ~)). (63) 

At high seeding, the constant C in (60) approaches a 
limit, that is given by the scattering geometry alone. 
The dependence on nonuniform seeding vanishes, we 
overcome the second disadvantage of single-beam rate 
correlation. 

Particularly with frequency shifting or at small 
turbulence levels, measured rate signals at high seeding 
show small fluctuations about their mean only. For 
such signals, structure functions yield faster and more 
accurate results than correlations [14, 24]. Further- 
more, structure functions may be computed by a 
simpler algorithm than correlograms, if multi-bit data 
are processed [19]. Hence, we now prefer the measure- 
ment of rate structure functions instead of correlo- 
grams, if the flow permits high seeding levels. 

If correlators are used to process weakly fluctuat- 
ing signals, their performance may be greatly improved 
by a subtracting preprocessor, which reduces each n(t) 
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by a fixed value prior to correlation processing to 
increase the relative variance [14, 55, 56]. 

The sensitivity of cross beam rate correlation at 
moderate seed levels like one particle per measurement 
volume may be reduced by passing the Doppler signal 
through an LDV tracker prior to thresholding 
[-13, 56]. The tracker holds the Doppler frequency 
during short drop outs, but it may cause problems with 
fast velocity changes. Rate correlograms may become 
distorted at small lag times, a tracker tends to extend 
the "forbidden region". 

The Taylor-Couette flow again supplies a measure- 
ment example. In this case, the cross beam rate 
correlogram obtained with a tracker clearly shows the 
presence of two oscillation modes in the flow with some 
broadening of the fast component (Fig. 13). 

Particularly for the investigation of very complex 
temporal flow patterns in Taylor-Couette flow, I 
developed a special structure function processor with 
up to 8000 channels, 8 bit input data format, and real- 
time operation at sample times below 1 ms as a single 
board unit to be plugged into a commercial micro 
computer. 

4.3. Noise Considerations 

The arrival of seed particles in a measurement volume 
follows - j u s t  like photon counting statistics - essen- 
tially a Poisson process. Hence, our noise consider- 
ations, although initially formulated for photon corre- 
lation only, may be applied to rate correlation as well. 
The correspondence is obvious for single-beam rate 
correlation. It may be extended to cross beam corre- 
lation, if we treat whole bursts (instead of single 
threshold crossings) as Poisson events. 

Sources of noise are counting noise - due to 
random particle arrival -~ and signal noise - due to 
fluctuations of the measured velocity component. 
Their relative importance is governed by the number of 
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Fig. 13. Rate correlation function measured by a real fringe setup 
with PLL tracker, showing doubly periodic instability of Taylor- 
Couette flow 

seed particles arriving within one "coherence time" of 
the flow velocity, i.e. within the turbulent integral time 
scale. If this number is of order unity or below, 
counting noise dominates. In this limit, the seeding 
level directly determines the measurement accuracy. In 
the opposite limit of large particle arrival rates, signal 
noise dominates and not much is to be gained by 
further increases of the seeding concentration. 

The crossover concentration between both regimes 
depends on the turbulence level. This behavior is quite 
analogous to the noise performance of reference beam 
experiments in photon correlation. Both cases may be 
modelled by Gaussian statistics of the underlying 
process. While counting noise is essentially determined 
by the mean value of the underlying process, signal 
noise is - by definition - equal to its variance. For a 
Poisson counting process, we obtain a crossover 
concentration proportional to the inverse relative 
variance of the signal, i.e. the square of the inverse 
turbulence level. 

If experimentally feasible, the seeding level should 
be chosen above this crossover, in order to ensure 
maximum accuracy of the measured rate correlogram. 
If the seed level is so high as to keep the average 
number of particles in the measurement volume above 
one, we also have the benefit of knowing the constant 
of proportionality in (60), independent of the absolute 
value of the seed particle concentration. While in this 
limit the noise analogy to photon correlation breaks 
down due to severe burst overlap, this typically 
happens well above the cross-over concentration for a 
well designed experiment, where the noise level has 
already become independent of the seeding 
concentration. 

Depending on the dominating type of noise, we 
should decide, whether to use structure function or 
correlation processing. Below the crossover concen- 
tration, with dominating counting noise, correlograms 
provide better signal-to-noise ratios. Above this limit, 
where signal fluctuations prevail, we are typically 
better off with structure functions. 

