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Abstract. Using a new seventh-order numerical method [the O(h 7) method] for solving two- 
point boundary value problems, numerical solutions of the first-order nonlinear coupled- 
wave equations for degenerate two-wave and four-wave mixing in a reflection geometry 
have been obtained. A computer program employing the Gauss-Jordan elimination 
technique has also been adopted to effectively solve the resultant large, sparse and 
unsymmetric matrix, obtained from the 0(h 7) method and the Newton-Raphson iteration 
method. Numerical results from the computer calculations are presented graphically. A 
comparison between this 0(h 7) method and the shooting method, mainly from the 
viewpoint of computational efficiency, is also made. 

PACS: 42.65, 78.20 

Owing to the great promise for many practical appli- 
cations, such as real-time optical information pro- 
cessing and adaptive optics, degenerate four-wave 
mixing (DFWM) and its closely related field, degenerate 
two-wave mixing (DTWM), using photorefractive crys- 
tals as nonlinear media, have attracted much attention 
in recent years [1]. Some of the the photorefractive 
crystals such as EiNbO 3, have been used as the recording 
media in conventional holography for sometime al- 
ready [2]. 
A task of major importance in DTWM and DFWM is 
to solve the first-order nonlinear coupled-wave equa- 
tion (which is obtained by using the slowly varying 
envelope approximation (SVEA) [3, 4]) and to obtain 
the resultant intensity of the signal beam (in DTWM) 
or the wavefront reflectivity (in DFWM). Due to the 
mathematical complexity in general, only approximate 
analytical solutions (which may not be derived from 
the nonlinear coupled-wave equations) or exact 
numericaI solutions can be obtained under assump- 
tions of special conditions. These assumptions have 
included low beam-coupling, low diffraction efficiency 
[5, 6], nondepleting pump beams [7] and a nonab- 
sorbing medium [8]. To gain a better understanding of 

DTWM and DFWM, it is necessary to obtain accurate 
solutions of these nonlinear equations under more 
general conditions. 
In [9-11], we have used the shooting method (one of 
the numerical methods to solve two-point boundary- 
value problems) to obtain accurate numerical so- 
lutions of the first-order nonlinear coupled-wave equa- 
tions for DTWM and DFWM. No special conditions, 
such as those mentioned above, need be assumed. 
In this paper, we use a new seventh-order numerical 
method [the O(h 7) method] [12], to obtain the 
numerical solutions of the nonlinear equations for 
DTWM and DFWM in a reflection geometry. 
Although this O(h 7) method differs from the simple 
finite difference method, it may still be considered as 
one of the finite difference methods [13]. 
As before [9-11], throughout this paper only are the 
steady-state solutions of the nonlinear equations for 
DTWM and DFWM at saturation stage sought. This 
means that the solution is time independent and the 
relevant parameter, such as the effective coupling 
constant g, see what follows (14 and 18), is independent 
of incident beam intensities. Saturation of g occurs 
when the trapping centres in the crystal are completely 
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filled with the photoinduced charge carriers. This 
occurs only at a relatively high power density of 
incident beams. 
In the following, we first describe Tewarson's seventh- 
order numerical method [12]. This method and the 
Newton-Raphson iteration method [13] are then used 
to derive the coefficient matrix from the corresponding 
first-order nonlinear coupled-wave equations for 
DTWM and DFWM, respectively. Next we give a brief 
description of Key's computer program [14] which is 
very effective in solving the resultant large, sparse and 
unsymmetric matrix, using the Gauss-Jordan elimi- 
nation and special pivot selecting schemes. 
Computed results will be presented in graphical form. 
Finally, a comparison is made between the shooting 
method [9, 10, 13] and the O(h 7) method used here. 

1. The Seventh-Order Numerical  Method 

1.1. General Description of  the O(h 7) Method 

Very recently, Tewarson reported [12] a new method 
for the numerical solution of two-point boundary 
value problems for first-order nonlinear ordinary 
differential equations. This method has a higher-order 
accuracy [of order 0@7), where h is the space step size], 
than many other numerical methods. Furthermore, 
this increased accuracy is achieved with no increase in 
computation time, because less function evaluations 
are required for each sub-intervaL 
Adopting the approach of Tewarson [12], let us con- 
sider the following systems of first-order differential 
equations 
.T(z) = f (z, )7(z)), (1) 

with the two-point boundary conditions 

0()7(0), )7(1)) = 0, (2) 

where ~ ~7, and )7 are m-vectors, 37' is the first-order 
derivative of function )7 with respect to z, which is the 
independent variable and is normalized, i.e. 0<z  
<1. 
This range of z is subdivided into n equal parts with 
h = 1/n and z i = ih, i = 0, 1 . . . .  , n. Then integrating the 
ptU equation of (1) in the interval [zi- 1, zi], yields the 
residual quantity 

q)p, ,()7) = Y v , , -  Yp, i-1 - }' fp(z, y ( z ) )d z :  0, (3) 
g i -  1 

where yp i = yp(zi) and p = l, 2 ..... m. 
Using the 0@ 7) method [12], we obtain 

�9 7h 8h 
~' fp(z, )7(z))dz = ~ (fp, ,_,  +fp,,) + 15 fp ' ' -  ~/2 

2 i -  1 

h 2 1 + ~ ( f p ' , f _ ~ - f , , 3 + O ( h 7 ) ,  (4) 

where O(h 7) denotes an error term in the order of h 7, 

f , , ,  = fp(z,, y;(zi) ) , (5) 

h ~ h 

and 

Y,,~-~/2 = (Yp,~-1 + Yp, 3/2 + (5h/32) (fp,i-1 - f p ,  ~) 

+ @2/64) ( f ~ -  ~ +f~  3. (7) 

The terms f ~ - t  and f ~  represent first derivatives 
of fp and can be obtained from (I) as follows 

fv~ = Sfv 8fp g)7 8fp + Sfp 
&-z + 8 7 " 8 z -  8z ~ "  f"  (8) 

Finally, neglecting the error term 0@ 7) in (4), (3) 
becomes 

~()7)=0, (9) 

where ~-denotes a vector with the components ~bp,~. 
In (2) we assume that j is a linear function of )7, and 
consequently m components of 37 in (9) have been 
eliminated by expressing them as linear functions of 
other components of)7, using the boundary conditions 
(2) [12]. 
Note that in (4) only f~i-1 and f ~  are needed. The 
additional terms f2  i_ 1 and f 2  i (the second derivatives) 
as required in another method [15], are not necessary 
and therefore the computation time is reduced. 

1.2. Resultant Matr ix  Equation for D T W M  

From the discussion in Sect. 1.1, the main problem is to 
determine a solution to (9). Since the Newton-Raphson 
iteration method usually converges faster than most 
other methods, we use it to solve ~()7)= 0. 
The modified Newton-Raphson iteration method [13] 
for solving ~()7)= 0 is 

)7" + x) = )Tit) + o9t5)7(0, (10) 

where 

f(~(t))337 m = _ ~()7m) (11) 

assuming the Jacobian matrix J()7) = [85p, JSyj] is non- 
singular, and co r =< 1. This is chosen to ensure that 

rff07r 1))1 < 15()7m)[. (12) 

The elements of the Jacobian matrix f can be approx- 
imated [13] as 

6qOp,i ~.~ ~p, i(Yj + 3Y j) -- q~p, i(Yj) (13) 
8yj - 3yj 

Now (11) can be constructed, using the nonlinear 
coupled-wave equations for DTWM and (3-8), given 
by the O(h 7) method. 
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The construction of this type of equation is tedious, 
especially for the case fo four-wave mixing or N(>  4)- 
wave mixing. Therefore only a brief description of the 
procedure is presented. 
For DTWM in a reflection geometry without an 
applied electric field and ignoring the boundary reflec- 
tion components, the first-order nonlinear coupled- 
wave equations are given as follows [9] 

dy, _~ - ~ l y , -  291 ~ = fl] 
dz y, t y z  [ 

(14) f 
dy2 =~ly2_291 YlY. z - f2 , |  
dz Y, + Y2 J 

= ~i/COS 0,, 

rcngrEr 
g = (,~ cos0 . )  (1 + E~/E~) ' 

Er = 27rkBT/(eA) = A/A,  (15) 

eNA 
Eq 2rCeoe, - BA, 

2 
A ~  . _ _  

2n 0 cos 0, " 