Noise considerations as well as the desire for easy 
absolute calibration of measured rate correlograms 
lead to high seed levels as optimum condition for cross 
beam rate correlation. In this regime, no other tech- 
nique - like post processing of real-time LDV da ta -  can 
provide more accurate velocity correlation informa- 
tion than rate correlation, simply because there is no 
way to avoid the very signal fluctuations which are to 
be determined by the measurement. With its two 
advantages of full real-time performance and absence 
of bias problems [-63], rate correlation (or the calcu- 
lation of rate structure functions) constitutes an ideal 
measuring technique for the study of temporal fluctu- 
ations in flows, which tolerate high seeding. 
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5. Phase Structure Function 

So far, our attention has been restricted to the 
measurement of optical amplitudes and intensities 
obtained in dynamic light scattering experiments. 
These signals carry velocity information encoded as 
Doppler-frequency shifts. Completely new signal pro- 
cessing techniques may, however, be based upon direct 
measurements of optical phase signals. This section 
will describe such a technique, which is able to resolve 
very small collective particle motions otherwise ob- 
scured by diffusion broadening. 

5.1. Single Particle Phase Statistics 

For a single scattering particle, phase changes ~b are 
directly related to the particle displacement x. We may 
rewrite (2) as 

uo = [uo[ exp(iq~) = a exp (iq- x) (64) 

or 

q~ = q- x. (65) 

Hence, measurements of the phase statistics immedi- 
ately yield particle displacement statistics. For the case 
of Brownian motion, we obtain a mean square change 
or phase structure function 

De(r ) = ( A dp 2 > = q2 ( Ax  2) = 2q2Dr. (66) 

As already discussed in Sect. 2.2, the correlation 
function of such a nonstationary phase signal is not 
well defined. We are forced to use structure functions 
(or other moments of phase differences) in this 
application. 

For constant particle motion with velocity v, we 
obtain a quadratic rise of the phase structure function, 

D4,(z) = qZv2z2. (67) 

Periodic particle motion with 

x(t) = Xo + Ax  sin(~2t) (68) 

leads to a periodic phase structure function, 

D~(r) = q2A x 2 [1 -- cos(f2z)]. (69) 

In the simultaneous presence of more than one of the 
types of particle motion discussed above, the corre- 
sponding phase structure functions add up. This fact 
makes the measurement of phase structure functions a 
suitable technique for the simultaneous determination 
of diffusional and very small collective particle motion. 

Such measurements are severely limited with 
"classical" laser Doppler techniques, because - in the 
case of photon-correlation processing - the measured 
correlogram falls off like a negative exponential due to 
diffusion. Hence, collective particle motion compo- 

nents cannot be detected if they are too weak to 
produce a significant fraction of at least one full 
Doppler cycle within the diffusional decay time. For 
periodic particle motion, intensity processing tech- 
niques typically do not succeed, if the peak-to-peak 
displacement falls below one fringe separation. 

In contrast, phase structure functions allow the 
simultaneous determination of diffusion and collective 
motion over large ranges of their relative magnitudes, 
because both types of motion lead to additive contri- 
butions in the phase structure function which coexist 
(and do not vanish) even for lag times much larger than 
the decay time in the corresponding photon corre- 
logram. Particularly the possibility of resolving much 
smaller collective particle motions otherwise com- 
pletely obscured by diffusion indicates the practical 
importance of the concept of phase structure functions. 

5.2. Many-Particle Phase Statistics 

Unfortunately, the simple relation between optical 
phase and particle displacement gets lost, if we con- 
sider multi particle scattering. Coherent addition of 
single particle amplitudes leads to the random walk 
picture already used in Sect. 1.lb. Destructive inter- 
ference occasionally causes almost vanishing signal 
amplitudes. Since the magnitude of complex amplitude 
changes is essentially independent of the current 
amplitude value, such a situation produces arbitrarily 
large phase changes within very short lag times. 

For a large number of scattering particles, the 
absolute amplitude of the signal follows a Rayleigh 
distribution [32]. Its probability density falls off 
linearly towards zero for small amplitudes A. With 
phase changes of order 1/A, i.e. squared phase changes 
of order 1/A 2, integration over small amplitudes 
results in a logarithmic divergence - the phase struc- 
ture function is not well defined! 