In the above y~ and Y2 are the intensities of the two 
plane waves A, and A2, respectively, cq is the intensity 
absorption coefficient of the nonlinear medium at the 
operating wavelength ,~ and 9 is the effective coupling 
constant [7, 9]. Er is the diffusion field, Eq is the 
maximal field of the volume space-charge field, no is the 
average refractive index of the medium, r is the appro- 
priate electro-optic coefficient of the medium, kB is 
Boltzmann's constant, T is the temperature, e is the 
electronic charge, A is the fringe spacing,e (= e0e,) is the 
static dielectric constant of the medium, N is the 
concentration of trapping centres, l is the thickness of 
the medium, and 0, is the internal angle between the 
beams and the axis z' (Fig. la). In (14), z (=z'//) is 
normalized (from 0 to 1). 
Using (8 and 14), we obtain 

~f~ Ofl ~# Of, Oyx c~f, @z 

= ( - e l - 2 g l ( y ~ - y z ) Z ) f ~  

-291 y2 f2. (16) 
(Y, + y2) z 

Similarly we have 

y~ 
f ;=  -29I(y~ +y2) ~ A 

+ ( - M -  291"ty , *Y~ ,2~ f2 . y 2 )  / (17) 

i ~ o 0 1 /  --_ _ --. _ --k" 
0 n o  I ~ 0  

Fig. la and b. The configurations of (a) degenerate two-wave 
mixing and (b) degenerate four-wave mixing in a reflection 
geometry. The average refractive index of the nonlinear medium 
no > 1 is shown 

From (3, 4, 16, and 17), one can see that ~bv, i(#) does not 
depend on every component of y, therefore the 
Jacobian matrix J(y)= [0~bv, i/ys] [i.e., the coefficient 
matrix in (11)] contains many zero elements and is a 
sparse matrix [14]. 

1.3. Resultant Matrix Equation for DFWM 

The matrix equation for DFWM can be derived in a 
similar way to the case of DTWM, although the 
procedure is more complex. For DFWM in a reflection 
geometry with applied electric field Eo = 0 and neglect- 
ing the boundary reflection components, the first- 
order nonlinear coupled-wave equations are as follows 
[7, 10] 

dyl + 112 
- f l =  - ~  Iyay4-(yIy2y3y4) , 

dz Yo 

~z  = f~ = ody2 - 2gl (YlYzY3Y4)'/2 , YzY3 +_ 

Yo 
(18) 

dy3 - f 3  = - cdy3 - 2 9  ly2y3 + (YlY2Y3Y4)I/Z, 
dz Yo 

dy4 _ f4 = ~ly4- 291YlY4 +-- (YlYzY3Y4) 1/2 . 
dz Yo 

Here Yl, Y2, Y3, and Y4 are the intensities of two 
antipropagating pump beams A1 and A2, the signal 
and the generated phase-conjugate beams A3 and -44, 
respectively, as shown in Fig. lb. Then Yo = Ya + Y2 + Y3 
+Y4 is the total beam intensity. The (+)  sign in (18) 
applies for 9 > 0 while the ( - )  sign applies for g < 0 [7]. 
Other parameters have been defined previously. 



220 Y.H. Ja 

Using (8 and 18), we have 

f ; =  ~ f ~ f l  + ~ y z J Z + ~ y a J 3 +  @~J4, 

f ; =  

= +A)  + f ; ,  

(19) 

where 

(22), although the values of the corresponding elements 
are different. 

2. Computer Program for Solving Matrix Equation 
with a Large, Sparse, Uusymmetric, 
and Banded Coefficient Matrix 

An inspection of (22) indicates that the coefficient 
matrix is an unsymmetric, banded and sparse matrix, 
whose band-width (= n + 2 and 3n + 2 for DTWM and 

~fl 1 - 1/2 1/2 = - ~ l -  291 [Y4-I--~(YtYzY3Y4) Y2Y3Y4]Yo -- [YtY4----- (YtY2Y3Y4) ] ,  
Oyl y~ 

Oft = _291 [ + �89 1/2Y tYaY4]Yo -- [Y lY4 +- (Y lYzY3Y4) 1/2] 
Oy2 ' 

~?ft = _ 291 [ +-�89 - t/ZYlY2Y4]Yo - [YlY4 +- (YtY2Y3Y4) t/2] 
0y3 yo ' 

Of 1 _ 201 [Yt +-�89 1/2ylY2Ya]Yo-- [YlY4 • (YaYzY3Y4) 1/2] 
ay~ yo 2 

Of 2 = _ 2 9 / [  -+�89 - ~/2y2y3y4]yo - [ y z y 3  - (y~y2y3y4) 1/2] 
a y l  / o  ' 

af2 = od- 291 [Y3 +-�89 - a/2ylY3Y4]Yo - [Y2Y3 ~ (YlY2YaY4) a/2] 
OYz yo 

Of 2 _ 291 [Y2-+�89 t/2YlYzY4]Yo-- [Y2Y3 4- (YlYlY3Y4)1/2] , 
OY3 

i f 2 _  291 [ +�89 ~/2y~Y2Y3]Yo- [Y2Y3 --- (Y~Y2Y3Y4)~/2] 
yo 2 aY4 

The resultant 4nx4n coefficient matrix J(~) for 
DFWM then has the following form 

(22) 

where the blanks denote zero elements. The longer 
straight lines denote diagonal or sub-diagonal non- 
zero elements and the shorter lines denote non- 
diagonal non-zero elements which are adjacent to the 
corresponding diagonal or sub-diagonal elements. 
Note that the coefficient matrix J(35) in (11) for DTWM 
has the same shape as the upper-left quarter matrix in 

(20) 

(21) 

DFWM, respectively) is not very narrow and increases 
with the number of the sub-interval n. 
There are numbers of different techniques to diagonal- 
ize such a matrix, and consequently to obtain the 
solution of the corresponding equation. Here we adopt 
Key's computer program in which the Gauss-Jordan 
elimination technique is employed, and a pivotal 
element selection scheme is incorporated. The latter 
reduces computer storage and computation time and 
allows reasonably accurate results to be obtained [14]. 
The Gauss-Jordan elimination technique has been 
proven to be more effective than the Gauss elimination 
technique for solving large matrices [14]. 
The details of this computer program have been 
described elsewhere [14] and will not be discussed here. 
A unique feature of this computer program is its 
storage scheme in which two arrays are needed. One 
array contains the non-zero elements of the coefficient 
matrix while the other contains the column index of the 
corresponding elements. For a sparse matrix having 
say n>30, the saving in computer storage is 
obvious. 
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Our study shows that, as reported by Key [14], the 
minimum row-minimum column pivot selection 
scheme is also the best of several possible pivot 
selection schemes for solving the first-order nonlinear 
equations for DTWM and DFWM. This is judged 
from the accuracy of the computer results, compu- 
tation time, total number of terms removed in the 
elimination process and the maximum number of 
columns of storage required during the solution pro- 
cess. However, in our case, the differences in computer 
time and accuracy of results obtained when using 
different pivot selection schemes are not so dramatic as 
reported previously [I4]. In this paper, we therefore 
present the computed results obtained by using the 
minimum row-minimum column pivot selection 
scheme only. 

3. Computed Results and Discussion 

3.1. Computed Results of DTWM 

In this subsection the matrix form of (11) for DTWM 
will be solved using the Gauss-Jordan elimination 
scheme and the minimum row-minimum column pivot 
selection scheme [14]. Since major results have been 
obtained and reported by using the direct numerical 
method [16] and the shooting method [9], we com- 
pute only the dependence of the so-called effective gain 
7o [17] on the external incident angle 0, (made between 
the incident beam and the axis z', Fig. la), on the 
operating wavelength 2 and on the gain factor 9l. 
The effective gain [17] is defined as 

Y2 with reference beam _ y2(0)lg (23) 
7o= 72 without reference beam 72(0)[o=o" 

It is obvious from (14, 15, and 23) that there is complex 
dependence of 7o on the gain factor gI, on the incident 
angle 0, and on the operating wavelength 2, 
respectively. 
In solving the matrix equation (11) using our computer 
program, the starting value of 37 (yp,~ where p = 1,2, and 
i = 1, 2 . . . .  , n + 1) is chosen as a vector of all unities or 
other integral numbers [except at the boundary where 
the value is given by the boundary condition 
M = 2, n + i(I)/Yl, l(0), and Yl, ,(0) is normalized to one]. 
Convergence was reached in only several iter- 
ations. 
The intensity absorption coefficient ai of a photorefrac- 
tive crystal depends on the operating wavelength 2 and 
usually decreases with an increasing wavelength. How- 
ever, the relation between e~ and 2, and the value of ai 
are different for different types of photorefractive 

crystals. Thus in our computation, we use the following 
approximate relation between c h and 2; 