However, weighting of phase changes by the in- 
stantaneous absolute amplitude leads to a well 
behaved stochastic process, 

i: 

Q(z) = I A(t)ddp(t)= i A(t)/p(t)dt, (70) 
0 0 

the tangential change of the complex signal 

N 

A(t) exp [iq~(t)] = ~ aj exp [iq~j(t)], (71) 
j = l  

where aj and q~j(t) denote amplitude and phase of the 
single particle contributions and N is the number of 
particles in the measurement volume. Temporal 
changes of the a i are again neglected as slow compared 
to the q~j(t) [57]. 

In the presence of diffusive and collective particle 
motion, phases may be split into a pure diffusion term 
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(index D) and a pure collective term (index C). The 
collective term is the same for all particles and we 
obtain 

q~j(t) = ~o~(t) + ~oc(t), (72) 

r = cD(t) + ~oC(t). (73) 

In the random walk picture, diffusion leads to a 
"boiling" of the single particle contributions, while 
collective motion results in a simple rotation of the 
whole random walk graph about the origin of the 
complex plane. It should be noted that only diffusion 
causes changes in the absolute amplitude A(t). Hence, 
we may treat the pure diffusion problem, 

N 

A(t) exp [iq~~ = • a i exp [i~0D(t)], (74) 
j = l  

separately first. 

a) Pure Diffusion. Taking the temporal derivative of 
(74) and multiplying with exp(-iCD), we obtain 

N 

A(t) + iA(t)(o~ = ~ iaj~b~ exp [i~0~ - ir176 (75) 
j=l 

with the imaginary part 

N 

A(t)~o(t)= • aj(o~(t)cos[iq~D(t)--ir176 (76) 
j = l  

For Brownian motion of noninteracting particles, the 
0f(t) are random varibles, which are independent of 
each other and of all the instantaneous phases and 
amplitudes. On time scales which are - as in this 
application - several orders of magnitude larger than 
hydrodynamic relaxations, particle velocities and 
hence our ~b~ are delta correlated with 

( (o~ (9~(t + z) ) = 2q2 D6('c) . (77) 

From (76) and (77) we obtain the diffusion term of the 
amplitude weighted-phase structure function (AWPS), 

Dq,(Z) = <A QO(z)2> 

= ( i i A(t)~D(t)A(t')~D(t')dtdt') 

N N z v 

= Z Z I [, (aft , , )  
j = l  m = l  0 0 

x (cos [Of(t) - (~~ cos [O~ ') - r176 

x ((9~ ' 

= N i ( a2 ) ( cOs2 [0f(t) -- cD(t)] ) 2q 2D dt 
0 

= (A  z) qZDz. (78) 

In the last line of (78) we used the identities 

(A  z) = N ( a  2) (79) 

and 

(cos 2 [~o f -  r  = 1/2. (80) 

Equation (80) holds for large N only, where the two 
phases considered show a vanishing dependence. 

The diffusion term of the AWPS agrees with that of 
the phase structure function of a single particle (66) 
except for the additional factor (A2). This factor is 
determined by a monitor channel during the measure- 
ment of the AWPS, and may then be divided out for 
proper normalization. 

b) Collective Motion. The calculation of the collective 
motion term in AWPS is slightly more complicated 
and we will state the starting equation and some 
important results only. Since the amplitude A(t) does 
not depend on collective motion, we obtain two 
separate averages, 

O~c(~) = (AQC(~) ~) 

= i i (A(t)A(t'))((oC(t)f)c(t'))dtdt ' 
O 0  

= i (A(t)A(t+z'))((~ dz'' (81) 
--T 

The correlation of the absolute amplitude may be 
computed as [21] 

(A(t) A(t + z)) = (~/4) (A 2) [1 -- ~(z)2~ 

• F [3/2, 3/2; 1, Q(z)2], (82) 

where 

O(z) = exp(-- qZDz). (83) 

F denotes a hypergeometric series [58]. While (82) 
seems complicated, it just describes a smooth decay of 
the absolute amplitude correlation from an initial 
value (A 2) to its large lag time limit 

<A> 2 = <n/g) <A25. (84) 

Equation (82) is time dependent through 0(z) only. 
Hence this decay occurs for lag times of the order 
l/q2D. If we consider much larger lag times, we may use 
the approximation 

(A(t)A(t + z)) ~ ( A )  2 , (85) 

which simplifies the solution of (81) to 

DQc(Z) = (7z/4) <A 2 > D~c(z). (86) 

For the periodic motion of (68), this relation reads 

Dec(Z ) = (n/4) <A 2 > qZA x 2 [1 -- cos (Oz)]. (87) 

Again, the AWPS essentially agrees with the single- 
particle phase structure function. 
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5.3. Experimental Techniques 

Although our theory was stated in terms of complex 
amplitudes for ease of understanding, reference beam 
setups for the direct measurement of such amplitudes 
are useful at very large particle concentrations only. 
For moderate concentrations (typically up to some 
1000 per measurement volume), symmetric real fringe 
systems with incoherent detection yield better signal- 
to-noise ratios as already discussed in Sect. 1.2. 

Due to the analogy between the high-pass filtered 
Doppler signal of real-fringe systems and one compo- 
nent of the complex amplitude obtained by coherent 
scattering from a single laser beam, all calculations of 
the preceding sections remain applicable. 

In a first AWPS system, we used Bragg cell 
frequency shifting and time measurements of zero 
crossings of the high-pass filtered Doppler signal for 
phase detection. 16 bits of phase with 8 bits [21, 23, 57] 
or 12 bits [22, 23] in 2n yielded phase information with 
a resolution of about 0.01 rad. Box-car integration of 
the absolute value of the amplitude of the filtered 
Doppler signal over a full period and 8 bit analog-to- 
digital conversion supplied the required instantaneous 
amplitude information. A microprocessor or a mini 
computer calculated phase differences, amplitude 
weighting and the final structure function. Assember 
programs were used to achieve real time operation for 
sample times down to 1 ms. 64 simultaneous lag time 
channels were typically determined [21]. 

A second AWPS system now uses another scheme 
of direct detection of amplitude weighted phase dif- 
ferences, which is illustrated in Fig. 14. Each zero 
crossing of the filtered Doppler signal starts a timer 
that first triggers a peak measurement after a quarter 
period of the shift frequency. This peak measurement 
serves to determine the instantaneous amplitude. After 
a full period of the shift frequency, the filtered Doppler 
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Fig. 14. Direct sampling scheme for amplitude (A) and amplitude 
weighted phase change (A Q) based upon signal samples taken at 
times equal to a quarter and a full period (T) of the frequency shift 
signal (a) past a zero crossing of the filtered Doppler signal (b) 

signal is sampled again. For a phase difference of zero, 
this sample would coincide with the next zero crossing. 
For phase differences small compared to I rad, we 
obtain an almost linear dependence of phase change 
and sampled signal. The factor of proportionality is 
nothing but the absolute amplitude. Hence, our second 
sample is the desired amplitude weighted phase 
change. 

The measurement of both samples with the same 10 
bit analog-to-digital converter reduces systematic nor- 
malization errors of the structure function, which is 
again computed on a micro or mini computer in real 
time [57]. 

There are two major experimental difficulties. 
Firstly, the sensitivity of up to 1/1000th of a fringe 
results in extreme requirements of mechanical stability 
and vibration isolation. Furthermore, all beams have 
to be shielded against thermal air turbulence. 

Secondly, the frequency shift between the two laser 
beams must be of exceptional quality. For dual Bragg 
cell shifting, particular problems arise if there is any 
cross talk between the two drivers. Although contained 
in the otherwise low-frequency pedestal, this cross talk 
component falls at the center of the desired signal 
bandwidth and may thus not be removed by filtering. 
Its relative magnitude becomes amplified by the ratio 
of pedestal to Doppler signal, i.e. essentially by the 
square root of the number of scattering particles in the 
measurement volume. Thus amplification by a factor 
as large as 100 may occur, rising sub-1% driver cross 
talk to intolerable magnitude. Being a fixed compo- 
nent, cross talk tends to reduce the measured phase 
changes and to decrease the values obtained for 
diffusion constants and velocities. 

Our setups use a specially designed Bragg cell drive 
unit, where the shift frequency is directly input from an 
external generator. While simplifying the phase detec- 
tion, this approach requires very careful calibration to 
achieve the desired low cross talk levels. Other driver 
schemes and alternative means of frequency shifting 
are still under investigation in our laboratory. 

5.4. Histogram Measurements 

Even more information than from the AWPS may be 
obtained from simultaneous measurements of his- 
tograms of A Q(z) at various lag times. The AWPS as 
well as higher moments of amplitude weighted phase 
differences are easily computed from such a set of 
histograms. 