C. 10-9 cm 
~i(2) = 22 , (24) 

where C is a dimensionless constant. 
Note that (24) is only valid inside the transparent 
region of the crystal (say 2=0.45 to 7.5 ~tm for BGO 
[18]). The shape of the curve of ~i against 2 obtained 
from (24) is similar to that of the measured curve for 
BGO [19]. 
Figures 2a-c show the computed dependence of the 
effective gain Yo on the incident angle 0 with the initial 
beam intensity ratio M, the intensity absorption 
coefficient ai, and the refractive index of the nonlinear 
medium no, as parameter, respectively. Inspection of 
Fig. 2 indicates the following 
l) For a large no (say no=2.5) 7o increases only 
slightly with 0 and the relation between 7o and 0 is 
approximately linear. However, for a small no (Fig. 2c) 
7o increases significantly with 0, and the relation 
between 70 and 0 is nonlinear. 
2) 7o increases rapidly with no (Fig. 2c). 
The computed curves of the effective gain 7o against the 
operating wavelength 2, with the initial beam ratio M, 
the intensity absorption coefficient cq and the refractive 
index no as a parameter are shown in Fig. 3a-c, 
respectively. Here the slight variation of the refractive 
index no with the operating wavelength 2 is ignored. It 
can be seen from these figures that the relationship of 
7o to 2 is approximately linear and that 70 changes very 
little with 2, for 2 ranging from 0.45 to 0.75 gin. The 
reason is that although c h decreases with 2, (24), 7o has a 
weak dependence on c~ or ei (Fig. 2b) and that the 
effective coupling constant g only changes slightly with 
spatial frequency or 2 [20, 21]. The dependence of To on 
other parameters such as M, ~, and no is similar to that 
shown in Fig. 2a-c. 
The relation between the effective gain 7o and the gain 
factor 91is computed and shown in Fig. 4. Inspection of 
this figure indicates the following characteristics 
1) The dependence of 7o on gl is nonlinear, and 70 
increases rapidly with 91. 
2) The rate of change of 70 with 91 increases with 
decreasing M. 
There is some complexity when using 0 or 2 as the in- 
dependent variable since g and e both depend on 0 and 
2, (15 and 24). Therefore in some cases, an appropriate 
interpretation may be difficult. 

3.2. Computed Results of DFWM 

As in the case of DTWM, the matrix equation for 
DFWM is constructed using (11 and 18-21), and then 
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4.0 ~-Q =0.2 

3.0 
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M=1.5 

0 01s 110 lls 210 

Fig. 4. Computed dependence of effective gain ?o on gain factor gl 
in two-wave mixing with initial beam-intensity ratio 
M=y2(l)/yl(O ) as a parameter 

is solved using Key's program. For the same total 
number of the sub-interval n, the size of the matrix for 
DFWM is four times that for DTWM, so that more 
computing time will be required. 
Here, we only compute the dependence of wavefront 
reflectivity W (= y4(O)/y3(O), the intensity ratio of the 
generated phase-conjugate beam to the object beam at 
z = 0) on the incident angle 0 and on the attenuation 
factor al. These results have not been computed and 
reported previously. Figure 5a-d show the calculated 
dependence of W on 0 with the initial pump beam ratio 
rp=y2(1)/yl(O), the reference-to-object beam ratio 
M~ 1= y2(l)/y3(O) ' the intensity absorption coefficient 
,~ at the operating wavelength 2 and the refractive 
index of the nonlinear medium no as a parameter, 
respectively. 
An examination of Fig. 5a-d shows the following 
characteristics: 

1) Generally, the relationship between the wavefront 
reflectivity W and the external incident angle 0 is 
nonlinear. 

2) In Fig. 5a-c where an artificial refractive index 
n o = 1 is assumed (which is of theoretical interest only, 
for in practice such a nonlinear medium does not exist), 
W at first increases slowly then rapidly with 0, reaches 
a maximum at about 70-80 ~ and then decreases with 0. 
This is because both the gain factor gl and the 
attenuation factor al increase with 0, (15). The former 
tends to increase W, while the latter tends to decrease 
W. At a smaller 0, the increase of gl with 0 is faster than 

that of M. The net result is therefore the increase of W 
with 0. However, when 0 approaches 90 ~ the attenu- 
ation factor ~1 is dominant and this results in the 
decrease of W with 0. The position of the maximum of 
W depends on the material and geometrical para- 
meters. For example, in Fig. 5c, the position of the 
maximum moves towards a smaller 0 when ei in- 
creases. When ei = 0, no maximum of W exists. 