Furthermore, contributions due to a constant 
velocity motion like drift or convection, may be 
completely eliminated by resorting to central mo- 
ments. This scheme reduces the sensitivity of measure- 
ments to such disturbancies. 
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Our present experiment allows the real time mea- 
surement of 64 histograms with 256 bins each and a bin 
capacity of 32 bits. Data are sampled every 1 ms, the 
lag time increment may be any integer multiple of this 
time. A 65th channel is used to obtain absolute 
amplitude histograms. These serve for normalization 
and - by comparison with the theoretical Rayleigh 
distribution - as a measure of signal quality and dust 
problem monitor. 

The measurement of higher-order moments is 
useful, if the particles do not show identical collective 
motion, but rather a distribution of motion ampli- 
tudes. If diffusion is not too strong, moments of such 
distributions may be calculated from higher order 
moments of amplitude-weighted phase changes. 

Finally we plan the measurement of histograms of 
A Q multiplied by the sign of the (externally stimulated) 
collective motion. This scheme again reduces the 
influence of drifts and convection, at least for a 
symmetric stimulated motion. In addition, motion 
amplitudes may be measured by first-order moments 
for improved accuracy. 

5.5. Applications in Electrophoresis 

My development of AWPS techniques was motivated 
by the desire to improve the sensitivity of electrophore- 
tic light scattering experiments, i. e. the measurement of 
particle motion in an electric field. Although such 
measurements are widely performed with conven- 
tional LDV techniques [60, 61], diffusion broadening 
severely restricts their use with samples of small 
mobility and samples which do not tolerate large field 
strengths, e.g. due to Joule heating. 

While it is generally realized that periodic fields 
reduce problems like electrolysis, field frequencies have 
to be kept very small (typically below I Hz), to avoid a 
loss in spectral resolution [62]. Essentially, conven- 
tional LDV techniques require a particle motion 
exceeding the fringe separation. 

First AWPS measurements, on the other hand, 
yielded reasonable mobility data for particle oscil- 
lation by as little as 10 nm peak-to-peak. This was less 
than 1/100th of the fringe separation and about 1/30th 
of the particle diameter. Hence, macro emulsion 
droplets with a zeta potential of 40 mV could be 
measured with an effective field strength as low as 
0.6 V/cm and a field frequency as high as 50 Hz [21]. 

Further increases in sensitivity may be obtained by 
a reduction of the field frequency and the transition to 
histogram measurements. 

6. Conclusions 

New signal processing techniques significantly in- 
crease the use of dynamic light scattering experiments 

for the study of small particle motion. This holds for 
well established techniques like photon correlation, 
which may be used to investigate extremely polydis- 
perse samples with multiple tau processing, as well as 
for novel processing schemes like rate correlation or 
AWPS measurements, which access additional motion 
parameters - like velocity correlations - or provide 
large sensitivity enhancements - like in the case of 
electrophoretic mobilities. 

All of the mentioned techniques are based upon the 
temporal analysis of stochastic measured data by 
correlation or structure functions. Their principle of 
operation and their noise performance can be derived 
from a general discussion of doubly stochastic pro- 
cesses and particular statistical models like the Poisson 
and the Gamma process. 

First successes of the new signal processing tech- 
niques are accurate diffusion measurements of strongly 
interacting samples in several laboratories [64], which 
use the high resolution and the large range of lag times 
provided by my structurator/correlator design, numer- 
ous rate correlation measurements, which helped to 
clarify complex transitions of Taylor-Couette flow 
from the laminar region into turbulent chaos [15, 16], 
and the use of phase structure functions for phar- 
maceutical investigations of electrophoretic mobilities 
[65]. 

Acknowledgements. For continuing support and discussion of my 
work I have to thank Prof. E. O. Schulz-DuBois and all my 
collaborators at Kiel, particularly Dr. J. Merz, Dr. M. Drewel, S. 
Faber, C. Harbers, S. Schr6der, B. Stampa und J. Ahrens. The 
final development of my structurator/correlator was the result of 
an extremely fruitful cooperation with Ing. W. H. Peters of ALV, 
Langen. 

Thanks for stimulating discussions also go to Prof. E. R. 
Pike, Prof. E. Jakeman, Prof. Simonsohn, Dr. G. Parry, Dr. G. 
Pfister, Dr. P. Hille, Dr. T. Mullin, and Dr. Y. Georgalis as well as 
to all other collegues, who took an interest in my work at 
Malvern or at Kiel. Financial support of the 'Deutsche For- 
schungsgemeinschaft' is gratefully acknowledged. 