3) For n o + 1, i.e. in a practical case, there is no 
maximum in the curves of W against 0 (Fig. 5d). This is 
probably due to the fact that the corresponding change 
of the Bragg angle 0, inside the medium is much less 
than that of the external incident angle 0 which 
changes from about 0 ~ to 80 ~ In consequence, the 
variations of gl and el (esecially the latter) will not be so 
dramatic as in the case of no = 1. 

4) When no + 1, the reflection at the surface of the 
medium has to be considered. In this case the wave- 
front reflectivity W outside the medium should be the 
product of the wavefront reflectivity calculated directly 
by solving the matrix equation for DFWM and the 
factor ( l -R)  2, where R is the intensity reflection 
coefficient. R depends on the incident angle 0 and the 
polarization of the beam and usually increases rapidly 
with 0. In Fig. 5d, the curves of the actual wavefront 
reflectivity W'= ( 1 -  R)2W plotted against 0 are also 
presented, where vertical polarization of the beams has 
been assumed. The curves of W' against 0 show the 
angular response or the spatial frequency response of 
the DFWM. From Fig. 5d, it is obvious that W' 
decreases significantly at larger 0. Note that the curve 
of W' against 0 will be flatter and that the value of W' 
increases at a small 0 when no increases, while the 
spatial frequency response becomes narrower. The 
curve of W' against 0 for no = 1 is also plotted for 
comparison. 
Figure 6 shows the computed relation between W and 
the attenuation factor ~l. Evidently the relation is 
nonlinear and W decreases rapidly with al. 

3.3. Comparison Between the O(h 7) Method and the 
Shootin9 Method 

The computed results in this paper and in [-9-11] 
indicate that both the O(h 7) method and the shooting 
method are well suited to solving the first-order 
nonlinear coupled-wave equations for DTWM and 
DFWM. A comparison between these two methods 
shows the following points: 

1) The shooting method is more straightforward, is 
easier to program in a general form, and easier to 
handle than the O(h 7) method. This is because in the 
O(h 7) method the process of setting up the (usually 
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Fig. 5a~t. Computed dependence ofwavefront reflectivity W on incident angle 0 in four-wave mixing with (a) initial pump intensity ratio 
rp = Y2(I)/yl(O), Co) reference-to-object beam ratio M[ t = y2(l)/y3(O) ' (c) intensity absorption coefficient % and (d) the average refractive 
index of the nonlinear medium no as a parameter, respectively. In (d), the computed curves of actual wavefront reflectivity 
W' = (1 - R) z W against 0 are also shown. Field parameters A = 0.16 V, B = 0.8 x 108 V cm- z, operating wavelength 2 = 0.5 ~tm and 
medium thickness l = 0.2 cm 

large) matrix is rather involved, and a complex storage 
scheme such as that used in [2] has to be used in order 
to save storage and computing time. 
2) In the O(h 7) method, the starting values of  the 
solution over the whole  range have to be guessed while 
in the shooting method,  only a few boundary values 
need be estimated. This places a more rigid constraint 
on the starting values for the O(h 7) method.  In our 
computat ion using the O(h 7) method it has been found 
that in some cases a starting matrix of  the solution with 

all elements being unity does not  work. The values of 
the elements have to be much larger than unity. 
3) To obtain the same accuracy in computed results, 
the O(h 7) method is generally faster than the shooting 
method in computing time. Furthermore, for a mod-  
erate accuracy (say, the relative error is 10-  3 ,.~ 10-  4), a 
coarse space-meshing (i.e., a small n, say 8 ~ 10) can be 
used in the O(h v) method. 
4) Considerable storage capacity is usually required 
for the O(h 7) method even when special storage 
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Fig. 6. Computed relation between wavefront reflectivity W and 
attenuation factor el in four-wave mixing with reference-to- 
object beam ratio M] ~ =y2(1)/y3(O) as a parameter 

schemes [14] have been used, whereas storage is not a 
problem in the shooting method. 

4. Conclusions 

The seventh-order numerical method [12] for solving 
two-point boundary-value problems, has been used to 
obtain numerical solutions of the first-order nonlinear 
coupled-wave equations for DTWM and DFWM. 
This method usually uses less computer time than the 
shooting method [9, 10, 13], although more storage is 
required. Also there is some difficulty in using it as a 

basis for a general routine and in automatic 
computation. 
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