References 

1. H.Z. Cummins, E.R. Pike (eds.): Photon Correlation and Light 
Beating Spectroscopy (Plenum, New York 1974) 

2. B.J. Berne, R. Pecora: Dynamic Light Scattering (Wiley, New 
York 1976) 

3. H.Z. Cummins, E.R. Pike (eds.): Photon Correlation Spec- 
troscopy and Velocimetry (Plenum, New York 1977) 

4. E.O. Schulz-DuBois (ed.): Photon Correlation Techniques in 
Fluid Mechanics, Springer Ser. Opt. Sci. 38 (Springer, Berlin, 
Heidelberg 1983) 

5. R. Hanbury-Brown, R.Q. Twiss: Nature 177, 27 (t956) 
6. R. Foord, E. Jakeman, R. Jones, C.J. Oliver, E.R. Pike: IEE 

Conf. Proc. 14 (1969) 
7. R. Foord, E. Jakeman, C.J. Oliver, E.R. Pike, R.J. Blagrove, 

E. Wood, A.R. Peacocke: Nature 227, 242 (1970) 



Correlation Techniques in Dynamic Light Scattering 213 

8. K. Sehfitzel: Appl. Phys. B41 (1986) 
9. J.C. Erdmann, R.P. Gellert: J. Opt. Soc. Am. 68, 787 (1978) 

10. J.C. Erdmann, R.P. Gellert: Physica Scripta 19, 396 (1979) 
11. R. Vehrenkamp, K. Sch/itzel, G. Pfister, B.S. Pfister, E.O. 

Schulz-DuBois: Physica Scripta 19, 379 (1979) 
12. R. Vehrenkamp, K. Sch/itzel, G. Pfisler, E.O. Schulz-DuBois: 

J. Phys. El2, 119 (1979) 
13. K. Sch/itzel: Optica Acta 27, 45 (1980) 
14. K. Sch/itzel: In [Ref. 4, p. 226] 
15. T. Mullin, T. Brooke Benjamin, K. Sch/itzel, E.R. Pike: Phys. 

Lett. 83A, 333 (1981) 
16. G. Pfister, U. Gerdts, A. Lorenzen, K. Sch/itzel: In [Ref. 4, 

256] 
17. K. Schnitzel: Opt. Lett. 5, 389 (1980) 
18. K. Schfitzel, G. Parry: Optica Acta 29, 1441 (1982) 
19. K. Schfitzel: Fluktuationen der optischen Wegl~inge in 

turbulenten Phasenobjekten, Dissertation, Univ. Kiel (1982) 
20. K. Schnitzel: J. Opt. Soc. Am. 73, 269 (1983) 
21. K. Schfitzel, J. Merz: J. Chem. Phys. 81, 2482 (1984) 
22. K. Sch~tzel, M. Drewel, J. Merz, S. Schr6der: Inst. Phys. 

Conf. Ser. 77, 185 (1985) 
23. J. Merz: Messungen von Diffusionskonstanten und elektro- 

phoretischen Beweglichkeiten in hochdispersiven Systemen 
mit Hilfe der Amplitudengewichteten Phasenstrukturfunk- 
tion, Dissertation, Univ. Kiel (1985) 

24. E.O. Schutz-DuBois, I. Rehberg: Appl. Phys. 24, 323 (1981) 
25. C.J. Oliver, E.R. Pike: Optiea Acta 29, 1345 (1982) 
26. K. Sch/itzel: Optica Acta 30, 155 (1[983) 
27. K. Sch/itzel: 2nd Intl. Conf. on Trends in Quantum 

Electronics, Bucharest (1985) 
28. K. Sch/itzel: Inst. Phys. Conf. Ser. 77, 175 (1985) 
29. W. Feller: An Introduction to Probability Theory and its 

Applications, 2nd ed. (Wiley, New "York 1971) Vol. 2 
30. C. Keveloh, W. Staude: Appl. Opt~ 22, 333 (1982) 
31. C. Keveloh, W. Riimelin, W. Staude: Inst. Phys. Conf. Ser. 77, 

171 (1985) 
32. B. Saleh: Photoelectron Statistics, Springer Ser. Opt. Sci. 6 

(Springer, Berlin, Heidelberg 1978) 
33. G. Hiller, G. Simonsohn: In [Ref. 4, 377] 
34. E.O. Schulz-DuBois, H. Koppe, R. Brummer: Appl. Phys. 21, 

369 (1980) 
35. M. Drewel: Zur inkohfirenten Streuung yon Laserlicht an 

Teilchenzahlfluktuationen, Diplomarbeit, Univ. Kiel (1982) 
36. E. Jakeman, E.R. Pike, S. Swain: J. Phys. A3, 255 (1970) 
37. E. Jakeman, E.R. Pike, S. Swain: J. Phys. A4, 517 (1971) 
38. C.J. Oliver: Jo Phys. A 12, 591 (1979) 
39. I. DeLotto, P.F. Manfredi, P. Principe: Energia Nucl. 11, 557 

(1964) 

40. E. Jakeman, C.J. Oliver, E.R. Pike: J. Phys. A4, 827 (1971) 
41. S.K. Srinivasan, M. Singh: Phys. Lett. 8, 409 (1981) 
42. K. Schfitzel: Festschrift zum 60. Geburtstag von E. O. Schulz- 

DuBois, ed. G. Pfister, Kiel (1986) 
43. ALV-3000 User's Manual, ALV Laser GmbH, Langen, FRG 

(1985) 
44. K. Schnitzel: Conf. on Quasi Elastic Light Scattering Spectra, 

Worcester, Mass. (1986) 
45. H.Z. Cummins, H.L. Swinney: Progr. Opt. 8 (North-Hol- 

land, Amsterdam 1970) 
46. A.J.F. Siegert: MIT Rad. Lab. Report No. 465 (1943) 
47. J.G. McWhirter, E.R. Pike: J. Phys. Al l ,  1729 (1978) 
48. K. Zimmermann, M. Delaye: Conf. Physical Optics of 

Dynamic Phenomena und Processes in Macromolecular 
Systems, Prague (1984) p. 54 

49. E.O. Schulz-DuBois: Photon Correlation, lecture at Viana 
do Castelo, Portugal (1984) 

50. B.S. Fedders, A. K6neke: J. Phys. E 12, 765 (1979) 
51. R. Vehrenkamp: Nach dem Photonen-Korrelations-Verfah- 

ren durchgeffihrte Laser-Doppler-Messungen zur Wirbel- 
entstehung in gekr0.mmten Kan~ilen, Dissertation, Univ. 
Kiel (1981) 

52. A.D. Birch, D.R. Brown, J.R. Thomas: J. Phys. D 8, 438 (1875) 
53. S.O. Rice: Selected Papers on Noise and Stochastic Pro- 

cesses, ed. by N. Wax (Dover, New York 1954) 
54. K. Sch/itzel: Ratenkorrelation- Ein neues Messverfahren zur 

zeitlichen Analyse station~irer Str6mungen, Diplomarbeit, 
Univ. Kiel (1979) 

55. K. Sch/itzel: Appl. Phys. 22, 251 (1980) 
56. K. Sch/itzel, E.O. Schulz-DuBois, R. Vehrenkamp: Optics 

and Laser Technology, 91 (April 1981) 
57. M. Drewel: Intensit/its- und Phasenfluktuationsspektros- 

kopie von Laserstreulicht aus Interferenzstreifensystemen in 
Suspensionen, Dissertation, Univ. Kiel (1985) 

58. I.S. Gradshteyn, I.M. Ryzhik: Table of Integrals, Series, and 
Products (Academic, New York 1980) p. 1039 

59. Constructed by P. Hille, Kiel (1983) 
60. A.J. Bennet, E.E. Uzgiris: Phys. Rev. AS, 2662 (1973) 
61. B.H. Ware, W.H. Flygare: Chem. Phys. Lett. 12, 81 (1971) 
62. R.S. Stock, W.H. Ray, J. Polymer Sc.: Polymer Phys. Ed. 23, 

1393 (1985) 
63. D.K. McLaughlin, W.G. Tiederman: Phys. Fluids 16, 2082 

(1973) 
64. M. Wenzel, W. Burchard, K. Schnitzel: Polymer 27,195 (1986) 
65. B.W. Miiller, J. Merz, R.H. Miiller: Colloid and Polymer Sci. 

263, 342 (1985) 
66. N. Wiener: Acta Math. 55, 117 (1930) 
67. A. Einstein: Ann. Phys. 17, 549 (1905) 


